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Application of optimization techniques to the identification of inelastic material parameters 
has substantially increased in recent years. The complex stress–strain paths and high 
nonlinearity, typical of this class of problems, require the development of robust and 
efficient techniques for inverse problems able to account for an irregular topography of 
the fitness surface. Within this framework, this work investigates the application of the 
gradient-based Sequential Quadratic Programming method, of the Nelder–Mead downhill 
simplex algorithm, of Particle Swarm Optimization (PSO), and of a global–local PSO–
Nelder–Mead hybrid scheme to the identification of inelastic parameters based on a deep 
drawing operation. The hybrid technique has shown to be the best strategy by combining 
the good PSO performance to approach the global minimum basin of attraction with the 
efficiency demonstrated by the Nelder–Mead algorithm to obtain the minimum itself.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In the last two decades, the development of robust computational models has made it possible to efficiently simulate 
a wide range of metal-forming operations, such as forging, extrusion, rolling, and deep drawing, amongst many others. 
However, the success of the simulations depends upon the capacity of the constitutive models and respective material 
parameters to accurately reproduce the mechanical behaviour. In general, the industry obtains material parameters by means 
of mechanical tests described in technical standards, most of which based on the assumption of uniform stress states. 
However, the use of such parameters in the simulation of metal-forming processes (which involve large inelastic strains) 
may compromise the accuracy of the numerical predictions. In order to determine more realistic inelastic parameters, it has 
been proposed to use mechanical tests able to provide stress–strain paths similar to those of the actual forming operation. 
Furthermore, the identification of material parameters based upon optimization strategies has also been suggested, owing 
to a greater flexibility allowing one to handle complex deformation paths.
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Within this framework, the identification of inelastic parameters based on a deep drawing operation is addressed here 
by four different optimization strategies: (I) gradient-based Sequential Quadratic Programming combined with a sensitivity 
analysis computed using an enhanced semi-analytical finite difference scheme, (II) the Nelder–Mead downhill simplex algo-
rithm, (III) Particle Swarm Optimization (PSO), and (IV) a global–local hybrid approach combining PSO and the Nelder–Mead 
algorithm. Emphasis is placed upon studies (III) and (IV) due to the robustness and efficiency of the techniques. This paper 
is structured as follows: Section 2 provides a brief description of the elastic–plastic approximation; Section 3 presents key 
principles and implementation characteristics of the aforementioned optimization methods; Section 4 discusses the deep 
drawing application, and Section 5 summarises some relevant recommendations.

2. Mechanical incremental boundary value problem

Deep drawing features a forming operation that requires an elastic–plastic formulation at finite strains. This work makes 
use of the von Mises constitutive modelling in conjunction with nonlinear isotropic hardening. The governing equations of 
the mechanical problem comprise the linear and angular momentum equations, respectively,

{
div[σ ] + ρb = 0

σ = σ T
with

{
u = ua for x ∈ ∂�u

σn = ta for x ∈ ∂�t
and

{
∂� = ∂�u ∪ ∂�t

∂�u ∩ ∂�t = ∅

(1)

where σ is the Cauchy stress tensor, ρ is the specific mass, b indicates body forces and u are displacements. The boundary 
conditions are defined so that n is the outward normal unit vector and ua and ta are prescribed displacements and loads, 
respectively.

The finite element method based on an updated Lagrangian formulation is used to approach the mechanical boundary 
value problem. The first step is the application of the principle of virtual work to Equation (1), so that

δW i = δWe where

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

δW i =
∫
�

σ : ∂δu

∂x
d�

δWe =
∫
�

ρb · δu d� +
∫

∂�t

t · δu da

(2)

in which δu is the virtual displacement, and δW i and δWe represent the virtual work related to the internal and external 
forces, respectively. In addition to the finite element discretisation procedure, the Newton–Raphson iterative method is used 
to solve the material and geometrically nonlinear problem, which, written for displacements un+1 at time tn+1, can be 
summarised as

R (un+1) = F Int
n+1 − F Ext

n+1 (3)

where R is the residual of the nonlinear problem, F Int
n+1 and F Ext

n+1 are the internal and external global force vectors, re-
spectively, and the subscript n + 1 indicates the current time step (solution increment). Linearization is performed by 
expanding (3) in a Taylor series and neglecting the higher-order terms,

R
(

u(k+1)
n+1

)
= R

(
u(k)

n+1 + δu(k+1)
) ∼= R

(
u(k)

n+1

)
+ ∂ R

∂un+1

∣∣∣∣
u(k)

n+1

δu(k+1) (4)

and requiring the residual at the (k + 1) Newton–Raphson iteration, R
(

u(k+1)
n+1

)
, to be zero, so that

K T δu(k+1) = −R
(

u(k)
n+1

)
, and

⎧⎨
⎩ u(k+1)

n+1 = u(k)
n+1 + δu(k+1) or

u(k+1)
n+1 = un + �u(k+1)

(5)

where un is the known displacements of the solution increment n, �u(k+1) = �u(k) + δu(k+1) is the total displacement 
increment of time step n + 1, and K T =

[
∂ R(u(k)

n+1)/∂un+1

]
is the tangent stiffness matrix, which represents the derivative 

of the residual with respect to displacements for the iterative step (k) of the current solution increment n + 1. For the sake 
of objectivity, this work will not discuss the plasticity model. The reader is referred to Souza Neto et al. [1] for further 
insights, including a detailed description of the method used to obtain the tangent stiffness matrix.
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3. Parameter identification and the optimization problem

3.1. The optimization problem

Parameter identification in elastic–plastic problems consists in finding elastic and/or inelastic material parameters of the 
constitutive model using experimental data from mechanical tests. The approach adopted in the present work uses inverse 
problem techniques based on unconstrained optimization, which is generally defined as

min
p

g(p), p ∈ Rnd (6)

under side constraints pinf
i ≤ pi ≤ psup

i , i = 1, . . . , nd, where psup
i and pinf

i are the upper and lower bounds of the design 
variable pi (material parameter), respectively, nd is the number of design variables, g(p) is the objective function (or fitness), 
and p = [p1, . . . , pi, . . . , pnd ]T is the design vector.

The objective function to be minimised represents the quadratic mean relative difference between experimental measures 
and corresponding computed responses, and is written as

g(p) =

√√√√√ 1

N

N∑
j=1

ξ j

(
F exp

j − F FE
j

F exp
j

)2

(7)

where N is the number of experimental points, F exp and F FE are experimental and computed forming loads, respectively, 
and ξ is a weight function.

In this work, the solution to the optimization problem stated in Equation (6) is accomplished by using the gradient-based 
Sequential Quadratic Programming (SQP) algorithm (Section 3.2), the Nelder–Mead downhill simplex algorithm (Section 3.3), 
Particle Swarm Optimization (Section 3.4), and a global–local hybrid scheme (Section 3.5).

3.2. Sequential Quadratic Programming algorithm

Gradient-based optimization strategies were the first choice to approach parameter identification in the last decade due 
to their higher convergence rate when compared to direct search algorithms. The literature shows several applications: for 
instance, Springmann and Kuna [2] used the Levenberg–Marquardt method to identify inelastic parameters in damaged 
materials, and Fra̧ś et al. [3] adopted the conjugate gradient method to determine viscoplastic parameters of high-strength 
steels (see Muñoz-Rojas et al. [4] and references therein for further details on the application of gradient-based schemes 
to the identification of inelastic parameters). Nevertheless, the existence of local minima has been an important hindrance 
to solve this class of problems, as discussed by Ponthot and Kleinermann [5]. The authors used in cascade six different 
gradient-based algorithms in order to overcome convergence issues when addressing the identification of material parame-
ters for a classical von Mises constitutive model.

A quick search in scientific databases shows that SQP-based optimization methods have been widely used in general 
engineering applications. More importantly, their success in elastoplastic [6] and structural mechanics [7] problems has 
recommended this strategy to the present parameter identification application. This work uses Schittkowski’s SQP imple-
mentation for parallel computing [8], so that, for iteration (q), the quadratic problem is written as

min
p

1

2
d(q)T

B(p(q)) d(q) + ∇g(p(q))Td(q), p,d ∈ Rnd

s.t. ∇ f j(p(q)) d(q)T + f j(p(q)) ≥ 0

j = 1, . . . ,m

(8)

under side constraints pinf
i ≤ pi ≤ psup

i , i = 1, . . . , nd, in which d is the search direction and B(p) ∈ Rnd×nd is the Hessian 
of the Lagrangian function L(p) = g(p) + λT f (p), where λ are Lagrangian multipliers. The bounds of parameters p are 
included as general inequality constraints f (p). The Hessian B is evaluated based on the BFGS method [9], thus requiring 
only first-order derivatives. The parameters for iteration (q + 1) are, therefore, determined as p(q+1) = p(q) +α(q)d(q) , where 
α(q) is a steplength parameter computed by minimising the unidimensional function φ = g(p) + λT min[0, f (p)].

In addition, gradient-based schemes require a sensitivity analysis, i.e. computation of the derivatives of the objective 
function with respect to the design variables. In the present work, this task is accomplished by using an enhanced semi-
analytical finite difference method [10].

The derivative of the objective function g(p) (Equation (7)) with respect to the design variable pi is obtained as

∂ g(p)

∂ pi
= 1

2

⎡
⎣ 1

N

N∑
j=1

ξ j

(
F FE

j − F exp
j

F exp
j

)2
⎤
⎦

−1/2
1

N

N∑
j=1

2ξ j

(
F FE

j − F exp
j

F exp
j

)
1

F exp
j

dF FE
j

dpi
(9)

in which dF FE/dpi represents the sensitivity of the forming load with respect to the material parameters.
j
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The sensitivity procedure requires solutions for the original, pi , and perturbed, pi + δpi , design variables. In the present 
method, both problems are solved in sequence and, at the end of every step, the results of the original problem are stored 
and the first perturbed problem is loaded for the iterative solution within the same solution increment. The converged 
solution to the original problem is used as initial estimate of the perturbed problem (which is also solved iteratively until 
convergence is reached). Moreover, the tangent stiffness matrix, K T, of the last iteration of the original problem is used to 
solve the perturbed problem. This procedure is applied for each perturbed variable and repeated for each load increment, 
from which the sensitivity of each design variable is computed using finite differences.

From Equation (5), the displacement increment of the original problem is given by

u(k+1)
n+1 = u(k)

n+1 − K −1
T R

(
u(k)

n+1; p
)

(10)

where R is the residual of the equilibrium equation at the solution step n + 1 and k-th iteration, and K T is the tangent 
stiffness matrix. When the converged solution to the original problem is used as an initial estimate for the perturbed 
problem of a forward finite difference scheme, it is important to subtract the converged residual of the perturbed problem 
from the residual of the original problem, as

u(k+1),�i
n+1 = u(k),�i

n+1 − K −1
T

[
R

(
u(k),�i

n+1 ; p + δp
)

− R (un+1; p)
]

(11)

where the superscript �i indicates the perturbed solution, u(0),�i
n+1 = un+1 and δp contains the perturbation of the i-th 

design variable, δpi . By using forward finite differences, the sensitivity of the internal force with respect to the design 
variable pi is

dF n+1

dpi
≈ �F n+1

�pi
= F �i

n+1 − F n+1

δpi
(12)

where F �i
n+1 and F n+1 are the forming loads of the perturbed and unperturbed problems for time step n + 1.

It is important to mention that the preceding technique has proven to be quite flexible and, contrary to the classical 
finite difference scheme, the present sensitivity analysis has been successfully used for problems involving remeshing in 
conjunction with von Mises elastic–plastic materials [10]. It should also be remarked that a similar sensitivity analysis 
procedure was developed by Kleinermann [11] based on central finite differences (without provision for remeshing).

3.3. The downhill simplex method – the Nelder–Mead algorithm

The gradient-free downhill simplex method, also known as Nelder–Mead algorithm [12], is based upon an earlier work of 
Spendley et al. [13] on simplex design in optimization. The original technique defines a regular polytope of nd + 1 vertices 
(in a nd-dimensional design space) which moves towards the optimum by replacing the worst vertex by its reflection around 
the centroid of the hyper-plane formed by the remaining vertices. Nelder and Mead [12] introduced additional operations to 
make it possible that the simplex “better adapts to the local landscape by elongating down along inclined planes, changing direction 
on encountering a valley at an angle, and contracting in the neighbourhood of a minimum.”

The good performance of the downhill simplex method, referred to from this point on as Nelder–Mead (NM) algorithm, 
has instigated a large number of researchers to propose variants to the original technique and to investigate its applicability 
to several different areas. The convergence assessment and a NM variant discussed by Lagarias et al. [14] have prompted 
a new surge of interest in the Nelder–Mead optimization method in recent years. However, in spite of its widespread use 
in many different fields, it is noteworthy that there are few studies reporting the application of the NM scheme to the 
identification of inelastic material parameters. For instance, Banabic et al. [15] used the NM method in the identification 
of inelastic parameters based on biaxial tensile tests. The same strategy was adopted by Pannier et al. [16] to determine 
elastic–plastic constitutive parameters using the Virtual Fields Method associated with tensile tests. Shanpo et al. [17] also 
described the application of the NM method in order to obtain the inelastic parameters of geotechnical materials. The 
availability of the NM scheme in some commercial simulators has encouraged further applications (most of which using the 
NM routine as a black box). Nevertheless, the lack of flexibility of some commercial codes in allowing one to modify the NM 
routine and the corresponding control parameters may render the identification process inefficient or even unsuccessful, as 
reported by Helfenstein [18].

The Nelder–Mead algorithm contains three important elements: (i) creation of the initial simplex, (ii) search along a 
given direction and formation of a new polytope, and (iii) shrinkage of the polytope towards the best vertex.

There are several strategies to create the initial simplex from an initial estimate. The most common approaches define 
the initial geometry from placing the estimate either in a vertex [13] or in the centroid of the polytope [19]. Aiming at 
maintaining a regular shape of the simplex, the present implementation uses a parameterised version of the latter. Initially, 
the first vertex, p1, is defined from the hyper-coordinates of the initial estimate, pd,

[pi]1 = [pi]d − ai + (nd − 1) × bi (13)

nd + 1
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Fig. 1. Conceptual illustration of the Nelder–Mead method for a two-dimensional design space [20]: (a) search direction and (b) shrinkage of the polytope.

where [pi]1 and [pi]d represent a design variable (material parameter) of vertex 1 and initial estimate, respectively, i =
1, . . . , nd, and ai and bi are computed as

ai = di ×
√

nd + 1 + (nd − 1)

nd
√

2
and bi = di ×

√
nd + 1 − 1

nd
√

2
(14)

in which di = h × (psup
i − pinf

i ) is the edge length, defined as a fraction of the search space for the design variable pi , 
where h ∈ [0, 1] is the initial simplex edge factor. The remaining vertices of the initial polytope, p2, . . . , pm, . . . , pnd+1, are 
determined from the first vertex, p1, as

[pi]m = [pi]1 +
{

ai if m = i − 1

bi if m �= i − 1
(15)

where pm = [
p1, . . . , pi, . . . , pnd

]T and m = 2, . . . , nd + 1.
The second element of the NM scheme is the search along a direction defined by the worst vertex, pnd+1, and the 

centroid, po, of the hyper-plane formed by the remaining vertices, p1, . . . , pnd
, as illustrated in Fig. 1a for a two-dimensional 

design space [20]. Initially, a reflection, pr, of the worst vertex around the centroid, po, is performed. The worst vertex is 
then replaced by the best point selected along the search direction after the following possible operations: expansion, pe, 
internal contraction, pint

c , external contraction, pext
c , or the reflected point itself. Noticeably, after reflection or expansion, the 

prospective new vertex is tested against the minimum and maximum limits of each design variable and a projection is 
performed if necessary, as proposed by Luersen and Le Riche [21].

Finally, if the best vertex is sufficiently close to the minimum, the shrinkage operation is performed, as depicted in 
Fig. 1b. Each of the aforementioned operations can be individually tuned by control coefficients, which have been originally 
defined as follows: reflection ρ = 1, expansion γ = 2, contraction β = 0.5, and shrinkage σ = 0.5. Table 1 presents a detailed 
description of the Nelder–Mead scheme implemented in the present work (using the considerations proposed by Lagarias 
et al. [14]).

The stopping criterion is established by either the fitness of the best vertex or the relative difference between the 
objective function of the worst and best vertices of the polytope, as

g(p(k)
1 ) ≤ TOLφg and φNM = g(p(k)

nd+1) − g(p(k)
1 )

g(p(0)
nd+1) − g(p(0)

1 )
≤ TOLφNM (16)

in which TOLφg and TOLφNM are the assumed convergence limits.

3.4. Particle Swarm Optimization

Particle Swarm Optimization was proposed by Eberhart and Kennedy [22,23] based on the concept of social behaviour of 
populations. The method accounts for a combination of social interactions and individual cognitive abilities by attributing 
to each particle (i) inertia, (ii) personal history, and (iii) neighbourhood effects:

(i) inertia effect: the inertia increases the search capacity by leading the particle to follow along its previous direction;
(ii) cognitive effect: the personal history aims at increasing its cognitive ability by adding a velocity component which is 

associated with its best position;
(iii) social effect: the neighborhood (or social) effects account for location(s) of the best particle(s) of the swarm.

The potential of the method to avoid local minima has dictated its successful application to fields as diverse as image and 
sound analysis, visualisation and computer graphics, robotics, traffic management, maintenance planning, etc. [24]. In recent 
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Table 1
Nelder–Mead algorithm.

(i) Set k = 0 and generate the initial simplex, p(0)

p(0) = {p(0)
1 , . . . , p(0)

m , . . . , p(0)
nd+1} where p(0)

m =
[

p(0)
1 , . . . , p(0)

i , . . . , p(0)
nd

]T

in which nd + 1 is the number of vertices
WHILE (g(p(k)) > TOLφg ) or (φNM > TOLφNM ) DO

(ii) Compute the objective function if necessary and sort simplex vertices

g(p(k)
1 ) < g(p(k)

2 ) < . . . < g(p(k)
m ) < . . . < g(p(k)

nd+1)

(iii) Compute reflexion(∗) of the worst vertex and corresponding objective function

p(k)
r ← p(k)

o + ρ(p(k)
o − p(k)

nd+1) where p(k)
o = 1

nd

nd∑
m=1

p(k)
m and g(p(k)

r )

(iv) Compare g(p(k)
r ) with the best, second worst and worst vertices

IF g(p(k)
r ) ≤ g(p(k)

1 ) THEN Perform expansion(∗) of the polytope

p(k)
e ← p(k)

o + γ (p(k)
r − p(k)

o ) and g(p(k)
e )

IF g(p(k)
e ) < g(p(k)

r ) THEN p(k+1)
nd+1 ← p(k)

e

ELSE p(k+1)
nd+1 ← p(k)

r

END IF

ELSE IF g(p(k)
r ) ≤ g(p(k)

nd
) THEN p(k+1)

nd+1 ← p(k)
r

ELSE Perform contraction of the polytope

IF g(p(k)
r ) < g(p(k)

nd+1) THEN p(k+1)
nd+1 ← p(k)

r

p(k)
c ← p(k)

o + β(p(k)
nd+1 − p(k)

o ) and g(p(k)
c )

IF g(p(k)
c ) > g(p(k)

nd+1) THEN Perform shrinkage of the polytope

p(k+1)
m ← p(k)

1 + σ(p(k)
m − p(k)

1 )

m = 2, . . . ,nd + 1
ELSE

p(k+1)
nd+1 ← p(k)

c

END IF
END IF

END IF
k ← k + 1

END WHILE

(v) pend ← p(k)
1

(∗) The new vertex location is verified against the side constraints, pi ∈ [pinf
i , psup

i ]
IF p(k)

i > psup
i THEN p(k)

i ← psup
i or IF p(k)

i < pinf
i THEN p(k)

i ← pinf
i

years, several variants have been proposed aiming at improving neighbourhood conditions and particle interaction rules 
amongst many other features. The extensive survey presented by Sedighizadeh and Masehian [24], Schutte and Groenwold 
[25], and Blum and Li [26] demonstrate the flexibility, efficiency, and robustness of the PSO technique.

Despite its ample spectrum of applications, there are relatively few investigations on the PSO suitability to the identifica-
tion of thermal or mechanical constitutive parameters. The literature shows some recent advancements in PSO applications to 
inverse thermal problems (e.g., [27–29]); however, the numerical simulation of mechanical problems makes use of more com-
plex constitutive relations and requires more elaborate mathematical formulations and computational modelling strategies. 
Nevertheless, a brief survey shows some new applications to structural mechanics, such as optimization of pressure vessels 
[30], truss [31], and composite [32] structures. There are even fewer studies on the application of PSO-based methods to 
the identification of mechanical material parameters. For instance, the identification of visco-elastic parameters in rock mass 
modelling and visco-elastic visco-plastic parameters for polymeric trusses were described by Feng et al. [33] and Carniel et 
al. [34], respectively. Applications of PSO-based techniques to composite materials and functionally graded materials (FGM) 
were addressed by Hornig and Flowers [35] and Fereidoon et al. [36], respectively. A discussion on the PSO performance 
in the identification of inelastic parameters was introduced by Vaz Jr. et al. [37] within the framework of tensile tests of 
cylindrical specimens. The comparative studies featuring PSO and Genetic Algorithms indicate that, for a classical von Mises 
material, the latter was not capable to converge with the same rate and accuracy level exhibited by the PSO method.

The outline of the PSO algorithm used in the present work is shown in Table 2 and its general concept is illustrated 
in Fig. 2 for a two-dimensional problem. The first step consists in generating a random population, p(0) , of size np, and 
corresponding velocities, v(0) , with particles defined in a design space of nd dimensions. For the current population, the 
individual, pib , and global, pgb , best values are determined, respectively, as the best location of the particle along its history 
and the best particle of the previous step. The new velocities are computed encompassing inertia, cognitive and social 
effects tuned by the control weights w , ϕ1 and ϕ2, respectively. The stochastic character is included in the random operator 
U (0, ϕb), in which 0 ≤ U (0, ϕb) ≤ ϕb and b = 1, 2. The maximum velocity is imposed as a fraction, wi , of the difference 
between the upper, psup

i , and lower, psup
i limits of the design variable. The next location of particles is evaluated and verified 

against the side constraints, and the projection of the design variable, pi , is imposed if necessary.
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Table 2
PSO algorithm.

(i) Set k = 0 and generate the initial population and corresponding velocities
p(0) = {p(0)

1 , . . . , p(0)
m , . . . , p(0)

np } and v(0) = {v(0)
1 , . . . , v(0)

m , . . . , v(0)
np }

in which np is the number of particles, nd is the number of design variables, and

p(0)
m =

[
p(0)

1 , . . . , p(0)
i , . . . , p(0)

nd

]T
and v(0)

m =
[

v(0)
1 , . . . , v(0)

i , . . . , v(0)
nd

]T

WHILE (g(p(k)) > TOLφg ) or (φPSO > TOLφPSO ) DO

(ii) Evaluate individual and global best particles, p(k)

ib , and p(k)

gb ,

IF g(p(k)
m ) < g(p(k)

ib ) THEN p(k)

ib ← p(k)
m and

IF g(p(k)
m ) < g(p(k)

gb ) THEN p(k)

gb ← p(k)
m

(iii) Compute new velocities, v(k+1)

v(k+1) ← w v(k) + U (0,ϕ1) ⊗ (p(k)

ib − p(k)) + U (0,ϕ2) ⊗ (p(k)

gb − p(k))

(iv) Verify velocities against maximum limits of each design variable
vmax

i ← wi(psup
i − pinf

i ) where wi ∈ [0,0.5]
IF |v(k)

i | > vmax
i THEN |v(k)

i | ← vmax
i

(v) Compute new location(∗) of all particles, p(k+1) , (design vectors)
p(k+1) ← p(k) + v(k+1)

k ← k + 1
END WHILE

(vi) pend ← p(k)

gb

(∗) The location is verified against the side constraints, pi ∈ [pinf
i , psup

i ]
IF p(k)

i > psup
i THEN p(k)

i ← psup
i or IF p(k)

i < pinf
i THEN p(k)

i ← pinf
i

Fig. 2. Conceptual illustration of Particle Swarm Optimization for a two-dimensional design space [37].

The stopping criteria adopted for the PSO method are similar to those used for the NM scheme, i.e. the objective function 
of the best particle, g(p(k)

gb ) ≤ TOLφg , and the relative difference between the maximum and minimum values of the objective 

function of the ns best particles, φPSO = [g(p(k)
ns ) − g(p(k)

gb )] / [g(p(0)
ns ) − g(p(0)

gb )] ≤ TOLφPSO .

3.5. Global–local hybrid schemes

The concept of using global–local hybrid schemes in general optimization problems is not new. The present work adopts 
a strategy in which the global search aims at reducing the search space, whereas the local search at improving a trade-off 
ratio between accuracy and convergence rate. When using such schemes, the potential to avoid local minima is the prime 
requirement to select the global search method, i.e. the application of the global algorithm to the target problem should be 
robust in detecting the global minimum basin of attraction. In addition, the local algorithm should be able to obtain the 
minimum at higher convergence rate from an initial estimate located at a given distance of the optimum. Therefore, the 
general characteristics of the present scheme are:

(i) global search: the global search is performed by Particle Swarm Optimization – the initial search space is defined in 
order to allow ample range for each material parameter – the exploration stage. Global – local transition is determined 
by a predefined criterion;
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Fig. 3. (a) Initial geometry (axisymmetrical model) [20] and (b) reference loading curve.

(ii) local search: the local search is accomplished by the Nelder–Mead method using the design variables (material parame-
ters) of the best particle as initial estimate, i.e. the second stage aims at increasing the exploitation capacity at reduced 
computational cost.

It is noteworthy that, in recent years, global–local hybrid techniques have been successfully applied to the identification of 
inelastic parameters. Chaparro et al. [38], studying anisotropic materials, performed global search using Genetic Algorithms 
and local search via the Levenberg–Marquardt gradient-based method. Following such strategy, a combination of Genetic 
Algorithms and of the Globally Convergent Method of Moving Asymptotes (GCMMA) was proposed by Muñoz-Rojas et al. 
[39] to determine material parameters for damaged materials. Similarly, De Carvalho et al. [40] also used Genetic Algorithms 
associated with the Levenberg–Marquardt gradient-based method to obtain inelastic and hyperelastic material parameters.

The literature shows that PSO–NM global–local algorithms have already been applied to other classes of optimization 
problems. For instance, Kumar and Singh [41] discussed the application of the PSO–NM scheme to energy distribution 
systems. Kayhan et al. [42] proposed a ‘general’ optimizer based on the PSO–NM global–local hybrid algorithm and presented 
an application to pressure vessel design. The multidisciplinary character of the PSO–NM algorithm can be observed in 
the work of Barzinpour et al. [43], who discussed the application to economic design of control charts in manufacturing 
processes. Application of the PSO–NM technique to the identification of inelastic parameters based on tensile tests has been 
recently reported by Vaz Jr. et al. [44]. It is noteworthy that preliminary issues on the application of the PSO–NM hybrid 
scheme to deep drawing operations were discussed by the authors in an early work [45], and its insertion in a broader 
context of parameter identification problems was briefly discussed in [20].

4. Numerical examples and discussion

4.1. The deep drawing operation

Deep drawing is a metal forming process by which a punch is used to force a sheet metal blank, usually held by a blank 
holder, to flow between the surfaces of a punch and die [46], as depicted in Fig. 3a. The process comprises two steps: (i) 
forming and (ii) extraction stages. In the present case, the forming stage takes place for a punch displacement up to 30 mm, 
followed by extraction in the remaining 20 mm, as shows the forming loaded indicated in Fig. 3b. The identification uses 
only the first step, since no load associated with plastic deformation is generally observed during extraction, i.e. the weight 
functions assigned to Equation (6) for stages (i) and (ii) are ξ j = 1 and ξ j = 10−6, respectively.

The suitability of the SQP, NM, PSO and PSO–NM schemes is investigated in this work by defining a demanding inverse 
problem: to recover the set of reference hardening parameters of the Ramberg–Osgood model given in Table 3. The refer-
ence load–displacement curve is defined by applying a small random perturbation to the forming load determined by the 
reference parameters, as shown in Fig. 3b. It is important to emphasise that the proposed testing is even more exigent 
than the parameter identification problem discussed in Vaz Jr. et al. [37], i.e., in the present case, the individual use of the 
well-established optimization schemes presented low performance. Therefore, even though it looks apparently simple, the 
small number of design variables highlights even more the degree of difficulty of the proposed identification problem.
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Table 3
Deep drawing: elastic and reference hardening parameters.

Description Symbol Value

Young’s modulus E 70 GPa

Poisson’s ratio ν 0.3

Yield stress σ ref
0 150 MPa

σY = σ0(1 + kε̄p)n kref 200

nref 0.25

ε̄p is the equivalent plastic strain.
σY is the yield stress.

Fig. 4. Objective function in the vicinity of the minimum.

It is observed in the present deep drawing operation that small variations in the hardening parameters can cause changes 
in the load–displacement curve, which in turn leads to fitness variations, sometimes in unexpected ways. For instance, by 
computing the objective function for three sets of hardening parameters taken along a predefined search direction towards 
the minimum, (A) σ0 = 148.8 MPa, (B) σ0 = 149.1 MPa and (C) σ0 = 149.4 MPa (k = 200 and n = 0.25), one obtains 
g(pA) = 6.381 × 10−3, g(pB) = 7.066 × 10−3 and g(pC) = 6.519 × 10−3. The non-monotonic convergence of g(p) indicates 
an irregular topography of the objective function, which, in this example, clearly shows that sensitivity computation (in 
gradient-based methods) and simplex operations (for the Nelder–Mead technique) around point B would be compromised.

The existence of flat regions constitutes also a convergence hindrance for most optimization techniques. The present 
problem exhibits irregular flat surfaces in the space of design variables followed by a steep decrease close to the minimum. 
Fig. 4 illustrates this effect by assigning the reference values for two of the hardening parameters and performing an 
exhaustive search on the third one. The process is repeated for each design variable, shown in Fig. 4 for a parametric 
measure of the corresponding hardening parameter, (pi − pref

i )/(pmax
i − pmin

i ), in the vicinity of the optimal point. It can 
be observed that a significant decrease in the objective function takes place only for values very close to the minimum. A 
combination of such effects indeed imposes relevant difficulties to the gradient-based SQP method and the Nelder–Mead 
optimization technique, as discussed in Sections 4.2 and 4.3.

4.2. Parameter identification using the SQP algorithm

Gradient-based algorithms are designed for convex optimization and unquestionably yield the highest convergence rates 
for this class of problems. Nevertheless, the successful application of the SQP algorithm to elastoplastic and solid mechanics 
problems [6,7] combined to the robustness exhibited by the semi-analytical sensitivity analysis and enhanced finite differ-
ence scheme [10] have encouraged investigation on their use in the present deep drawing operation. In this test, 25 random 
initial estimates are used for the SQP method in order to evaluate the performance of the algorithm in the present scenario. 
No success was obtained for all trials. The SQP algorithm was also tested as the local stage of the hybrid scheme without suc-
cess. Convergence could be achieved only for initial estimates very close to the reference point, which renders the scheme 
inefficient for the present identification problem. The literature rarely discusses failures; however, the authors have found 
relevant to report such unsuccessful attempt owing to the fact that the gradient-based Sequential Quadratic Programming 
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Table 4
Side constraints for the hardening parameters.

Parameter 
pi

Lower limit 
pinf

i

Upper limit 
psup

i

σ0 100 MPa 200 MPa
k 100 300
n 0.10 0.4

Table 5
Initial and final parameters for runs 16 and 23.

Run σ0 [MPa] k n g(p) |d|
16 Initial 154.408889 242.924376 0.253838919 0.2639 0.219

Final 148.209226 222.257589 0.246582765 3.921 × 10−3 0.113

23 Initial 102.863597 157.339679 0.165459624 0.3804 0.589
Final 150.000011 199.999959 0.250000009 1.259 × 10−8 2.32 × 10−7

algorithm has proved to be robust, being among the optimization methods for nonlinear applications that are the most 
referred to.

Remark (i): Despite the use of an enhanced semi-analytical sensitivity analysis approach and the small number of variables 
to be determined, the irregular topography of the fitness surface prevented the technique from computing the derivatives 
accurately and, consequently, from obtaining the minimum.

4.3. Parameter identification using the Nelder–Mead method

As in the preceding section, attempts to obtain the global minimum using the Nelder–Mead technique are performed 
for 25 random initial estimates. The NM control coefficients used in the simulations are as follows: reflection, ρ = 1.0, 
expansion, γ = 2.0, contraction, β = 0.5, and shrinkage, σ = 0.5. The initial simplex edge factor is h = 0.2. The lateral 
bounds (side constraints) used in the identification process are shown in Table 4. The identification process is successful 
when the objective function of the best vertex reaches g(p1) ≤ 1.7 × 10−8, whilst final convergence is assumed when 
φNM ≤ 1 × 10−8. Based on the fact that the Nelder–Mead algorithm was originally conceived for convex optimization, its 
exclusive application to the present identification problem yielded a low rate of success, i.e. only one run was able to reach 
the global minimum.

It is interesting to mention that the Euclidean parametric distance,

|d| =
√√√√ nd∑

i=1

[
(p(0)

i − pref
i )/(psup

i − pinf
i )

]2
(17)

between the reference parameters, pref, and initial estimate, p(0) , of the successful run (Run 23) does not correspond to 
the closest initial estimate of all trials. Conversely, the closest initial estimate (Run 16) was not able to attain the global 
minimum (see Table 5). The results highlight the fact that the fitness landscape hinders the convergence path and gives a 
high degree of unpredictability to the NM method in the present case.

Remark (ii): Computation of the search direction by the Nelder–Mead scheme was compromised by the irregular topography 
of the fitness surface, thereby hampering convergence to the optimal point in most NM attempts.

4.4. Parameter identification using the PSO algorithm

This section presents an assessment of the application of PSO to the proposed deep drawing operation. The geometry of 
the problem and of the loading curve are presented in Figs. 3a and 3b, respectively. The lower and upper limits, pinf

i and 
psup

i , used in the preceding examples are also adopted in the present identification process (see Table 4). Convergence is 
attained when φPSO ≤ 1 × 10−8, whereas the identification process is assumed successful when the objective function of the 
best particle reaches g(pgb) ≤ 1.7 × 10−8 (the same criteria used for the NM algorithm). The success and the efficiency of 
the PSO algorithm strongly depend upon the proper choice of population size, inertia, cognitive, and social control weights. 
Based on previous studies on identification of inelastic parameters [37], the following ranges of the PSO parameters are 
investigated: population size, np ≥ 60, inertia, 0.1 ≤ w ≤ 0.9, and cognitive and social weights, ϕ1, ϕ2 ∈ [0.5, 2.0].
4.4.1. Effects of the population size and randomness

The PSO method is stochastic in its essence owing to the initial random dispersion of the population and influence of 
U (0, ϕ1) and U (0, ϕ2) upon particle velocities (see task (iii) of Table 2). Two aspects are summarised in this section: the 
PSO performance for (i) population sizes np = 60, 90, 120, 150, 180 and 300, and (ii) five random populations for np = 120.
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Fig. 5. (a) Effect of the number of particles, np, [20] and (b) randomness of the population np = 120 (PSO control weights: w = 0.5 and ϕ1 = ϕ2 = 1.0).

The ideal population size should combine robustness and efficiency. The former represents the ability of the algorithm 
to obtain the global minimum within a given tolerance on changes of its control parameters and randomness effects. In 
addition, efficiency of an algorithm is associated with the number of fitness computations required to achieve the global 
optimum. Contrasting to Genetic Algorithms, there are relatively few studies on the influence of the population size in 
mechanical problems. Most works approach the issue by assessing test functions, such as those by Shi and Eberhart [47] and 
by Coelho and Oliveira [48]. Aiming at identifying hardening parameters, Vaz Jr. et al. [37] reported successful results for 
population sizes np = 120, 150, 200, and 250.

Fig. 5(a) shows the evolution of the identification process for population sizes np = 60, 90, 120, 150, 180, and 300 (the 
PSO control weights are w = 0.5 and ϕ1 = ϕ2 = 1.0) [20]. The characteristics of the fitness surface discussed in Section 4.1
rendered the procedure unsuccessful for smaller populations. Nevertheless, in spite of greater robustness, larger populations 
do not improve the convergence rate, i.e. the global minimum was obtained for equally larger numbers of fitness evaluations.

Despite the fact that randomness is implied when one defines different population sizes, it is worthy to investigate the 
evolution of the identification process for different populations of a given size. This example shows five different random 
initial populations of size np = 120. Fig. 5b highlights the stochastic character of the method by portraying markedly distinct 
evolution paths for each random population. Success was achieved in all trials, but for different numbers of evaluations of 
the objective function.

4.4.2. Effects of the inertia, cognitive and social weights
The success of the PSO algorithm is intrinsically associated with its control parameters. The inertia, cognitive and social 

weights are problem-dependent and must reflect an ideal balance between exploration and exploitation. Therefore, the 
recommended values for the PSO control weights can vary according to the application, oftentimes showing significant 
differences, as summarised by Sedighizadeh and Masehian [24]. Two scenarios are addressed in the present example: (i) 
the inertia effects, assuming ϕ1 = ϕ2 = 1.0 and (ii) cognitive and social effects for an inertia control weight w = 0.5. In both 
cases, a population size np = 120 is adopted.

The inertia parameter affects the search capacity of the algorithm, i.e. smaller values of w lead the PSO algorithm to 
premature convergence, whereas an excessively large inertia weight may cause the particles to frequently collide against the 
lateral bounds, thereby decreasing the convergence rate, or even precluding convergence itself. The simulations show that 
w < 0.3 causes the algorithm to converge to spurious minima and w > 0.7 renders the optimization procedure unstable 
(see Table 6). Noticeably, the results presented in Table 6 for 0.3 ≤ w ≤ 0.7 show differences in the 7th–8th significant 
digit, which are associated with the convergence limit established for the examples. Therefore, a statistical treatment of the 
converged material parameters would not apply in this case.

The cognitive and social weights define the learning capacity of the algorithm to find the optimal point within the design 
space. Sedighizadeh and Masehian’s survey indicates that most applications adopt cognitive and social weights ϕ1 = ϕ2 = 2.0
associated with an inertia parameter such that 0.2 ≤ w ≤ 0.9 [24]. However, the present identification problem has shown 
that ϕ1, ϕ2 > 1.9 causes the particles to move erratically around the minimum, demonstrating diminished local search 
capacity. On the other hand, it was observed that smaller values of ϕ1 and ϕ2 lead to spurious minima. Table 7 shows that 
successful convergence was achieved for ϕ1, ϕ2 ∈ [0.7, 1.9] with best performance (small number of fitness computations) 
for 0.9 ≤ ϕ1, ϕ2 ≤ 1.1.
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Table 6
Influence of the inertia weight for ϕ1 = ϕ2 = 1.0.

w σ0 [MPa] k n Fitness evaluations Convergence

0.1 149.993176 200.065446 0.249991092 5880 Spurious

0.3 149.999997 200.000043 0.250000000 6600 Global minimum
0.4 150.000007 200.000048 0.249999985 10 560
0.5 150.000005 199.999988 0.249999996 9120
0.6 150.000025 199.999867 0.250000019 19 680
0.7 150.000020 199.999836 0.250000034 14 760

0.9 – – – – Unstable

Table 7
Influence of the cognitive and social parameters for w = 0.5.

ϕ1 = ϕ2 σ0 [MPa] k n Fitness evaluations Convergence

0.5 157.237632 144.154304 0.258825102 21 600 Spurious

0.7 150.000015 199.999836 0.250000027 10 200 Global minimum
0.9 150.000002 200.000014 0.250000011 7920
1.0 150.000005 199.999988 0.249999996 9120
1.1 150.000019 199.999925 0.249999996 7560
1.3 150.000000 200.000066 0.249999991 10 560
1.5 150.000013 199.999992 0.249999996 13 800
1.7 150.000026 199.999821 0.250000024 18 600
1.9 150.000019 199.999916 0.249999996 32 760

2.0 – – – – Unstable

Remark (iii): In spite of the demanding character of the present deep drawing operation, the PSO method has proven to be 
robust, yielding a high success rate for the range of population sizes and control parameters investigated. The recommended 
set of PSO parameters for the present optimization process is as follows: the values np = 120, w = 0.5, and ϕ1 = ϕ2 = 1.0
are significantly different from those reported by Sedighizadeh and Masehian [24]. Therefore, despite the success of the PSO 
method, why should one pursue further investigation on hybrid schemes? The answer lies in the high computational cost 
exhibited by the PSO technique in the present application – the average number of fitness computations of the objective 
function using the recommended control parameters is 9300.

4.5. The PSO–NM hybrid identification strategy

In spite of the high success rate, the relatively high computational cost of the PSO method has motivated further in-
vestigation on global–local hybrid search approaches. This work combines the good PSO performance to approach the 
neighbourhood of the optimal point with the high convergence rate demonstrated by the Nelder–Mead technique. The 
hybrid strategy splits the identification problem into two stages: (A) the PSO technique is applied until a transition criterion 
is attained, followed by (B) application of the NM method using the best PSO particle as initial estimate.

The following aspects are relevant to the success of the Nelder–Mead stage: a proper choice of the PSO→NM transition 
criterion and geometry of the initial polytope. The choice of the transition criterion should balance efficiency and robustness, 
i.e. the earliest possible PSO→NM transition point able to ensure a high success rate of the NM stage. In the present work, 
transition is accomplished when the objective function of the best particle reaches g(p) ≤ 10−3.

As discussed in Section 3.3, the NM initial estimate corresponds to the centroid of the initial simplex. This strategy 
requires a single parameter, the edge factor h, to define the initial size of the simplex. The simulations show that, for the 
second stage of the hybrid identification procedure, a range 0.01 ≤ h ≤ 0.05 represents a compromise between efficiency 
and high success rate.

An investigation on the Nelder–Mead control parameters has indicated successful trials for the following intervals: re-
flection, 0.3 ≤ ρ ≤ 0.7, expansion, 0.5 ≤ γ ≤ 10.0, contraction, 0.3 ≤ β ≤ 0.9, and shrinkage, 0.1 ≤ σ ≤ 0.9. For the present 
application, it was not observed substantial variation in the number of fitness evaluations for the preceding ranges. There-
fore, the following examples use the standard NM control parameters: ρ = 1.0, γ = 2.0, β = 0.5, and σ = 0.5.

The hybrid technique was applied to all successful runs reported in Section 4.4 following analysis of the (i) random 
initial populations, (ii) population size, (iii) inertia weight, and (iv) social and cognitive weights. The NM initial estimates of 
cases (i)–(iv) are presented in Table 8, which shows the hardening parameters of the best PSO particle and corresponding 
number of fitness evaluations required to achieve transition. The first column of Table 8 indicates the case number in order 
to facilitate further reference.

Fig. 6a presents the PSO and PSO–NM evolution for two limiting cases [20]. Case 11 (np = 120, w = 0.3, ϕ1 = ϕ2 = 1.0) 
and Case 14 (np = 120, w = 0.6, ϕ1 = ϕ2 = 1.0) provide the best and worst combined performance of the trials. It is 
noteworthy that the total number of fitness evaluations is mostly affected by the PSO stage of the identification process. 
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Table 8
Initial parameters for the second stage: PSO → NM transition (g(pgb) ≤ 10−3).

Case σ0 [MPa] k n Fitness evaluations

1 (i) Run(∗) 1 150.471625 198.775415 0.249539890 1800
2 2 150.524674 199.514531 0.249270467 1440
3 3 150.559362 198.199834 0.249594225 1560
4 4 150.672116 195.420749 0.250248172 1320
5 5 150.410668 198.769248 0.249808870 1560

6 (ii) np
(†) 90 150.724907 193.570903 0.251043166 4590

7 120 150.471625 198.775415 0.249539890 1800
8 150 150.245809 199.883120 0.249568615 2700
9 180 150.224593 197.622301 0.250291768 2340
10 300 150.236905 200.499732 0.249588827 3300

11 (iii) w(‡) 0.3 150.328936 198.615766 0.249772752 1200
12 0.4 149.719611 202.291381 0.249652357 1440
13 0.5 150.471625 198.775415 0.249539890 1800
14 0.6 150.565260 196.843793 0.250194050 5760
15 0.7 150.380380 197.412698 0.250255644 2280

16 (iv) ϕ1,ϕ2
(§) 0.7 150.514433 198.224474 0.249886334 1440

17 0.9 150.382016 197.505476 0.250457272 1560
18 1.0 150.471625 198.775415 0.249539890 1800
19 1.1 149.947609 200.863582 0.249748910 2040
20 1.3 150.163744 199.551390 0.249892780 2040
21 1.5 150.461387 198.403398 0.249866949 2880
22 1.7 150.243440 198.038179 0.250227928 3360
23 1.9 150.306339 199.897177 0.249727207 5280

(∗) Random populations: np = 120, w = 0.5 and ϕ1 = ϕ2 = 1.0.
(†) Population size: w = 0.5 and ϕ1 = ϕ2 = 1.0.
(‡) Inertia weight: np = 120 and ϕ1 = ϕ2 = 1.0.
(§) Cognitive and social weights: np = 120 and w = 0.5.

Fig. 6. (a) Full PSO and Nelder–Mead evolution for limiting cases: inertia parameters w = 0.3 and w = 0.6 (Cases 11 and 14) [20], and (b) combined 
PSO–Nelder–Mead evolution for different population sizes (Cases 6–10).

Fig. 6b shows the combined PSO–NM evolution for PSO original population sizes np = 90, 120, 150, 180 and 300 (see 
also Table 9). The Nelder–Mead initial simplex utilised in the present work causes the first NM steps to exhibit objective 
functions somewhat higher than the transitional PSO value (see curves for np = 150, 180 and 300 of Fig. 6b). Since the best 
PSO particle is located in the centroid of the NM polytope, the initial simplex construction algorithm may place its vertices 
slightly farther from the minimum. This small difference has imposed no significant effect on the NM convergence rate.

The final parameters and corresponding numbers of fitness evaluations for the individual and combined PSO–NM stages 
are presented in Table 9 for Cases 1 to 23. Convergence to the global minimum was obtained for all trials. As discussed 
previously, the differences in the converged parameters are also in the 7th–8th significant digits, which are associated with 
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Table 9
Final parameters after the Nelder–Mead stage.

Case σ0 [MPa] k n NM PSO Total

1 150.000007 199.999988 0.249999997 186 1800 1986
2 150.000020 199.999862 0.250000021 148 1440 1588
3 150.000015 199.999899 0.250000008 193 1560 1753
4 150.000023 199.999844 0.250000034 165 1320 1485
5 150.000000 200.000069 0.249999988 184 1560 1744

6 150.000007 199.999961 0.250000014 222 4590 4812
7 150.000007 199.999988 0.249999997 186 1800 1986
8 150.000008 199.999989 0.250000003 168 2700 2868
9 150.000007 199.999992 0.250000002 194 2340 2534
10 150.000012 199.999988 0.250000001 170 3300 3470

11 150.000008 199.999987 0.250000000 217 1200 1417
12 150.000022 199.999899 0.250000007 218 1440 1658
13 150.000007 199.999988 0.249999997 186 1800 1986
14 150.000009 199.999989 0.250000002 172 5760 5932
15 150.000021 199.999901 0.250000012 193 2280 2473

16 150.000019 199.999905 0.250000010 200 1440 1640
17 150.000008 199.999985 0.249999999 170 1560 1730
18 150.000007 199.999988 0.249999997 186 1800 1986
19 150.000012 199.999992 0.249999996 197 2040 2237
20 149.999998 200.000069 0.249999991 184 2040 2224
21 150.000021 199.999904 0.250000009 152 2880 3032
22 150.000010 199.999962 0.250000008 169 3360 3529
23 150.000008 199.999960 0.250000009 179 5280 5459

the convergence limit established for the examples. A global assessment shows that the PSO stage required 93% of the 
total number of fitness computations. The average number of evaluations of the objective function for the PSO–NM hybrid 
scheme was approximately 2600.

Remark (iv): The simulations show that the PSO–NM hybrid scheme has increased the efficiency of the identification process 
without loss of robustness. However, it can always be argued the possibility to use independently the PSO and Nelder–Mead 
techniques. Nevertheless, as discussed in Section 4.3, the Nelder–Mead exhibited a low rate of success, whereas Section 4.4.2
shows that the exclusive application of the PSO has yielded a substantially high computational cost.

5. Concluding remarks

Identification of inelastic parameters based upon deep drawing process is addressed using the following well-established 
optimization strategies: a gradient-based Sequential Quadratic Programming (SQP), Nelder–Mead (NM) downhill simplex 
algorithm and Particle Swarm Optimization (PSO). The low performance exhibited by the aforementioned methods when 
used independently (SQP and Nelder–Mead algorithms were originally designed for convex optimization problems and the 
PSO method yielded a high computational cost) has encouraged investigation of global–local hybrid schemes.

Despite the robustness of the sensitivity analysis and SQP algorithm demonstrated in other demanding applications, all 
attempts to use the identification procedure have failed owing to the irregular fitness landscape. The Nelder–Mead technique 
has also rendered a low success rate due to similar effects.

Particle Swarm Optimization has shown high tolerance to changes of the control weights without compromising its high 
success rate for np ≥ 90, w ∈ [0.3, 0.7] and ϕ1, ϕ2 ∈ [0.7, 1.9] (the recommended set is np = 120, w = 0.5 and ϕ1, ϕ2 = 1.0). 
However, the high computational cost demonstrated in the present case constitutes a clear disadvantage of the exclusive 
application of this algorithm. Nevertheless, in line with recent publications featuring other applications [41–44], the global–
local PSO–NM hybrid strategy has demonstrated to be the most efficient approach by combining the PSO robust global 
search capacity with the NM high convergence rate (provided the initial estimate is sufficiently close to the minimum). The 
original NM control parameters, ρ = 1, γ = 2, β = 0.5, and σ = 0.5, and initial edge factor, 0.01 ≤ h ≤ 0.05, were found 
appropriate for the second stage of the hybrid scheme.
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