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The paper is devoted to the vibrations of a string I with a concentrated mass ε−1� Q
(
ε−1x

)
and rapidly oscillating density q 

(
x,μ−1x

)
, where q(x, ζ ) is a 1-periodic in ζ function, Q (ξ)

is a function with compact support, the integral of which is equal to one, 0 ∈ I , μ, ε
are small positive parameters, � ∈ R. By combining homogenization and the method of 
matched asymptotic expansions, we construct solutions to the problems up to O (ε + μ).

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Studies on the vibrations of a string with inhomogeneous rapidly oscillating density have been conducted for a long time 
(see, for instance, [1–3]). In these monographs, using the homogenization method, the authors constructed asymptotics with 
respect to a small parameter (the period of the oscillations) of solutions to the boundary value problem.

The vibration of a string with a concentration of mass on a small set has been studied by means of other methods 
for a long time, too. The convergence of solutions to the respective boundary value problem was investigated in [4], and 
the asymptotics with respect to a small parameter was constructed in [5] by means of the method of matched asymptotic 
expansions [6]. The analogous spectral problem for the Laplace operator in 3D space was considered in [7]. Note that a close 
mathematical problem on the convergence of the Schrödinger operator with δ-type potential on the axis was studied in [8].

In the present paper, using the combination of homogenization and the method of matching of asymptotic expansions [9], 
we study the case when the string with a concentrated mass has an inhomogeneous rapidly oscillating density. We get the 
homogenized (limit) solution to a boundary value problem, up to O (μ + ε), where μ is a period of rapid oscillations of the 
density, and ε is the order of the length of the small part of the string, on which the concentrated mass is located.

2. Settings of the problem and main result

Let I be (a, b), {0} ∈ I . Consider the problem

Lμ,εuμ,ε := −d2uμ,ε

dx2
+

(
q

(
x,

x

μ

)
+ ε−1� Q

( x

ε

))
uμ,ε = f (x) , x ∈ I

lauμ,ε := hauμ,ε(a) − Hau′
μ,ε(a) = 0 lbuμ,ε := hbuμ,ε(b) + Hbu′

μ,ε(b) = 0 (1)
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where q(x, ζ ) is a 1-periodic in ζ function belonging to C2,0(I × (−∞, ∞)), q(x, ζ ) > 0, Q (ξ) ∈ C0(−∞, ∞),

∞∫
−∞

Q (ξ)dξ = 1

0 < μ, ε � 1, ha, hb, Ha, Hb � 0, ha + Ha > 0, hb + Hb > 0, f ∈ L2(I). Although, for the concentrated mass, � > 0 and 
Q (ξ) � 0, we consider a more general case, when � ∈ R and Q (ξ) can take negative values as well. We will assume that 
suppQ (ξ) ⊂ [−1, 1].

For functions G(x), we use the notation {G}(0) = G(+0) − G(−0), and for 1-periodic in ζ functions g(x, ζ ) we denote

[g] (x) :=
1∫

0

g(x, ζ )dζ

Since q > 0, the boundary value problems

Lu0 := −d2u0

dx2
+ [q](x)u0 = f , x ∈ I, lau0 = lbu0 = 0

Ly = 0, x ∈ I\{0}, la y = lb y = 0, y(0) = 1

have unique solutions in H2(I) and H1(I) ∩ H2(a, 0) ∩ H2(0, b), respectively. It is easy to see that if � �= �0 := {y′}(0), then 
the function

u0(x) := u0(x) + �u0(0)

�0 − �
y(x) (2)

solves uniquely the boundary value problem

Lu0 = f , x ∈ I\{0}, lau0 = lbu0 = 0,
{(

u0)′}
(0) = �u0(0) (3)

for any f ∈ L2(I) in H1(I) ∩ H2(a, 0) ∩ H2(0, b).
The main result of the paper is the proof of the following proposition.

Theorem 2.1. Assume that � �= �0 . Then for sufficiently small ε and μ, the solution to boundary value problem (1) is uniquely deter-
mined in H2(I) and satisfies the uniform estimate

‖uμ,ε − u0‖L2(I) � (μ + ε)C‖ f ‖L2(I) (4)

where u0(x) is a solution to boundary value problem (3).

3. Preliminaries and auxiliary assertions

Consider the following boundary value problems:

Lμuμ := −d2uμ

dx2
+ q

(
x,

x

μ

)
uμ = f , x ∈ I, lauμ = lbuμ = 0 (5)

Lμ yμ = 0, x ∈ I\{0}, la yμ = lb yμ = 0, yμ(0) = 1 (6)

Lμuμ = f , x ∈ I\{0}, lauμ = lbuμ = 0, {(uμ)′}(0) = �uμ(0) (7)

Since q > 0, the boundary value problems (5) and (6) have unique solutions from H2(I) and H1(I) ∩ C2[a, 0] ∩ C2[0, b], 
respectively, and the estimate

‖uμ‖H2(I) � C‖ f ‖L2(I) (8)

holds true.
It is easy to see that if � �= �μ := {y′

μ}(0), then the function

uμ(x) := uμ(x) + �uμ(0)

�μ − �
yμ(x) ∈ H1(I) ∩ H2(a,0) ∩ H2(0,b) (9)

is a unique solution to problem (7) for any f ∈ L2(I), in addition, because of (8) and the embedding of H1(I) in C(I) (see, 
for instance, [10, Chapter III, §6]), which satisfies

‖uμ‖H2(a,0) + ‖uμ‖H2(0,b) � C
‖ f ‖L2(I)∣∣�μ − �

∣∣ (10)
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Since q(x, ζ ) ∈ C2,0(I × (−∞, ∞)) and q(x, ζ ) > 0, then the construction of asymptotics of the functions uμ(x) and yμ(x)
by the homogenization method leads to:

‖uμ − u0‖H1(I) � Cμ‖ f ‖L2(I), ‖yμ − y‖C1[a,0] + ‖yμ − y‖C1[0,b] = O (μ) (11)

From (11) and the embedding theorems, it follows that

|uμ(0) − u0(0)| � μC‖ f ‖L2(I), �μ = �0 + O (μ), ‖yμ − y‖H1(I) = O (μ) (12)

Due to (2), (9), (11) and (12), we derive for � �= �0 and sufficiently small μ the estimate

‖uμ − u0‖H1(I) � Cμ‖ f ‖L2(I) (13)

4. Existence and uniqueness of a solution to boundary value problem (1)

Let h̃a be equal to ha H−1
a , if Ha �= 0, and h̃a = 0, if Ha = 0. We define in an analogous way h̃b . The quadratic forms of 

the boundary value problems (5), (7) and (1) read as

hμ[u] =
∫
I

(
(u′(x))2 + q

(
x,

x

μ

)
u2(x)

)
dx + h̃au2(a) + h̃bu2(b),

hμ[u] = hμ[u] + �u2(0),

hμ,ε[u] = hμ[u] + �ε−1
∫
I

Q
( x

ε

)
u2(x)dx − �u2(0)

correspondingly, where u(a) = 0, if Ha = 0, and u(b) = 0, if Hb = 0.
Let us show the validity of the following estimate∣∣hμ,ε[u] − hμ[u]∣∣ � M1ε

1/2‖u‖L2(I) + M2ε
1/2hμ[u] (14)

Denote v(x) = u(x) − u(0). Then v(0) = 0, v ′(x) = u′(x),∫
I

ε−1 Q
( x

ε

)
u2(x)dx − u2(0) = 2

∫
I

ε−1 Q
( x

ε

)
u(0)v(x)dx +

∫
I

ε−1 Q
( x

ε

)
v2(x)dx

The Friedrichs–Steklov inequality leads to the estimate

2

∣∣∣∣∣∣
∫
I

ε−1 Q
( x

ε

)
u(0)v(x)dx

∣∣∣∣∣∣ � 2

ε∫
−ε

ε−1 max
R

|Q | · |u(0)v(x)|dx

�
ε∫

−ε

ε−1 max
R

|Q |
(
ε1/2u2(0) + ε−1/2 v2(x)

)
dx

� max
R

|Q |ε1/2

⎛⎝2u2(0) +
ε∫

−ε

(
v ′)2

(x)dx

⎞⎠
So, we derive∣∣∣∣∣∣ε−1

∫
I

Q
( x

ε

)
u2(x)dx − u2(0)

∣∣∣∣∣∣ � 2 max
R

|Q |ε1/2u2(0) + max
R

|Q |
(
ε1/2 + ε

) ε∫
−ε

(
u′)2

(x)dx

� Cε1/2‖u‖2
H1(I), u ∈ H1(I) (15)

Due to the definition of the quadratic forms and estimate (15), we get that the forms hμ,ε , hμ are bounded from below, 
and for � � 0, inequality (14) holds.

Let � < 0. Consider the case Ha + Hb �= 0. It is known (see, for instance, [10, Chapter, §4]) that for any fixed interval 
I ′ = (a′, b′) such that I ⊂ I ′ and any u ∈ H1(I), there exists a continuation U ∈ H1(I ′) such that

U (a′) = U (b′) = 0, ‖U‖H1(I ′) � M‖u‖H1(I), ‖U‖L2(I ′) � M‖u‖L2(I) (16)

Since α‖u‖2
1 � hμ[u], α > 0, due to (16) we derive
H (I)



T.R. Gadyl’shin / C. R. Mecanique 343 (2015) 476–481 479
hμ[u] = hμ[u] + �u2(0) � α‖u‖2
H1(I) + �u2(0) � α

M
‖U‖2

H1(I ′) + �U 2(0)

= α

M
‖U‖2

H1(I ′) + 2�

0∫
a′

U ′(x)U (x)dx � α

M
‖U‖2

H1(I ′) + �
(
γ ‖U‖2

L2(I ′) + γ −1‖U ′‖2
L2(I ′)

)
�

( α

M
+ �γ −1

)
‖U‖2

H1(I ′) + �γ ‖U‖2
L2(I ′) �

( α

M
+ �γ −1

)
‖u‖2

H1(I) + �γ M‖u‖2
L2(I)

So, for large γ > 0 we have

‖u‖2
H1(I) � K1‖u‖2

L2(I) + K2hμ[u], Ki > 0

This estimate and inequality (15) imply estimate (14). In case � < 0, Ha = Hb = 0 the proof is similar and more simple.
Since �μ →

μ→0
�0 (see, (12)), then estimate (14) by means of [11, Chapter VI, Theorem 3.9] shows that, for � �= �0 and 

sufficiently small μ, boundary value problem (1) has a unique solution in H2(I). Moreover, for solutions to boundary value 
problems (1) and (7), the following uniform estimate in μ:

‖uμ,ε − uμ‖L2(I) � Cε1/2‖ f ‖L2(I) (17)

holds true. From this estimate and (13) we derive

‖uμ,ε − u0‖L2(I) � C(ε1/2 + μ)‖ f ‖L2(I) (18)

Thus, to complete the proof of Theorem 2.1, it is sufficient to improve estimate (18) to get (4).
From inequalities (17) and (10), it follows that, for � �= �0 and sufficiently small μ, the solutions to (1) satisfy the 

uniform in μ and ε estimate ‖uμ,ε‖L2(I) � C‖ f ‖L2(I) . On the other hand, this inequality leads to the estimate

‖w‖L2(I) � C
(‖F‖L2(I) + | Ã| + |̃B|) (19)

for solutions to the boundary value problem

Lμ,ε w = F , x ∈ I, la w = Ã lb w = B̃

outside a vicinity of the point �0 for sufficiently small μ.

5. Derivation of estimate (4)

The construction of a formal approximation Zμ(x, ε) of solutions to the boundary value problem (1) is based on the 
well-known method of matched asymptotic expansions [9,12]. Hence, we omit trivial explanations on getting the structure 
of Zμ(x, ε).

Denote

v1,μ(ξ) = �uμ(0)

⎛⎝ξ

ξ∫
−∞

Q (τ )dτ −
ξ∫

−∞
τ Q (τ )dτ

⎞⎠ + (
uμ

)′
(−0)ξ

ṽ1,μ(ξ) = v1,μ(ξ) − (
uμ

)′
(∓0)ξ, ∓ξ > 0

Zμ(x, ε) = uμ(x) + ε ṽ1,μ

( x

ε

)
(20)

Then, Zμ ∈ H2(I) due to (9) and since v ′′
1,μ(ξ) = �uμ(0)Q (ξ), then due to (7) we have

Lμ,ε Zμ (x, ε) = f (x) + I1
μ(x, ε) + I2

μ(x, ε) +Jμ(x, ε), x ∈ I

la Zμ = 0, lb Zμ = −εuμ(0)hb�

∞∫
−∞

τ Q (τ )dτ (21)

where

I1
μ(x, ε) = ε−1� Q

( x

ε

)(
uμ(x) − uμ(0) − (

uμ
)′

(∓0)x
)

, ∓x > 0

I2
μ(x, ε) = εq

(
x,

x

μ

)
ṽ1,μ

( x

ε

)
, Jμ(x, ε) = � Q

( x

ε

)
v1,μ

( x

ε

)
From (20), (10) and the embedding theorems it follows that
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‖I2
μ‖L2(I) + |lb Zμ| � εC‖ f ‖L2(I) (22)

If f ∈ C(I), then, using for I1
μ(x, ε) the formula for the remainder term of the Taylor series in the integral form and the 

equation from (7), we get

I1
μ(x, ε) = ε−1� Q

( x

ε

) x∫
0

(x − t)

(
q

(
t,

t

μ

)
uμ(t) − f (t)

)
dt

Then, keeping in mind the Cauchy–Bunjakovski–Schwarz inequality and estimate (10), we derive

‖I1
μ‖L2(I) � εC‖ f ‖L2(I) (23)

uniformly in μ. Since the set C(I) is dense in L2(I), then this estimate is valid for any f ∈ L2(I).
However, it easy to see that ‖ Jμ‖L2(I) = O (ε1/2). Consequently we need a corrector term for the function Zμ(x, ε). Let 

us define that

ṽ2,μ(ξ) := �

⎛⎝ξ

ξ∫
−∞

v1,μ(τ )Q (τ )dτ −
ξ∫

−∞
τ v1,μ(τ )Q (τ )dτ

⎞⎠ (24)

Wμ(x, ε) := Zμ (x, ε) + ε2 ṽ2,μ

( x

ε

)
(25)

Then Wμ ∈ H2(I) and since v ′′
2,μ(ξ) = v1,μ(ξ)Q (ξ), then by means of (21) we have

Lμ,εWμ (x, ε) = f (x) + I1
μ(x, ε) + I2

μ(x, ε) + I3
μ(x, ε), x ∈ I

la Wμ = 0, lb Wμ = lb Zμ + ε�

∞∫
−∞

v1,μ(τ )Q (τ )
(

hb (b − ετ ) + Hb

)
dτ (26)

where

I3
μ(x, ε) = ε� Q

( x

ε

)
ṽ2,μ

( x

ε

)
+ ε2q

(
x,

x

μ

)
ṽ2,μ

( x

ε

)
(27)

From (27), (24), (20), (22), (23) and (10) we get

‖I1
μ‖L2(I) + ‖I2

μ‖L2(I) + ‖I3
μ‖L2(I) + |lb Wμ| � εC‖ f ‖L2(I)

Then, due to the problems (1) and (26) we get

‖Lμ,ε(uμ,ε − Wμ)‖L2(I) + |la
(
uμ,ε − Wμ

) | + |lb
(
uμ,ε − Wμ

) | � εC‖ f ‖L2(I)

uniformly in μ; and using (19), we derive

‖uμ,ε − Wμ‖L2(I) � εC‖ f ‖L2(I) (28)

From (20) and (10), it follows that

‖uμ − Zμ‖L2(I) � εC‖ f ‖L2(I) (29)

In an analogous way, using (25), (24), (20) and (10), we get

‖Wμ − Zμ‖L2(I) � εC‖ f ‖L2(I) (30)

The inequalities (28), (29), (30) and (13) lead to estimate (4).
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