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Rayleigh–Taylor and Kelvin–Helmholtz hydrodynamic instabilities are frequent in many 
natural and industrial processes, but their numerical simulation is not an easy challenge. 
This work simulates both instabilities by using a lattice Boltzmann model on multiphase 
fluids at a liquid-vapour interface, instead of multicomponent systems like the oil–water 
one. The model, proposed by He, Chen and Zhang (1999) [1] was modified to increase 
the precision by computing the pressure gradients with a higher order, as proposed 
by McCracken and Abraham (2005) [2]. The resulting model correctly simulates both 
instabilities by using almost the same parameter set. It also reproduces the relation 
γ ∝ √

A between the growing rate γ of the Rayleigh–Taylor instability and the relative 
density difference between the fluids (known as the Atwood number A), but including also 
deviations observed in experiments at low density differences. The results show that the 
implemented model is a useful tool for the study of hydrodynamic instabilities, drawing a 
sharp interface and exhibiting numerical stability for moderately high Reynolds numbers.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Hydrodynamic instabilities are very common processes in daily life. The clouds of periodic curls in a sunny day, how 
the water jet from the tap breaks into droplets and the beautiful mushroom-like patterns that can be seen when the 
coffee mixes with water are some examples of hydrodynamic instabilities. Hydrodynamic instabilities use to appear when 
two fluids in contact generate a metastable interface. Due to the involved forces, an initial perturbation grows to form 
complex structures with certain grade of periodicity. As a matter of fact, perturbations with a specific wavelength grow 
faster than others and, in consequence, their evolution will generate periodic patterns with that wavelength. This is the 
secret behind the shape of the jet contrails that break into similar puffs, the periodicity of droplets at the ceiling of the 
shower or the geometric structure of supernovas. In addition, hydrodynamic instabilities are relevant in many industrial 
processes, not only as undesirable phenomena, as in the field of inertial confinement fusion where instabilities reduce 
the fusion rate, but also as something that can be useful to create homogeneous drops and grains. Even more, the set 
of differential equations governing the behaviour of hydrodynamic instabilities are common to other fields of non-linear 
dynamics (as plasma physics and general relativity); therefore, they use to be handled as paradigms to investigate other 
non-linear—but hardly reproducible—systems. The equations used to describe the hydrodynamic instabilities are non-linear 
partial differential equations, and their analytical solution is only plausible for the simpler cases. For all others it is necessary 
to use computational methods.
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Multiphase lattice-Boltzmann models (MLBM), unlike other numerical methods, do not discretize the differential equa-
tions of fluid mechanics, but they simulate the transport and collision of the probability distributions for the molecules of 
the fluid. By adding interaction forces between the molecules, the fluid segregates into differentiated phases and the surface 
tension appears naturally. Thus, MLBM are specially appropriated to simulate hydrodynamic instabilities. The first MLBM 
was proposed in 1993 by Shan and Chen [3], who included interactions among particles. Through the adequate choice 
of interaction potentials, phase segregation occurs automatically. Next, He Shan and Doolen [4] obtained a more realistic 
equation of state by including two terms in the interaction potential: a strong short-range interaction, due to the volume 
exclusion among molecules, and a weak long-range component, from a Van der Waals mean-field approximation of the at-
tractive forces. This proposal solves some thermodynamic inconsistencies of the Shan and Chen model and allows us to use 
the Maxwell’s equal-area rule (see [5]). Later on, He, Chen and Zhang [1] included an index function (an extra set of distri-
bution functions) to identify the two phases by a number, and used it to simulate the Rayleigh–Taylor instability (RTI). This 
index function improves the stability and keeps a sharp interface through the time evolution. More recently, Xu et al. [6]
introduced a multiphase lattice-Boltzmann model with multiple relaxation times that simulates both the Kelvin–Helmholtz 
(KHI) and the Richmyer–Meshkov (RMI) instabilities, but it has a huge amount of parameters to be adjusted (actually, a dif-
ferent set for each instability), instead of including interparticle forcing terms, and the equation of state for the fluid has 
not being established yet.

Our aim is to simulate both the RTI and KHI via the lattice-Boltzmann model for a single-component multiphase system, 
i.e. a liquid-vapour configuration. For this purpose, we use the model introduced by He, Chen and Zhang, but using the 
hybrid scheme proposed by McCracken and Abraham [2] to calculate the pressure gradient, which improves accuracy and 
stability. In the next section, we describe the model. Section 3 contains our results for the RTI and KHI, where we focus on 
the effect of the parameters of the equation of state and the Atwood Number on the development of the instabilities and 
give a set of optimal parameters for the instability onset. Finally, our conclusions are summarized in Section 4, which also 
suggests future research works in this interesting area.

2. Model description

Standard lattice-Boltzmann models can be described by the continuous Boltzmann equation,

∂ f

∂t
+ ξ · ∇ f = 1

τ
( f (eq) − f ) (1)

representing the propagation (left-hand side) and interaction or collision (right-hand side) of some distribution functions f , 
which can be taken as the probability of finding a particle with position x and velocity ξ . Eq. (1) uses the BGK (Bhatnagar, 
Gross, Krook) approximation [7] in order to write the collision term in a simplified form. Here f (eq) is called the equilibrium 
distribution function (corresponding to a Maxwell–Boltzmann distribution) and τ is the relaxation time. By assuming a 
low-velocity regime and approximating the Maxwellian up to second order, the equilibrium distribution function takes the 
form

f (eq) = ρ

(2π RT )D/2
exp

(
− ξ2

2RT

)[
1 + (ξ · u)

RT
+ (ξ · u)2

2 (RT )2
− |u|2

2RT

]
(2)

with D the dimension, R the ideal-gas constant and T the temperature. The quantities ρ and u are the density and macro-
scopic velocity at a given point, respectively. If time and space are discrete in steps δt and x + ξδt respectively, Eq. (1) takes 
the form

f (x + ξδt, ξ , t + δt) − f (x, ξ , t) = − 1

τ

[
f (x, ξ , t) − f (eq) (x, ξ , t)

]
(3)

In this work, we set δt = 1, and the stability of the system is controlled by restricting the Reynolds number and the 
magnitude of the velocities in order to maintain the low-velocity assumption made above. Finally, the velocity space is 
chosen discrete in such a way that the macroscopic quantities

ρ =
n∑

i=1

f i ρu =
n∑

i=1

f iξi 2ρε + ρ|u|2 =
n∑

i=1

f iξ
2
i (4)

where ε = 3RT /2 is the internal energy, which is maintained constant, with T the temperature and R the ideal gas constant, 
coincide with the density, the momentum and the energy computed from Gaussian quadrature up to second order in cell 
size, with one distribution function per discrete velocity, f

(
x, ξ i, t

) = f i . An example of such a velocity set is D2Q9 (Fig. 1), 
which can be written as

ξ i =

⎧⎪⎨
⎪⎩

0 i = 0

c · (cos
[
(i − 1) π

2

]
, sin

[
(i − 1) π

2

])
i = 1,2,3,4√

2c · (cos
[
(i − 5) π + π

]
, sin

[
(i − 5) π + π

])
i = 5,6,7,8

(5)
2 4 2 4
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Fig. 1. (Colour online.) Set of discrete velocities d2q9.

where c = δx
δt = √

3RT is the magnitude of the evolution velocity to the four nearest lattice sites and will characterize, in 
this model, the lattice length (since δt = 1). The velocities weights

wi =
{4/9 i = 0

1/9 i = 1,2,3,4
1/36 i = 5,6,7,8

(6)

are chosen to ensure isotropy in the model. The time evolution of this system should reproduce the behaviour of fluids in 
the macroscopic limit (that is, the Navier–Stokes equations of an ideal isothermal gas, with pideal = ρRT = ρ/3 the pres-
sure). However, in 2006, Philippi et al. [8] showed that this D2Q9 scheme is a second-order approximation of the continuous 
Boltzmann equation, while third-order approximations are necessary to recover the Navier–Stokes equations exactly. Never-
theless, this approximation is good enough for our work, since we are interested in the first stages of the evolution of the 
instabilities, without considering the turbulent regime where these high-order effects will be more appreciable.

In order to simulate multiphase systems, the above model should be modified to include inter-particle forces. In 1999, 
He, Chen and Zhang [1], based on the forcing term proposed by He Shan and Doolen [4] in 1998, developed a method that 
includes both capillary and gravitational forces, and it is able to simulate phase segregation with a very sharp interface 
by the inclusion of an index function. Let us start by considering an inter-particle force from a mean field van der Waals 
approximation with exclusion term

F = ρ∇
(

2aρ + κ∇2ρ
)

− bρ2 RTχ∇ ln
(
ρ2χ

)
(7)

where a is an attractive parameter, κ is related to the surface tension, χ is the collision probability (which depends on the 
fluid density) b = 2πσ 3/3m is the parameter corresponding to the short-range volume exclusion interaction and σ is the 
particle diameter [9]. The force can be written as

F = −∇
(

bρ2 RTχ − aρ2
)

+ κρ∇∇2ρ = −∇ψ + F s (8)

where F s is the surface tension; we have defined ψ(ρ) := bρ2 RTχ − aρ2 the interparticular potential.
Due to the interparticle interaction included, the system is no longer an ideal gas; therefore, its thermal behaviour will 

be lead by a different equation of state that can be written as

p = ρRT + bρ2 RTχ − aρ2 (9)

As a particular case of the above equation, in this work we use the Carnahan–Starling equation of state:

p = ρRT
1 + bρ/4 + (bρ/4)2 − (bρ/4)3

(1 − bρ/4)3
− aρ2 = ρRT + ρ2 RT

4 − 2ρ

(1 − ρ)3
− aρ2 (10)

where we chose b = 4 for simplicity. Note that we can obtain Eq. (10) from Eq. (9) by making χ = 4−2ρ

4(1−ρ)3 and b = 4. Now, 
from Eq. (9) and the definition of ψ , it is possible to write

p = ψ + ρRT (11)

or, equivalently

ψ = p − ρRT (12)

then, the potential ψ actually corresponds to the deviation of the pressure compared to the value it would take if the 
system were an ideal gas (pideal = ρRT ).
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Fig. 2. (Colour online.) P–ρ diagram of the Carnahan–Starlin equation of state for a given temperature.

Eq. (10) allows the coexistence of three different densities at the same pressure p0, as shown in Fig. 2 when RT <

0.3773 (a/b); two of them (ρl and ρh) will be mechanically stable and correspond to the densities of the two phases, the 
third one is mechanically unstable ρu and is responsible for phase segregation.

Including these forces (Eq. (8)) into the discrete lattice-Boltzmann equation (Eq. (3)) leads to

f i
(
x + ξ iδt, ξ i, t + δt

) − f i
(
x, ξ i, t

) = 1

τ

[
f i

(
x, ξ i, t

) − f (eq)

i

(
x, ξ i, t

)]
+ (ξ − u) · (−∇ψ + F s + G)

ρRT
f (eq)

i

(
x, ξ i, t

)
(13)

where G represents body forces like gravity.
Note that −∇ψ is directly responsible for phase segregation, because the ideal gas pressure grows linearly with phase 

density and, therefore, the gradient of ψ is higher at the interface. As a consequence, the computations via finite differ-
ences induce large truncation errors at the interface, affecting the numerical stability. In order to reduce the impact of this 
truncation error, He et al. [1] introduced a new field

gi = f i RT + ψ (ρ)�i (0) (14)

which corresponds to a pressure distribution function, where

�i (u) = wi

[
1 + 3

c2
ξ i · u + 9

2c4

(
ξ i · u

)2 − 3|u|2
2c2

]
(15)

The evolution equation for this pressure distribution function is

ḡi
(
x + ξ iδt, ξ i, t + δt

) − ḡi
(
x, ξ i, t

) = − 1

τ

[
ḡi

(
x, ξ i, t

) − g(eq)

i

(
x, ξ i, t

)]
+ 2τ − 1

2τ

(
ξ i − u

) · [�i (u) (F + G) − (�i (u) − �i (0)∇ψ (ρ)] δt (16)

The problematic gradient term in Eq. (16) is multiplied by (�i (u) − �i (0 ), which, from Eq. (15), is on the order of the 
Mach number; thus, the calculation errors due to the high gradient at the interface are considerably reduced, since the 
Mach number is in general very small for both RTI and KHI. Eq. (16) includes the change of variable

ḡi ≡ gi − 1

2

(
ξ i − u

) · [�i (u) (F s + G) − (�i (u) − �i (0 )∇ψ (ρ)] δt (17)

that keeps a discrete explicit scheme and simplify the calculations. The equilibrium distribution functions for this new field 
are

g(eq) = wi

[
p + ρ

(
1 + 3

c2
ξ i · u + 9

2c4

(
ξ i · u

)2 − 3|u|2
2c2

)]
(18)

with

p =
∑

ḡi − 1

2
u · ∇ψ (ρ) δt ρRT u =

∑
ξi ḡi + RT

2
(F s + G) δt (19)
i i
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As we mentioned before, the non-ideal gas state equation allows the coexistence of different densities at the same 
pressure. For this reason, Eqs. (19) are not enough to completely determine the system, and it is necessary to include a new 
set of distribution functions f̄ i responsible for labelling the phases with a distinctive value

φ =
∑

i

f̄ i (20)

Therefore, there will be two initial values of φ, i.e. φl , to label the low-density gaseous phase and φh for the high-density 
liquid phase. These values have to be chosen to coexist at the same pressure, following the equation of state and the 
Maxwell equal areas rule (see Fig. 2). Furthermore, since the overall pressure is maintained constant during the whole 
simulation at value p0, the values of φ remain close to the initial ones φl and φh for each phase far from the interface and 
at the mechanically unstable value φu at the interface, which is responsible for phase segregation.

Later on, via linear interpolation, we can find a unique density value for each phase. As far as the new distribution 
function tracks the behaviour of the phases, it should follow the same evolution equation as the pressure distribution 
function, even though the only force responsible for phase separation is the excess pressure gradient and, therefore, it will 
be the only force exerted over this new function, i.e.

f̄ i
(
x + ξ iδt, ξ i, t + δt

) − f̄ i
(
x, ξ i, t

) = − 1

τ

[
f̄ i

(
x, ξ i, t

) − f (eq)

i

(
x, ξ i, t

)]
− 2τ − 1

2τ

(
ξ i − u

) · ∇ψ (φ)�i (u)
δt

RT
(21)

with

f̄ i = f i + 1

2RT

(
ξ i − u

) · ∇ψ (φ)�i (u) δt (22)

The equilibrium distribution function is given by

f (eq)

i = wiφ

[
1 + 3

c2
ξ i · u + 9

2c4

(
ξ i · u

)2 − 3|u|2
2c2

]
(23)

Since the distribution functions must be positive, from f (eq)
0 , we see that |u| has to be lower than 

√
2/3, which restricts 

the maximum fluid velocity that can be simulated within this model. In some cases, it is possible to find values of f i �=0 < 0, 
especially at high Reynolds numbers, which affect the stability of the numerical scheme. A solution to this problem is 
the imposition of an additional constraint to the evolution in order to follow the Boltzmann H theorem. This procedure is 
called entropic lattice-Boltzmann [10]. Nevertheless, this inclusion is not necessary here, since we are not interested in the 
turbulent regime of the instabilities.

The actual fluid density is related to φ by

ρ (φ) = ρh + φ − φl

φh − φl
(ρh − ρl) (24)

Summarizing, the multiphase lattice-Boltzmann model with an index function tracking the interface consists of two 
coupled forced lattice-Boltzmann schemes (Eqs. (16) and (21)). They allow us to obtain the pressure and momentum through 
Eq. (19), and the density is computed from Eqs. (20) and (24). In addition, to increase stability and accuracy, we compute 
the excess pressure gradient as proposed by Mc. Cracken and Abraham [2], by computing a sixth-order central difference 
method combined with a fourth-order method based upon Taylor series expansions in velocity space

∂iψ
(1) = 1

60 δx

[−ψ(i−3, j) + 9ψ(i−2, j) − 45ψ(i−1, j) + 45‘ψ(i+1, j) − 9ψ(i+2, j) + ψ(i+3, j)
] +O

(
δ6

x

)

∂iψ
(2) = 1

36 c δx

9∑
α=1

ξα,i
[
8ψ

(
x + ξαδt

) − ψ
(
x + 2 ξαδt

)] +O
(
δ4

x

)
(25)

which get 75% and 25% weighting respectively ∂iψ (ρ) = 0.75∂iψ
(1) + 0.25∂iψ

(2) . This completes the model. With these 
modifications of the standard lattice-Boltzmann model, the Chapman–Enskog expansion leads to the macroscopic equations:

∂ρ

∂t
+ ∇ · (ρu) = 0 (26)

ρ

[
∂u

∂t
+ (u · ∇) u

]
= −∇p + ∇ · � + G (27)

where � := ρ ν
(∇u + (∇u)T) and ν := (τ − 1/2) RT δt are respectively the stress tensor and the kinematic viscosity.
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Fig. 3. (Colour online.) Evolution of the Rayleigh–Taylor instability. Time is given in computational time steps.

Even though this is not a thermal lattice-Boltzmann scheme, since temperature remains constant during the whole 
simulation, the quantity T plays a key role in phase segregation, since it requires to be chosen below a critical temperature 
to assure the existence of two different phases, as mentioned above, following the Carnahan–Starling equation of state 
(Eq. (10)).

As an important remark, note that even though we are not considering the high-order approximations in the advec-
tive term of the kinetic equation, the errors due to the possible thermodynamic inconsistencies of the model as studied 
by Wagner in 2006 [11] and Siebert et al. in 2014 [12] become more representative on systems with phase-segregation 
processes, but less influential when the system starts from two separated phases, as in our case. Even more, the inclusion 
of an index function actually generates a sharp interface, and our simulations show a uniform pressure at both sides of the 
interface, solving the two main drawbacks for thermodynamic inconsistency pointed out by Wagner; a thorough analysis of 
the correct retrieving of the coexistence curves, as pointed out by Siebert et al., is let for future work.

3. Results and discussion

The first step towards simulating the hydrodynamic instabilities is to find the stable values of the index function φ
that allow the phases to co-exist. There are three possible values of φ: two of them, with ∂ p

∂ρ > 0, indicate the stable gas 
and liquid phases, φl and φh, respectively, while the third one, with ∂ p

∂ρ < 0, is mechanically unstable and generates phase 
segregation. The parameters of the model for the initial condition should be fitted in such a way that the index function for 
the two phases fulfills the Maxwell equal-area rule. A fine fit for the free parameters of the model lead us to set a = 6.93, 
RT = a/12.00, φl = 0.0317 and φh = 0.2554. Regarding surface tension, in the present work (and following the He, Chen 
and Zhang model to simulate the Rayleigh–Taylor Instability), we have chosen κ = 0, since the surface tension parameter 
uses to be very small in nature and, for the systems studied here, it can be neglected. In addition, although the surface 
tension is also present through interparticle interactions in a natural way, all our simulations show the same pressure at 
both sides of the interface. That is, the surface tension can be neglected in our simulations. Finally, we take the width of the 
computational domain W as the characteristic length scale of the system. The gravity was chosen to be the same as in the 
article by He Chen, and Zhang, 

√
W g = 0.04, and the time scale corresponds to T = √

W /g . With this choice, the Reynolds 
number is Re = √

W gW /ν . In the simulations, the Reynolds number was modified by maintaining W and g constant and 
varying the kinematic viscosity through the parameter τ .

Fig. 3 shows the evolution of an initially sinusoidal interface, with an amplitude h0 and a wave number k. The heavier 
fluid has been placed above the lighter one, immersed in a gravitational field acting downwards. The initial condition for 
the index function reads

φ (x) = φh − φl

π
arctan

(
y − h0 cos (kx) − L y/2

) + φh + φl

2
(28)

where L y is the height of the computational domain. The above initial distribution smooths the connection between the 
fluid densities, decreasing the numerical error that uses to appear at the interface.

At the first moments of the instability, the densest bubble grows without modifying its shape considerably. Then, the 
onset of vortices gives to the bubble a mushroom-like shape and slows its speed. Finally, the mushroom is enlarged, creating 
symmetrical jets on both sides (Fig. 3).



A.M. Velasco, J.D. Muñoz / C. R. Mecanique 343 (2015) 571–579 577
Fig. 4. (Colour online.) Growing rate γ as a function of the wavenumber for three different mesh heights η (left) and amplitude of the perturbation at a 
given time h f as a function of the attractive parameter a (right).

We also studied the effect of the wave number k on the evolution of the instability. Fig. 4 (left) shows the relation 
between k and the growing rate γ for the Atwood Number, A = ρh−ρl

ρh+ρl
= 0.5 where the sub-indexes “h” and “l” are related to 

the heavy and light fluids, respectively. Our results were compared with the theoretical relation proposed by Chandrasekhar 
in [13], which takes the form:

Q = y − 1

αh − αl

[
y3 + (1 + 4αlαh) y2 + (3 − 8αlαh) y − (1 − 4αlαh)

]
(29)

where k = Q −1/3, γ = (
y2 − 1

)
Q −2/3, αl = ρl/(ρl + ρh), and αh = ρh/(ρl + ρh). Even though the shape of the curves is 

almost the same, it can be observed a shift of the wavelength of the maximum instability that becomes lower when η
is greater. This may be due to the fact that the implemented lattice-Boltzmann scheme is of the second order in cell size 
when third-order implementations are required to retrieve the Navier–Stokes equations. More proofs of the convergence of 
the method are required, but left for future studies. Note that a greater-size mesh gives a better location of the maximum, 
but the shape of the curve deviates from the theoretical one.

Once the method has been proved and a sharp interface has been achieved, we went further and studied the effect of 
the attractive parameter of the equation of state, since it is related to the internal composition of the fluids, expecting that 
a very high attractive parameter will prevent the fluids from mixing. Fig. 4 (right) shows how the value of the attractive 
parameter acts over the amplitude of the Rayleigh–Taylor instability for a given time, finding a strong dependence. The 
amplitude goes to zero if the attractive parameter is greater than 7.2, rapidly increasing if a ≈ 6.93. In fact, if the attractive 
parameter is lower than 6.93, the mixture of the fluids occurs so quickly that our initial assumption of low velocities 
becomes false and the model gets unstable. Therefore, it is necessary to find a value of a leading, for a given temperature, 
to phase segregation, but small enough to allow the growth of a Rayleigh–Taylor instability. This requirement restricts the 
ideal range of parameter a to 6.93–7.2, where appreciable changes in the behaviour of the instability can be observed when 
a is changed by some hundredths, as shown in Fig. 4, exemplifying the requirement of an exhaustive parameter search and 
fine fitting.

Next, we were interested in the effect of the Atwood number on the evolution rate of the instability. For this purpose, 
we consider the approach made by Drazin [14], assuming the temporal evolution of the RTI amplitude as h(t) = h0 expγ t , 
where h(t) is the time-dependent amplitude of the instability, h0 is the initial amplitude and

γ = √
Agk (30)

is the growing rate, which is a function of the Atwood number, the gravity g , and the wavelength of the perturbation. 
The growing rate can be estimated by counting the time t needed by the instability to reach certain fixed amplitude as 
γ ∝ 1/t . Thus, we expect a linear relation between the quantities in the graph (t2 vs. A−1). As Fig. 4 shows, the linear 
relation follows for high Atwood numbers, but not for the lowest ones. A possible explanation could be that, at low Atwood 
numbers, the effect of shear velocities and secondary instabilities is more representative and could change the rate of 
evolution of the Rayleigh–Taylor instability. Actually, this has been experimentally studied only in 2013 by Akula, Andrews 
and Ranjan [15], who found that shear effects in Rayleigh–Taylor instability increase the evolution rate for low Atwood 
Numbers, in agreement with Fig. 5. This is a current field of experimental research and demands a thorough study. The 
pertinent modification of Eq. (30) is still unknown.
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Fig. 5. (Colour online.) Effect of the Atwood number on the evolution rate of the Rayleigh–Taylor instability.

Fig. 6. (Colour online.) Evolution of the multi-mode Rayleigh–Taylor instability.

Simulations of the Rayleigh–Taylor instability with multi-mode initial perturbation were also performed, as shown in 
Fig. 6. Note that the initial perturbations with larger amplitudes evolve faster than others, as in realistic fluids.

To study the Kelvin–Helmholtz instability, we generated shear velocities between two fluids by defining the following 
initial conditions for velocity and density, respectively:

U (x) =
{

0.01 ĵ for x > Lx/2
−0,01 ĵ for x < Lx/2

(31)

and

ρ (x) =
{

1.02 for x > Lx/2
1.0 for x < Lx/2

(32)

Motivated by the results obtained for the Rayleigh–Taylor instability, we study the effect of the Atwood number on the 
Kelvin–Helmholtz instability. The comparisons for four different Atwood numbers is shown in Fig. 7. As expected, lower 
Atwood numbers lead to more symmetrical Kelvin–Helmholtz instabilities and to a better interpenetration between fluids, 
strengthening our hypothesis about the deviation of the theoretical values in Fig. 5.

4. Conclusions

This work implements a forced multiphase lattice-Boltzmann model for simulating both the Rayleigh–Taylor and Kelvin–
Helmholtz instabilities. The model is the one proposed by He, Chen and Zhang [1], which uses an index function to keep 
a sharp interface between phases, but following the hybrid scheme proposed by McCracken and Abraham [2] to compute 
the excess pressure gradient, in order to increase accuracy and stability. The model reproduces both instabilities with the 
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Fig. 7. (Colour online.) Densities from the Kelvin–Helmholtz instability after 3000 time steps for Atwood numbers: 0.5, 0.3, 0.2 and 0.01 (left to right and 
up to down).

same parameters, which, therefore, can be considered part of the fluid description only. It also fulfils Maxwell’s equal-area 
rule and (without capillarity) shows constant pressure at both sides of the interface, a condition that is maintained over the 
whole simulation run.

Rayleigh–Taylor instability was simulated by imposing a sinusoidal initial condition. The relation between the wavenum-
ber and the growing rate of the instability shows a similar shape compared with theoretical results, but with a shift of 
the maximum even when the mesh size is greater. This shift may be due to the order of approximation of the velocity 
scheme. Whether the problem were to be solved or not by including third-order terms is left for future works. Moreover, 
the convergence of the numerical scheme requires a thorough analysis.

A strong dependence of the evolution of the RTI with the attractive force parameter of the equation of state was also 
found; in fact, attractive parameters below 6.93 lead to unstable simulations, because the low-velocity assumption is violated 
by the rapid increasing of the bubble. By contrast, very high attractive parameters avoid the mixture of the fluids, and then, 
instability cannot be observed.

The effect of the Atwood number on the rate of evolution of the instability follows the theoretical expression only for 
high Atwood numbers; deviations at low numbers have been recently found by experimentalists [15]. One possible expla-
nation is the onset of secondary Kelvin–Helmoltz instabilities, which are more representative at low Atwood numbers and 
could increase the rate of evolution of the Rayleigh–Taylor instability. Our studies on the Kelvin–Helmholtz instability show, 
indeed, that low Atwood numbers enhance instability, which strengthen the hypothesis that Kelvin–Helmholtz instabilities 
are the cause of the increased evolution rate of the Rayleigh–Taylor one.

Our results give a fixed set of parameters that can be used as a starting point to simulate other instabilities in more 
complex geometries, like the radial Rayleigh–Taylor instability or the Rayleigh–Plateau one (as far as surface tension is added 
to the model by setting κ �= 0). But also, it would be of interest to extend this method to larger Reynolds numbers, either by 
using Multiple Relaxation Times [2] or entropic [10] approaches, in order to simulate, for example, the Richtmyer–Meshkov 
instability. These interesting topics are left for future research.

Finally, this work illustrates the potentiality of lattice-Boltzmann models to simulate hydrodynamic instabilities, and 
encourages its use for future applications on these and other non-linear systems.
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