On the vibrations of a string with a concentrated mass and rapidly oscillating density

Timur R. Gadyl'shin
Ufa State Aviation Technical University, Karl Marx st., 12, Ufa 450000, Russia

A R T I C L E I N F O

Article history:

Received 14 May 2015
Accepted 6 August 2015
Available online 21 August 2015

Keywords:

Vibration of a string
Rapidly oscillating density
Concentrated mass
Homogenization
Method of matched asymptotic expansions

Abstract

The paper is devoted to the vibrations of a string I with a concentrated mass $\varepsilon^{-1} \varkappa Q\left(\varepsilon^{-1} x\right)$ and rapidly oscillating density $q\left(x, \mu^{-1} x\right)$, where $q(x, \zeta)$ is a 1-periodic in ζ function, $Q(\xi)$ is a function with compact support, the integral of which is equal to one, $0 \in I, \mu, \varepsilon$ are small positive parameters, $x \in \mathbb{R}$. By combining homogenization and the method of matched asymptotic expansions, we construct solutions to the problems up to $O(\varepsilon+\mu)$.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Studies on the vibrations of a string with inhomogeneous rapidly oscillating density have been conducted for a long time (see, for instance, [1-3]). In these monographs, using the homogenization method, the authors constructed asymptotics with respect to a small parameter (the period of the oscillations) of solutions to the boundary value problem.

The vibration of a string with a concentration of mass on a small set has been studied by means of other methods for a long time, too. The convergence of solutions to the respective boundary value problem was investigated in [4], and the asymptotics with respect to a small parameter was constructed in [5] by means of the method of matched asymptotic expansions [6]. The analogous spectral problem for the Laplace operator in 3D space was considered in [7]. Note that a close mathematical problem on the convergence of the Schrödinger operator with δ-type potential on the axis was studied in [8].

In the present paper, using the combination of homogenization and the method of matching of asymptotic expansions [9], we study the case when the string with a concentrated mass has an inhomogeneous rapidly oscillating density. We get the homogenized (limit) solution to a boundary value problem, up to $O(\mu+\varepsilon)$, where μ is a period of rapid oscillations of the density, and ε is the order of the length of the small part of the string, on which the concentrated mass is located.

2. Settings of the problem and main result

Let I be $(a, b),\{0\} \in I$. Consider the problem

$$
\begin{align*}
& \mathcal{L}_{\mu, \varepsilon} u_{\mu, \varepsilon}:=-\frac{\mathrm{d}^{2} u_{\mu, \varepsilon}}{\mathrm{d} x^{2}}+\left(q\left(x, \frac{x}{\mu}\right)+\varepsilon^{-1} \varkappa Q\left(\frac{x}{\varepsilon}\right)\right) u_{\mu, \varepsilon}=f(x), \quad x \in I \\
& l_{a} u_{\mu, \varepsilon}:=h_{a} u_{\mu, \varepsilon}(a)-H_{a} u_{\mu, \varepsilon}^{\prime}(a)=0 \quad l_{b} u_{\mu, \varepsilon}:=h_{b} u_{\mu, \varepsilon}(b)+H_{b} u_{\mu, \varepsilon}^{\prime}(b)=0 \tag{1}
\end{align*}
$$

[^0]where $q(x, \zeta)$ is a 1-periodic in ζ function belonging to $C^{2,0}(\bar{I} \times(-\infty, \infty)), q(x, \zeta)>0, Q(\xi) \in C_{0}(-\infty, \infty)$,
$$
\int_{-\infty}^{\infty} Q(\xi) \mathrm{d} \xi=1
$$
$0<\mu, \varepsilon \ll 1, h_{a}, h_{b}, H_{a}, H_{b} \geqslant 0, h_{a}+H_{a}>0, h_{b}+H_{b}>0, f \in L^{2}(I)$. Although, for the concentrated mass, $x>0$ and $Q(\xi) \geqslant 0$, we consider a more general case, when $x \in \mathbb{R}$ and $Q(\xi)$ can take negative values as well. We will assume that $\operatorname{supp} Q(\xi) \subset[-1,1]$.

For functions $G(x)$, we use the notation $\{G\}(0)=G(+0)-G(-0)$, and for 1-periodic in ζ functions $g(x, \zeta)$ we denote

$$
[g](x):=\int_{0}^{1} g(x, \zeta) \mathrm{d} \zeta
$$

Since $q>0$, the boundary value problems

$$
\begin{aligned}
\mathcal{L} u_{0} & :=-\frac{\mathrm{d}^{2} u_{0}}{\mathrm{~d} x^{2}}+[q](x) u_{0}=f, \quad x \in I, \quad & & l_{a} u_{0}=l_{b} u_{0}=0 \\
\mathcal{L} y & =0, \quad x \in I \backslash\{0\}, \quad l_{a} y=l_{b} y=0, & & y(0)=1
\end{aligned}
$$

have unique solutions in $H^{2}(I)$ and $H^{1}(I) \cap H^{2}(a, 0) \cap H^{2}(0, b)$, respectively. It is easy to see that if $x \neq \varkappa_{0}:=\left\{y^{\prime}\right\}(0)$, then the function

$$
\begin{equation*}
u^{0}(x):=u_{0}(x)+\frac{\varkappa u_{0}(0)}{\varkappa_{0}-\varkappa} y(x) \tag{2}
\end{equation*}
$$

solves uniquely the boundary value problem

$$
\begin{equation*}
\mathcal{L} u^{0}=f, \quad x \in I \backslash\{0\}, \quad l_{a} u^{0}=l_{b} u^{0}=0, \quad\left\{\left(u^{0}\right)^{\prime}\right\}(0)=\varkappa u^{0}(0) \tag{3}
\end{equation*}
$$

for any $f \in L^{2}(I)$ in $H^{1}(I) \cap H^{2}(a, 0) \cap H^{2}(0, b)$.
The main result of the paper is the proof of the following proposition.
Theorem 2.1. Assume that $\varkappa \neq \varkappa_{0}$. Then for sufficiently small ε and μ, the solution to boundary value problem (1) is uniquely determined in $H^{2}(I)$ and satisfies the uniform estimate

$$
\begin{equation*}
\left\|u_{\mu, \varepsilon}-u^{0}\right\|_{L^{2}(I)} \leqslant(\mu+\varepsilon) C\|f\|_{L^{2}(I)} \tag{4}
\end{equation*}
$$

where $u^{0}(x)$ is a solution to boundary value problem (3).

3. Preliminaries and auxiliary assertions

Consider the following boundary value problems:

$$
\begin{align*}
& \mathcal{L}_{\mu} u_{\mu}:=-\frac{\mathrm{d}^{2} u_{\mu}}{\mathrm{d} x^{2}}+q\left(x, \frac{x}{\mu}\right) u_{\mu}=f, \quad x \in I, \quad l_{a} u_{\mu}=l_{b} u_{\mu}=0 \tag{5}\\
& \mathcal{L}_{\mu} y_{\mu}=0, \quad x \in I \backslash\{0\}, \quad l_{a} y_{\mu}=l_{b} y_{\mu}=0, \quad y_{\mu}(0)=1 \tag{6}\\
& \mathcal{L}_{\mu} u^{\mu}=f, \quad x \in I \backslash\{0\}, \quad l_{a} u^{\mu}=l_{b} u^{\mu}=0, \quad\left\{\left(u^{\mu}\right)^{\prime}\right\}(0)=x u^{\mu}(0) \tag{7}
\end{align*}
$$

Since $q>0$, the boundary value problems (5) and (6) have unique solutions from $H^{2}(I)$ and $H^{1}(I) \cap C^{2}[a, 0] \cap C^{2}[0, b]$, respectively, and the estimate

$$
\begin{equation*}
\left\|u_{\mu}\right\|_{H^{2}(I)} \leqslant C\|f\|_{L^{2}(I)} \tag{8}
\end{equation*}
$$

holds true.
It is easy to see that if $\varkappa \neq \varkappa_{\mu}:=\left\{y_{\mu}^{\prime}\right\}(0)$, then the function

$$
\begin{equation*}
u^{\mu}(x):=u_{\mu}(x)+\frac{\varkappa u_{\mu}(0)}{\varkappa_{\mu}-\varkappa} y_{\mu}(x) \in H^{1}(I) \cap H^{2}(a, 0) \cap H^{2}(0, b) \tag{9}
\end{equation*}
$$

is a unique solution to problem (7) for any $f \in L^{2}(I)$, in addition, because of (8) and the embedding of $H^{1}(I)$ in $C(\bar{I})$ (see, for instance, [10, Chapter III, §6]), which satisfies

$$
\begin{equation*}
\left\|u^{\mu}\right\|_{H^{2}(a, 0)}+\left\|u^{\mu}\right\|_{H^{2}(0, b)} \leqslant C \frac{\|f\|_{L^{2}(I)}}{\left|\varkappa_{\mu}-\varkappa\right|} \tag{10}
\end{equation*}
$$

Since $q(x, \zeta) \in C^{2,0}(\bar{I} \times(-\infty, \infty))$ and $q(x, \zeta)>0$, then the construction of asymptotics of the functions $u_{\mu}(x)$ and $y_{\mu}(x)$ by the homogenization method leads to:

$$
\begin{equation*}
\left\|u_{\mu}-u_{0}\right\|_{H^{1}(I)} \leqslant C \mu\|f\|_{L^{2}(I)}, \quad\left\|y_{\mu}-y\right\|_{C^{1}[a, 0]}+\left\|y_{\mu}-y\right\|_{C^{1}[0, b]}=O(\mu) \tag{11}
\end{equation*}
$$

From (11) and the embedding theorems, it follows that

$$
\begin{equation*}
\left|u_{\mu}(0)-u_{0}(0)\right| \leqslant \mu C\|f\|_{L^{2}(I)}, \quad x_{\mu}=\varkappa_{0}+O(\mu), \quad\left\|y_{\mu}-y\right\|_{H^{1}(I)}=O(\mu) \tag{12}
\end{equation*}
$$

Due to (2), (9), (11) and (12), we derive for $\varkappa \neq \varkappa_{0}$ and sufficiently small μ the estimate

$$
\begin{equation*}
\left\|u^{\mu}-u^{0}\right\|_{H^{1}(I)} \leqslant C \mu\|f\|_{L^{2}(I)} \tag{13}
\end{equation*}
$$

4. Existence and uniqueness of a solution to boundary value problem (1)

Let \widetilde{h}_{a} be equal to $h_{a} H_{a}^{-1}$, if $H_{a} \neq 0$, and $\widetilde{h}_{a}=0$, if $H_{a}=0$. We define in an analogous way \widetilde{h}_{b}. The quadratic forms of the boundary value problems (5), (7) and (1) read as

$$
\begin{aligned}
\mathfrak{h}_{\mu}[u] & =\int_{I}\left(\left(u^{\prime}(x)\right)^{2}+q\left(x, \frac{x}{\mu}\right) u^{2}(x)\right) \mathrm{d} x+\widetilde{h}_{a} u^{2}(a)+\widetilde{h}_{b} u^{2}(b), \\
\mathfrak{h}^{\mu}[u] & =\mathfrak{h}_{\mu}[u]+\varkappa u^{2}(0), \\
\mathfrak{h}_{\mu, \varepsilon}[u] & =\mathfrak{h}^{\mu}[u]+\varkappa \varepsilon^{-1} \int_{I} Q\left(\frac{x}{\varepsilon}\right) u^{2}(x) \mathrm{d} x-\varkappa u^{2}(0)
\end{aligned}
$$

correspondingly, where $u(a)=0$, if $H_{a}=0$, and $u(b)=0$, if $H_{b}=0$.
Let us show the validity of the following estimate

$$
\begin{equation*}
\left|\mathfrak{h}_{\mu, \varepsilon}[u]-\mathfrak{h}^{\mu}[u]\right| \leqslant M_{1} \varepsilon^{1 / 2}\|u\|_{L^{2}(I)}+M_{2} \varepsilon^{1 / 2} \mathfrak{h}^{\mu}[u] \tag{14}
\end{equation*}
$$

Denote $v(x)=u(x)-u(0)$. Then $v(0)=0, v^{\prime}(x)=u^{\prime}(x)$,

$$
\int_{I} \varepsilon^{-1} Q\left(\frac{x}{\varepsilon}\right) u^{2}(x) \mathrm{d} x-u^{2}(0)=2 \int_{I} \varepsilon^{-1} Q\left(\frac{x}{\varepsilon}\right) u(0) v(x) \mathrm{d} x+\int_{I} \varepsilon^{-1} Q\left(\frac{x}{\varepsilon}\right) v^{2}(x) \mathrm{d} x
$$

The Friedrichs-Steklov inequality leads to the estimate

$$
\begin{aligned}
2\left|\int_{I} \varepsilon^{-1} Q\left(\frac{x}{\varepsilon}\right) u(0) v(x) \mathrm{d} x\right| & \leqslant 2 \int_{-\varepsilon}^{\varepsilon} \varepsilon^{-1} \max _{\mathbb{R}}|Q| \cdot|u(0) v(x)| \mathrm{d} x \\
& \leqslant \int_{-\varepsilon}^{\varepsilon} \varepsilon^{-1} \max _{\mathbb{R}}|Q|\left(\varepsilon^{1 / 2} u^{2}(0)+\varepsilon^{-1 / 2} v^{2}(x)\right) \mathrm{d} x \\
& \leqslant \max _{\mathbb{R}}|Q| \varepsilon^{1 / 2}\left(2 u^{2}(0)+\int_{-\varepsilon}^{\varepsilon}\left(v^{\prime}\right)^{2}(x) \mathrm{d} x\right)
\end{aligned}
$$

So, we derive

$$
\begin{align*}
\left|\varepsilon^{-1} \int_{I} Q\left(\frac{x}{\varepsilon}\right) u^{2}(x) \mathrm{d} x-u^{2}(0)\right| & \leqslant 2 \max _{\mathbb{R}}|Q| \varepsilon^{1 / 2} u^{2}(0)+\max _{\mathbb{R}}|Q|\left(\varepsilon^{1 / 2}+\varepsilon\right) \int_{-\varepsilon}^{\varepsilon}\left(u^{\prime}\right)^{2}(x) \mathrm{d} x \\
& \leqslant C \varepsilon^{1 / 2}\|u\|_{H^{1}(I)}^{2}, \quad u \in H^{1}(I) \tag{15}
\end{align*}
$$

Due to the definition of the quadratic forms and estimate (15), we get that the forms $\mathfrak{h}_{\mu, \varepsilon}, \mathfrak{h}^{\mu}$ are bounded from below, and for $x \geqslant 0$, inequality (14) holds.

Let $x<0$. Consider the case $H_{a}+H_{b} \neq 0$. It is known (see, for instance, [10, Chapter, $\left.\S 4\right]$) that for any fixed interval $I^{\prime}=\left(a^{\prime}, b^{\prime}\right)$ such that $\bar{I} \subset I^{\prime}$ and any $u \in H^{1}(I)$, there exists a continuation $U \in H^{1}\left(I^{\prime}\right)$ such that

$$
\begin{equation*}
U\left(a^{\prime}\right)=U\left(b^{\prime}\right)=0, \quad\|U\|_{H^{1}\left(I^{\prime}\right)} \leqslant M\|u\|_{H^{1}(I)}, \quad\|U\|_{L^{2}\left(I^{\prime}\right)} \leqslant M\|u\|_{L^{2}(I)} \tag{16}
\end{equation*}
$$

Since $\alpha\|u\|_{H^{1}(I)}^{2} \leqslant \mathfrak{h}_{\mu}[u], \alpha>0$, due to (16) we derive

$$
\begin{aligned}
h^{\mu}[u] & =h_{\mu}[u]+\varkappa u^{2}(0) \geqslant \alpha\|u\|_{H^{1}(I)}^{2}+\varkappa u^{2}(0) \geqslant \frac{\alpha}{M}\|U\|_{H^{1}\left(I^{\prime}\right)}^{2}+\varkappa U^{2}(0) \\
& =\frac{\alpha}{M}\|U\|_{H^{1}\left(I^{\prime}\right)}^{2}+2 \varkappa \int_{a^{\prime}}^{0} U^{\prime}(x) U(x) \mathrm{d} x \geqslant \frac{\alpha}{M}\|U\|_{H^{1}\left(I^{\prime}\right)}^{2}+\varkappa\left(\gamma\|U\|_{L^{2}\left(I^{\prime}\right)}^{2}+\gamma^{-1}\left\|U^{\prime}\right\|_{L^{2}\left(I^{\prime}\right)}^{2}\right) \\
& \geqslant\left(\frac{\alpha}{M}+\varkappa \gamma^{-1}\right)\|U\|_{H^{1}\left(I^{\prime}\right)}^{2}+\varkappa \gamma\|U\|_{L^{2}\left(I^{\prime}\right)}^{2} \geqslant\left(\frac{\alpha}{M}+\varkappa \gamma^{-1}\right)\|u\|_{H^{1}(I)}^{2}+\varkappa \gamma M\|u\|_{L^{2}(I)}^{2}
\end{aligned}
$$

So, for large $\gamma>0$ we have

$$
\|u\|_{H^{1}(I)}^{2} \leqslant K_{1}\|u\|_{L^{2}(I)}^{2}+K_{2} h^{\mu}[u], \quad K_{i}>0
$$

This estimate and inequality (15) imply estimate (14). In case $\varkappa<0, H_{a}=H_{b}=0$ the proof is similar and more simple.
Since $\varkappa_{\mu} \underset{\mu \rightarrow 0}{\rightarrow} \varkappa_{0}$ (see, (12)), then estimate (14) by means of [11, Chapter VI, Theorem 3.9] shows that, for $\varkappa \neq \varkappa_{0}$ and sufficiently small μ, boundary value problem (1) has a unique solution in $H^{2}(I)$. Moreover, for solutions to boundary value problems (1) and (7), the following uniform estimate in μ :

$$
\begin{equation*}
\left\|u_{\mu, \varepsilon}-u^{\mu}\right\|_{L^{2}(I)} \leqslant C \varepsilon^{1 / 2}\|f\|_{L^{2}(I)} \tag{17}
\end{equation*}
$$

holds true. From this estimate and (13) we derive

$$
\begin{equation*}
\left\|u_{\mu, \varepsilon}-u^{0}\right\|_{L^{2}(I)} \leqslant C\left(\varepsilon^{1 / 2}+\mu\right)\|f\|_{L^{2}(I)} \tag{18}
\end{equation*}
$$

Thus, to complete the proof of Theorem 2.1, it is sufficient to improve estimate (18) to get (4).
From inequalities (17) and (10), it follows that, for $\varkappa \neq \varkappa_{0}$ and sufficiently small μ, the solutions to (1) satisfy the uniform in μ and ε estimate $\left\|u_{\mu, \varepsilon}\right\|_{L^{2}(I)} \leqslant C\|f\|_{L^{2}(I)}$. On the other hand, this inequality leads to the estimate

$$
\begin{equation*}
\|w\|_{L^{2}(I)} \leqslant C\left(\|F\|_{L^{2}(I)}+|\widetilde{A}|+|\widetilde{B}|\right) \tag{19}
\end{equation*}
$$

for solutions to the boundary value problem

$$
\mathcal{L}_{\mu, \varepsilon} w=F, \quad x \in I, \quad l_{a} w=\widetilde{A} \quad l_{b} w=\widetilde{B}
$$

outside a vicinity of the point \varkappa_{0} for sufficiently small μ.

5. Derivation of estimate (4)

The construction of a formal approximation $Z_{\mu}(x, \varepsilon)$ of solutions to the boundary value problem (1) is based on the well-known method of matched asymptotic expansions [9,12]. Hence, we omit trivial explanations on getting the structure of $Z_{\mu}(x, \varepsilon)$.

Denote

$$
\begin{align*}
v_{1, \mu}(\xi) & =\varkappa u^{\mu}(0)\left(\xi \int_{-\infty}^{\xi} Q(\tau) \mathrm{d} \tau-\int_{-\infty}^{\xi} \tau Q(\tau) \mathrm{d} \tau\right)+\left(u^{\mu}\right)^{\prime}(-0) \xi \\
\widetilde{v}_{1, \mu}(\xi) & =v_{1, \mu}(\xi)-\left(u^{\mu}\right)^{\prime}(\mp 0) \xi, \quad \mp \xi>0 \\
Z_{\mu}(x, \varepsilon) & =u^{\mu}(x)+\varepsilon \widetilde{v}_{1, \mu}\left(\frac{x}{\varepsilon}\right) \tag{20}
\end{align*}
$$

Then, $Z_{\mu} \in H^{2}(I)$ due to (9) and since $v_{1, \mu}^{\prime \prime}(\xi)=\varkappa u^{\mu}(0) Q(\xi)$, then due to (7) we have

$$
\begin{align*}
\mathcal{L}_{\mu, \varepsilon} Z_{\mu}(x, \varepsilon) & =f(x)+\mathcal{I}_{\mu}^{1}(x, \varepsilon)+\mathcal{I}_{\mu}^{2}(x, \varepsilon)+\mathcal{J}_{\mu}(x, \varepsilon), \quad x \in I \\
l_{a} Z_{\mu} & =0, \quad l_{b} Z_{\mu}=-\varepsilon u^{\mu}(0) h_{b} 火 \int_{-\infty}^{\infty} \tau Q(\tau) \mathrm{d} \tau \tag{21}
\end{align*}
$$

where

$$
\begin{aligned}
& \mathcal{I}_{\mu}^{1}(x, \varepsilon)=\varepsilon^{-1} \varkappa Q\left(\frac{x}{\varepsilon}\right)\left(u^{\mu}(x)-u^{\mu}(0)-\left(u^{\mu}\right)^{\prime}(\mp 0) x\right), \quad \mp x>0 \\
& \mathcal{I}_{\mu}^{2}(x, \varepsilon)=\varepsilon q\left(x, \frac{x}{\mu}\right) \widetilde{v}_{1, \mu}\left(\frac{x}{\varepsilon}\right), \quad \mathcal{J}_{\mu}(x, \varepsilon)=\varkappa Q\left(\frac{x}{\varepsilon}\right) v_{1, \mu}\left(\frac{x}{\varepsilon}\right)
\end{aligned}
$$

From (20), (10) and the embedding theorems it follows that

$$
\begin{equation*}
\left\|\mathcal{I}_{\mu}^{2}\right\|_{L^{2}(I)}+\left|l_{b} Z_{\mu}\right| \leqslant \varepsilon C\|f\|_{L^{2}(I)} \tag{22}
\end{equation*}
$$

If $f \in C(\bar{I})$, then, using for $\mathcal{I}_{\mu}^{1}(x, \varepsilon)$ the formula for the remainder term of the Taylor series in the integral form and the equation from (7), we get

$$
\mathcal{I}_{\mu}^{1}(x, \varepsilon)=\varepsilon^{-1} \varkappa Q\left(\frac{x}{\varepsilon}\right) \int_{0}^{x}(x-t)\left(q\left(t, \frac{t}{\mu}\right) u^{\mu}(t)-f(t)\right) \mathrm{d} t
$$

Then, keeping in mind the Cauchy-Bunjakovski-Schwarz inequality and estimate (10), we derive

$$
\begin{equation*}
\left\|\mathcal{I}_{\mu}^{1}\right\|_{L^{2}(I)} \leqslant \varepsilon C\|f\|_{L^{2}(I)} \tag{23}
\end{equation*}
$$

uniformly in μ. Since the set $C(\bar{I})$ is dense in $L^{2}(I)$, then this estimate is valid for any $f \in L^{2}(I)$.
However, it easy to see that $\left\|J_{\mu}\right\|_{L^{2}(I)}=O\left(\varepsilon^{1 / 2}\right)$. Consequently we need a corrector term for the function $Z_{\mu}(x, \varepsilon)$. Let us define that

$$
\begin{align*}
\widetilde{v}_{2, \mu}(\xi) & :=\varkappa\left(\xi \int_{-\infty}^{\xi} v_{1, \mu}(\tau) Q(\tau) \mathrm{d} \tau-\int_{-\infty}^{\xi} \tau v_{1, \mu}(\tau) Q(\tau) \mathrm{d} \tau\right) \tag{24}\\
W_{\mu}(x, \varepsilon) & :=Z_{\mu}(x, \varepsilon)+\varepsilon^{2} \widetilde{v}_{2, \mu}\left(\frac{x}{\varepsilon}\right) \tag{25}
\end{align*}
$$

Then $W_{\mu} \in H^{2}(I)$ and since $v_{2, \mu}^{\prime \prime}(\xi)=v_{1, \mu}(\xi) Q(\xi)$, then by means of (21) we have

$$
\begin{align*}
& \mathcal{L}_{\mu, \varepsilon} W_{\mu}(x, \varepsilon)=f(x)+\mathcal{I}_{\mu}^{1}(x, \varepsilon)+\mathcal{I}_{\mu}^{2}(x, \varepsilon)+\mathcal{I}_{\mu}^{3}(x, \varepsilon), \quad x \in I \\
& l_{a} W_{\mu}=0, \quad l_{b} W_{\mu}=l_{b} Z_{\mu}+\varepsilon x \int_{-\infty}^{\infty} v_{1, \mu}(\tau) Q(\tau)\left(h_{b}(b-\varepsilon \tau)+H_{b}\right) \mathrm{d} \tau \tag{26}
\end{align*}
$$

where

$$
\begin{equation*}
\mathcal{I}_{\mu}^{3}(x, \varepsilon)=\varepsilon \varkappa Q\left(\frac{x}{\varepsilon}\right) \widetilde{v}_{2, \mu}\left(\frac{x}{\varepsilon}\right)+\varepsilon^{2} q\left(x, \frac{x}{\mu}\right) \widetilde{v}_{2, \mu}\left(\frac{x}{\varepsilon}\right) \tag{27}
\end{equation*}
$$

From (27), (24), (20), (22), (23) and (10) we get

$$
\left\|\mathcal{I}_{\mu}^{1}\right\|_{L^{2}(I)}+\left\|\mathcal{I}_{\mu}^{2}\right\|_{L^{2}(I)}+\left\|\mathcal{I}_{\mu}^{3}\right\|_{L^{2}(I)}+\left|l_{b} W_{\mu}\right| \leqslant \varepsilon C\|f\|_{L^{2}(I)}
$$

Then, due to the problems (1) and (26) we get

$$
\left\|\mathcal{L}_{\mu, \varepsilon}\left(u_{\mu, \varepsilon}-W_{\mu}\right)\right\|_{L^{2}(I)}+\left|l_{a}\left(u_{\mu, \varepsilon}-W_{\mu}\right)\right|+\left|l_{b}\left(u_{\mu, \varepsilon}-W_{\mu}\right)\right| \leqslant \varepsilon C\|f\|_{L^{2}(I)}
$$

uniformly in μ; and using (19), we derive

$$
\begin{equation*}
\left\|u_{\mu, \varepsilon}-W_{\mu}\right\|_{L^{2}(I)} \leqslant \varepsilon C\|f\|_{L^{2}(I)} \tag{28}
\end{equation*}
$$

From (20) and (10), it follows that

$$
\begin{equation*}
\left\|u^{\mu}-Z_{\mu}\right\|_{L^{2}(I)} \leqslant \varepsilon C\|f\|_{L^{2}(I)} \tag{29}
\end{equation*}
$$

In an analogous way, using (25), (24), (20) and (10), we get

$$
\begin{equation*}
\left\|W_{\mu}-Z_{\mu}\right\|_{L^{2}(I)} \leqslant \varepsilon C\|f\|_{L^{2}(I)} \tag{30}
\end{equation*}
$$

The inequalities (28), (29), (30) and (13) lead to estimate (4).

Acknowledgements

The author thanks F. Mukminov, R. Gadyl'shin and G. Chechkin for useful remarks. The paper is supported in part by a RFBR grant (project No. 15-31-50102) and the Dynasty fund.

References

[1] N.S. Bakhvalov, G.P. Panasenko, Homogenization: Averaging Processes in Periodic Media, Kluwer, London, 1989.
[2] O.A. Oleinik, A.S. Shamaev, G.A. Yosifian, Mathematical Problems in Elasticity and Homogenization, North-Holland, Amsterdam, 1992.
[3] G.A. Chechkin, A.L. Piatnitski, A.S. Shamaev, Homogenization: Methods and Applications, Amer. Math. Soc., Providence, 2007.
[4] O.A. Oleinik, Homogenization problems in elasticity: spectrum of singularly perturbed operators, in: Non-Classical Continuum Mechanics, in: Lecture Note Series, vol. 122, 1987, pp. 188-205.
[5] Yu.D. Golovaty, S.A. Nazarov, O.A. Oleinik, T.S. Soboleva, Eigenoscillations of a string with an additional mass, Sib. Math. J. 29 (5) (1988) 744-760.
[6] V. Maz'ya, S. Nazarov, B. Plamenevsky, Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains, vols. 1, 2, Birkhäuser Verlag, Basel, Switzeland, 2000.
[7] E. Sánchez-Palencia, Perturbation of eigenvalues in thermo-elasticity and vibration of systems with concentrated masses, in: Trends and Applications of Pure Mathematics to Mechanics, in: Lecture Notes in Physics, Springer-Verlag, 1984, pp. 346-368.
[8] S. Albeverio, F. Gesztezy, R. Høegh-Krohn, H. Holden, On point interactions in one dimension, J. Oper. Theory 12 (1984) 101-126.
[9] A.M. Il'in, Matching of Asymptotic Expansions of Solutions of Boundary-Value Problems, American Mathematical Society, Providence, RI, USA, 1992.
[10] V.P. Mikhailov, Partial Differential Equations, Mir Publishers, Moscow, 1978.
[11] T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Heidelberg, Germany, 1966.
[12] R.R. Gadyl'shin, I.Kh. Khusnullin, Perturbation of the Shrödinger operator by a narrow potential, Ufa Math. J. 3 (3) (2011) 54-64; translated from: Ufimsk. Mat. Zh. 3 (3) (2011) 55-66.

[^0]: E-mail address: gadylshintr@ya.ru.
 http://dx.doi.org/10.1016/j.crme.2015.08.001
 1631-0721/© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

