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Particle manipulation by acoustics has been investigated for many years. By a proper 
design, particle deposition can be induced by the same principle. The use of acoustics 
can potentially be developed into an energy-efficient technique for particle removal or 
filtration system as the pressure drop due to acoustic effects is low and the flow velocity 
is not necessary to be high. Two nonlinear acoustic effects, acoustic streaming and acoustic 
radiation pressure, are important. Acoustic streaming introduces vortices and stagnation 
points on the surface of an air duct and removes the particles by deposition. Acoustic 
radiation pressure causes particles to form agglomerates and enhances inertial impaction 
and/or gravitational sedimentation. The objective of this paper is to develop a numerical 
model to investigate the particle deposition induced by acoustic effects. A three-step 
approach is adopted and lattice Boltzamnn technique is employed as the numerical 
method. This is because the lattice Boltzmann equation is hyperbolic and can be solved 
locally, explicitly, and efficiently on parallel computers. In the first step, the acoustic field 
and its mean square fluctuation values are calculated. Due to the advantage of the lattice 
Boltzmann technique, a simple, stable and fast lattice Boltzmann method is proposed and 
verified. The result of the first step is input into the second step to solve for acoustic 
streaming. Another finite difference lattice Boltzmann method, which has been validated by 
a number of flows and benchmark cases in the literature, is used. The third step consists 
in tracking the particle’s motion by a Lagrangian approach where the acoustic radiation 
pressure is considered. The influence of the acoustics effects on particle deposition is 
explained. The numerical result matches with an experiment. The model is a useful tool 
for optimizing the design and helps to further develop the technique.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In most of the filtration and aerosol removal systems, particles are removed from the main air stream by deposition. For 
example, separators such as cyclones use external centripetal forces to displace particles from the main air stream, which 
are collected by deposition due to inertial impaction. In a filter, fibers introduce sudden changes in the airflow velocity 
and the particles are deposited onto them by interception and impaction. In these systems, either a high airflow velocity 
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Fig. 1. (Color online.) Schematic diagram of the proposed filtration system.

is used or a high-pressure drop is required to be overcome, resulting in high energy consumption [1–3]. Recently, by using 
nonlinear acoustic effects, an innovative aerosol removal technique without high-pressure drop or high airflow velocity has 
been proposed, which has the potential to be developed into an energy efficient aerosol removal technique [4].

In the experiment carried out in [4], an ultrasonic transducer that generated an acoustic field was installed in an air 
duct. Particles were deposited and removed from the air stream by deposition onto the wall of the channel when passing 
through the air duct. By defining the removal efficiency as the number of particles removed with and without acoustic 
effects, the experiment shows that the removal efficiency increases by 20–30% by turning on the ultrasound transducer. 
Two nonlinear acoustic effects—acoustic streaming and acoustic radiation pressure—were studied and were accountable 
for the enhancement of the deposition. Acoustic streaming [5,6] causes vortices and enhances inertial impaction. Acoustic 
radiation pressure enhances deposition and sedimentation by encouraging particles to agglomerate and grow in size [7–9]. 
Although the experimental results give evidences to support the contributions of the two nonlinear effects, details of the 
flow and the particle dynamics are complicated in the acoustic field and cannot be revealed due to the limited precision of 
the existing experimental techniques. It is desirable to develop a mathematical model to further study the physics behind. 
A successful model also helps to optimize the design, so that an energy-efficient filtration technique can be developed.

Lattice Boltzmann method (LBM) has been developed into an alternative and a promising numerical scheme for the 
modeling of fluid physics and simulating fluid flows [10–12]. The equation is hyperbolic and can be solved locally, ex-
plicitly, and efficiently on parallel computers. Many versions of LBM have been developed for being applied to different 
kinds of flows with varying degrees of success. Recently, the finite-difference lattice Boltzmann method (FDLBM) proposed 
and developed by Fu et al. [13] provides a convenient algorithm for setting the boundary condition. Also, it eliminates the 
inherent compressibility effect of the conventional LBM [14]. The method is capable of simulating a number of flows in-
cluding microchannel flow [13], stochastic flow [15], thermal incompressible flows [16], blood flow with complex boundary 
[17], natural convection with magnetic field effect [18], double diffusive mixed convection [19] and non-Newtonian flows 
[17–19].

The objective of this paper is to develop a numerical model to investigate particle deposition induced by acoustic effects 
in a duct flow. Since the study involves particle dynamics and two acoustic effects that are nonlinear and second order, 
a three-step approach is employed. Firstly, the acoustic field is found by solving the linear wave equations. A new LBM 
for the wave equations is proposed and verified. By using the mean square values of the acoustic field, acoustic streaming 
is determined in step two. The numerical method employed in this second step is the FDLBM by [13]. The ability of the 
FDLBM in applying to acoustic streaming is also demonstrated. After obtaining the flow pattern, the trajectory of a large 
number of particles are traced by a Lagrangian approach in step three. The acoustic radiation pressure is incorporated into 
the force balance equation of the particle dynamics.

2. Methodology

The schematic diagram of the proposed filtration system is shown in Fig. 1. It is essentially an air duct installed with 
an ultrasound transducer. The frequency of the ultrasound is 30 kHz and the wavelength (λ0) is 0.011 m. The height 
(y-direction) of the duct is 2λ0 and the width (x-direction) of the duct is 4λ0. In this setting, standing waves with two 
pressure nodes between the transducer and the channel wall together with complicated sound field at the edge of the 
transducer are generated. Due to the acoustic effects, the particles entering the duct are encouraged to deposit onto the 
walls of the channel. The region affected by the ultrasound is assumed to be long, so that it is adequate to carry out a 
2-dimensional simulation in x–y plane. The duration of particles in the region is the length (z-direction) of the transducer 
(20 cm) divided by the air flow velocity (0.2 m/s) and it is about 1 s.

Since the two acoustic effects are second-order effects, the simulation is divided into three steps. Firstly, the linear wave 
equations are solved to find the mean square fluctuations of the sound field. By using the mean square values of the sound 
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Table 1
List of input parameters.

Parameter Symbol Value

Density of air ρ0 1.206 kg/m3

Temperature of air T0 273 K
Atmospheric pressure P0 131333.4 Pa
Speed of sound in air c0 330 m/s
Viscosity of air μ 1.8·e−5 Pa·s
Acoustic wave frequency freq 30000 Hz
Acoustic wave length λ0 0.011 m
Particle density ρp 1050 kg/m3

Speed of sound in particle cp 1479 m/s

field, the flow field due to acoustic streaming is determined by solving the incompressible Navier–Stokes (NS) equation. The 
last step is to trace the particle motion including the effect of the acoustic radiation pressure by a Lagrangian approach, so 
that the influence of the acoustic effects on particle deposition is investigated.

2.1. Acoustic wave

In the first step, the following normalization is employed. The length (x, y) is normalized by the wavelength of the 
ultrasound, and the time (t) is normalized by the period of the ultrasound. Due to symmetry, only a quadrant of the 
physical domain is calculated (i.e. 0 ≤ x̃ ≤ 2 and 0 ≤ ỹ ≤ 1; here and after, the symbol with a ‘tilde’ is dimensionless and 
that without a ‘tilde’ is dimensional), where the ultrasound transducer is located at ỹ = 0 and 0 ≤ x̃ ≤ 1. It is supposed that 
the transducer generates a sinusoidal pressure fluctuation with an amplitude (A0) of 1788.86 Pa, which corresponds to a 
sound pressure level of 156 dB. The fluctuating pressure (p′) is normalized by its amplitude. The fluctuating density (ρ ′) is 
normalized by A0/c2

0 where c0 = 330 m/s is the speed of sound in air. In this normalization, p̃′ = ρ̃ ′ . The fluctuating velocity 
(u′, v ′) is normalized by U1 = A0/c0ρ0 = 4.49 m/s where ρ0 is the density of air. A summary of the input parameters can 
be found in Table 1.

The normalized governing equations (linear wave equations) are

∂ρ̃ ′

∂ t̃
+ ∂ ũ′

∂ x̃
+ ∂ ṽ ′

∂ ỹ
= 0 (1)

∂ ũ′

∂ t̃
+ ∂ρ̃ ′

∂ x̃
= 0 (2)

∂ ṽ ′

∂ t̃
+ ∂ρ̃ ′

∂ ỹ
= 0 (3)

The boundary condition at the transducer is p̃′ = sin(2π t̃), slip and impermeable conditions are applied at the walls (x̃ = 2
or ỹ = 1), and the remaining sides (x̃ = 0 or ỹ = 0) are reflective boundary conditions.

Due to the advantage of LBM, a new LBM, which is stable and simple for the wave equations, is proposed. The lattice 
velocities are defined as

ξ̃0 = (0,0), ξ̃1 = (c̃,0), ξ̃2 = (0, c̃), ξ̃3 = (−c̃,0), ξ̃4 = (0,−c̃) (4)

where c̃ = �x̃/�t̃ is a scaling parameter and �x̃ and �t̃ are the grid size and the size of the time step, respectively. To 
solve the wave equations, Eqs. (1)–(3), it is equivalent to solve

f̃ eq
α (t̃ + �t̃, x̂) = f̃ eq

α (t̃, x̂ − ξ̃α�t̃) (5)

where f̃ eq
α is the discrete particle distribution function, x̂ = (x̃, ỹ) and ξ̃α = (ξ̃αx, ̃ξαy) with index α = 0..4. By fulfilling the 

constraints,

	 f̃ eq
α = ρ̃ ′

	 f̃ eq
α ξ̃αx = ũ′

	 f̃ eq
α ξ̃αy = ṽ ′

	 f̃ eq
α ξ̃2

αx = 	 f̃ eq
α ξ̃2

αy = ρ̃ ′

	 f̃ eq
α ξ̃αxξ̃αy = 0 (6)

the discrete particle distribution function can be obtained as

f̃ eq
α = ρ̃ ′(Aα + Aαxξ̃αxũ′ + Aαy ξ̃αy ṽ ′) (7)
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Fig. 2. Grid analysis and comparison of the present LBM to Lax–Friedrichs’ method (�x̃ = � ỹ, c̃ = �x̃/�t̃ = 2).

where

A0 = c̃2 − 2

c̃2
, A1 = A2 = 1

2c̃2

A1x = A2y = 1

2ρ̃ ′c̃2
, A2x = A1y = 0

A3 = A1, A4 = A2

A3x = A1x, A4x = A2x

A3y = A1y, A4y = A2y (8)

The mean square fluctuations (< · >) of the acoustic field are found by taking summation of the quantities over a wave 
period of time. The interested mean square values are < p′2 >, < u′2 >, < v ′2 > and < u′v ′ >. The calculation continues 
until steady mean-square values are obtained (with absolute error less than 1·e–5). A grid analysis was carried out for 
< p′2 > at the position x̃ = 2, ỹ = 0 (Fig. 2). The result calculated by the present LBM agrees with that calculated by 
Lax–Friedrichs method [24], thus the proposed LBM is verified. Hence, the results from this step is reliable and can be 
utilized in the next step.

2.2. Acoustic streaming

The non-zero mean square fluctuations of the acoustic field are the driving forces for acoustic streaming, represented 
by the nonlinear terms in the NS equations. This is a second-order effect, but due to the high frequency of the ultrasound, 
the time scale becomes significant when compared to the airflow. In this step, the steady incompressible NS equations are 
solved with the acoustic statistics as inputs as body force terms. The characteristic velocity is chosen to be U s = U 2

1/c0
which is the peak streaming velocity obtained by Rayleigh [20] in the mid-plane of the channel for standing waves in wide 
channels. The pressure p is normalized by ρ0U 2

s . The normalized governing equations are

∂ ũ

∂ x̃
+ ∂ ṽ

∂ ỹ
= 0 (9)

ũ
∂ ũ

∂ x̃
+ ṽ

∂ ũ

∂ ỹ
= −∂ p̃

∂ x̃
+ 1

Re

(
∂2

∂ x̃2
+ ∂2

∂ ỹ2

)
ũ − S

(
∂ < ũ′2 >

∂ x̃
+ ∂ < ũ′ ṽ ′ >

∂ ỹ

)
(10)

ũ
∂ ṽ

∂ x̃
+ ṽ

∂ ṽ

∂ ỹ
= −∂ p̃

∂ ỹ
+ 1

Re

(
∂2

∂ x̃2
+ ∂2

∂ ỹ2

)
ṽ − S

(
∂ < ũ′ ṽ ′ >

∂ x̃
+ ∂ < ṽ ′2 >

∂ ỹ

)
(11)

where S = U 2
1/U 2

s = 5401.76 is due to the different velocity scalings between the first- and second-order equations, Re
is the Reynolds number and, in this case, its value is 44.84. Again, only a quadrant of the physical domain is calculated 
(i.e. 0 ≤ x̃ ≤ 2 and 0 ≤ ỹ ≤ 1). For the boundary condition, no slip is applied on the wall. Symmetric boundary conditions 
are used on the left and on the bottom, including the position of the transducer. The equations are solved by FDLBM 
[13]. The details of the numerical method can be found in [13] and are not repeated here. The numerical parameters are 
�x̃ = � ỹ = 0.01 and �t̃ = 1·e–5.
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2.3. Particle dynamics

In this step, the particles dynamics due to acoustic effects are simulated. It is assumed that the particles have the same 
properties as water, without evaporation effects. A large number of particles with initial diameter of 6 μm are randomly 
distributed in the domain. The motion of the particles is governed by [21,22]:

dx̄p

dt
= ūp (12)

dūp

dt
= f D

τp

(
ū − ūp

) + F̄p (13)

where x̄p is the location of the particle, ūp is the velocity of the particle, ū = (u, v) is the flow velocity, which is obtained in 
the previous step, f D is the Stoke’s drag modification function. For the particle’s Reynolds number, Rep = ρp|ū − ūp| dp/μ <
800, it can be estimated as

f D(Rep) = 1 + 0.15Re0.687
p (14)

The aerosol characteristic response time is defined as

τp = ρpd2
pCc

18μ
(15)

where ρp is the particle density, dp is the aerodynamic diameter of the particle, μ is the viscosity of air, and Cc is the 
Cunningham slip correction factor for small size aerosol,

Cc = 1 + 2λ

dp

[
1.257 + 0.4 exp

(
−1.1dp

2λ

)]
(16)

The mean free path of air molecules (λ) is 6.8·e–8 m.
Apart from the drag forces, other external forces are also considered in Eq. (13), including gravity ( F̄g), Brownian motion 

( F̄B) and acoustic radiation pressure ( F̄A), but the lift and the force due to thermophoresis are neglected. The force due to 
Brownian motion is evaluated at every time step by [23]

F̄B = ζ̄

√
π S0

�t
(17)

where

S0 = 216μσ T

π2d5
p(ρp/ρ0)2Cc

(18)

σ = 1.38e–23 J/K is the Stefan–Boltzmann constant, T = 273 K is the temperature, and ζ̄ is a random vector sampled from 
Gaussian distribution for each time step. The acoustic radiation pressure is modeled by [8]

F̄A = −∇V (19)

where

V = 3

2

ρ0

ρp

[
< p′2 >

3ρ2
0 c2

0

f1 − < u′2 > + < v ′2 >

2
f2

]

f1 = 1 − c2
0ρ0

c2
pρp

, f2 = 2(ρp − ρ0)

2ρp + ρ0
(20)

and cp is the speed of sound in the particles. It should be noted that the secondary sonic forces may become important 
if two particles become close together [25], but it is not simulated in the current model. The current approach is an 
approximation by modeling the acoustic radiation pressure by [8] and the drag only due to acoustic streaming, so the 
Basset memory terms are negligible.

The particle dynamics including the effect of acoustic radiation pressure are simulated by Lagrangian approach according 
to the following algorithm:
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Fig. 3. (Color online.) Contours for mean square values of the acoustic field.

(i) a large number of particles (N = 200) are distributed in the computational domain randomly;
(ii) the locations of the particles are tracked according to Eq. (12). The velocities of the particles are calculated using 

Eq. (13). The differential equations are discretized by Euler’s method (first-order forward-time finite difference method) 
explicitly. The size of the time step is �t = 1·e–5 s;

(iii) after a time step, the locations of all the particles are checked. If two particles are close to each other (at the distance 
less than the sum of their radius), they agglomerate and the size is redefined according to dpnew = (dp3

i + dp3
j )

−3, 
where the new agglomerate with diameter dpnew has the same volume as the sum of its daughter particles i and j;

(iv) if a particle is close to the wall, it is deposited (i.e. removed).

3. Results and discussions

In this section, the numerical results calculated by the method described in the previous section is presented. The 
acoustic field and the flow field due to acoustic streaming is analyzed. The motion of particles is investigated and the role 
of acoustic effects on the particle deposition is explained.

3.1. Result of acoustic wave

The contours of the mean square values of the acoustic field are plotted in Fig. 3. It is shown that a standing wave 
is generated at the middle of the ultrasound transducer along the y-axis and that two pressure nodes are observed. The 
location of the pressure nodes is the location of the (vertical) velocity anti-nodes. The magnitude of the vertical velocity is 
larger than that of the horizontal one. The standing wave is distorted where x is close to the edge of the transducer.

3.2. Result of acoustic streaming

The flow due to acoustic streaming is shown in Figs. 4 and 5. In Fig. 4, the contours of the dimensional velocities show 
that the magnitudes of the flow velocities can be up to 1 m/s. However, the horizontal velocity in most of the region is less 
than 0.5 m/s, except for the region close to the transducer, where a high-speed stream moves along and toward the middle 
of the transducer. Similarly, the vertical velocity in most of the region is less than 0.5 m/s, except for the region at the edge 
of the transducer, where a strong steam is present. It is clear from the vector plot (Fig. 5) that a number of vortices are 
developed by the acoustic streaming. It is noted that there are two stagnation points at the upper wall of the channel.
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Fig. 4. (Color online.) Contours for acoustic streaming.

Fig. 5. (Color online.) Flow pattern for acoustic streaming.

Fig. 6. (Color online.) Fraction of particles remaining against time.

3.3. Result of particle dynamics

In the third step of the modeling, motions of particles are tracked, and the duration of simulation is 1 s. It is observed 
that under the current temperature and particle size, the effect of the Brownian motion on particle deposition is not signif-
icant; this is consistent with the analysis by [25]. In Fig. 6, the fraction of particles remaining inside the domain is plotted 
against time. The figure, without acoustic effects, is the fraction simulated where the ultrasound transducer is turned off 
and there is no flow inside the domain. The deposition is solely due to gravitational sedimentation. The results show that, 
compared with the 30% particle deposition caused by acoustic effects, the deposition that occur without the acoustic effects 
is insignificant. The calculated removal efficiency affected by acoustics matches with the experimental result [4].
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Fig. 7. (Color online.) Locations of particles after 1 s without acoustic effects.

Fig. 8. (Color online.) Locations of particles after 1 s with acoustic effects.

Fig. 9. (Color online.) Locations of particles after 1 s due to acoustic radiation pressure effect (without acoustic streaming).

In order to study the role of the acoustics on particle deposition, the positions of particles after 1 s in different scenarios 
are shown in Fig. 7 to 9. The rectangular box at the middle of the graph represents the ultrasound transducer. It was 
modeled to have zero thickness, but for the purpose of clear presentation, it is shown in the graph. In Fig. 7, no acoustic 
effects are applied. The deposition of particles is mainly due to gravity, and is minimal because the particle sizes are 
small. The particles are evenly and randomly distributed in the domain. In Fig. 8, particle deposition is clearly induced 
by acoustic effects. The particles are not evenly distributed in the domain, while particles agglomerate at some specific 
locations. For example, some particles agglomerate at the top right corner of the domain, as indicated by two circles in the 
figure. By comparing to the flow field (Fig. 5), it is noted that the indicated locations are the stagnation points of flow. It 
shows that the streaming carries particles to the wall and induces deposition. Since the initial size of particles is small, the 
effect of gravitational sedimentation should be minimal. However, more particles are found at the bottom of the channel. 
It is possible that the particles agglomerate and become larger by the vortices or by the acoustic radiation pressure, and 
enhance sedimentation.

To investigate the effect of acoustic radiation pressure, an idealized scenario with acoustic streaming being eliminated 
is shown in Fig. 9. The nodal positions of the pressure field are represented by the dotted lines. To further analyse the 
significance of acoustic radiation pressure, the vertical positions of different size particles (6 μm, 12 μm, and 24 μm) 
from three simulations are averaged and recorded. These results were obtained for times of 0.5 s. They are represented 
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Fig. 10. (Color online.) Particles vertical position distribution after 0.5 second due to acoustic radiation pressure effect (without acoustic streaming).

Fig. 11. Particle positions influenced by acoustic radiation and drag forces in a standing wave. (Distance normalized with a quarter of a wavelength, i.e. 0 
and 2 are pressure antinodes and 1 is a pressure node.)

in a histogram in Fig. 10. The particles are found in positions near the pressure nodes, where the ỹ-axes are 0.25, 0.75, 
1.25 and 1.75. Although acoustic radiation forces on particles may be in the opposite direction to the gravitational force in 
some areas of the domain, Fig. 10 shows that the larger the particles are, the more concentrated they are on the bottom 
of the domain. This is especially significant for the 24 μm particles, found mostly between vertical positions 0 < ỹ < 1, 
and only 6 μm and 12 μm particles found between vertical positions 1.6 < ỹ < 2. Furthermore, as demonstrated by the 
particle positions influenced by acoustic radiation and drag forces in a pure standing wave in Fig. 11, the larger the particles 
were, the quicker they agglomerate towards the pressure nodes. Thus it can be concluded that while particles are small, 
acoustic streaming is the dominating agglomeration mechanism. However, as particle sizes are larger (either by input or 
agglomeration), acoustic radiation pressure becomes significant in the encouragement of agglomeration by increasing the 
local particle concentrations at the pressure nodes rapidly, with emphasis on those nodes in the bottom half of the domain.

4. Conclusion

A three-step numerical model solving the acoustic field and flow field by FDLBM, and tracking the particles by Lagrangian 
approach is developed. The numerical result matches with the experimental result. The simulation shows that the two non-
linear acoustic effects—acoustic streaming and acoustic radiation pressure—encourage particle deposition. Acoustic streaming 
generates vortices and transports the particles to the wall, while acoustic radiation pressure forces the particles together 
and encourages agglomeration. Since the pressure drop by this setting is very low and the airflow velocity is not high, it 
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is potential to be developed into an energy-efficient filtration system. The developed model is a useful tool to optimize the 
design and for further investigating the problem.
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