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We study the asymptotic behavior of solutions and eigenelements to a boundary value 
problem for the Laplace equation in a domain perforated along part of the boundary. On 
the boundary of holes, we set the homogeneous Dirichlet boundary condition and the 
Steklov spectral condition on the mentioned part of the outer boundary of the domain. 
Assuming that the boundary microstructure is periodic, we construct the limit problem 
and prove the homogenization theorem.
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r é s u m é

Nous étudions le comportement asymptotique des solutions et des éléments propres à un 
problème aux limites pour l’équation de Laplace dans un domaine perforé le long d’une 
partie de la frontière. Sur la frontière de trous, nous posons la condition de Dirichlet 
homogène et la condition spectrale de Steklov sur la part mentionnée de la frontière 
extérieure du domaine. En supposant que la microstructure de la frontière est périodique, 
nous construisons le problème aux limites et prouvons le théorème d’homogénéisation.
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Fig. 1. Structure of the domain �ε,a and the cell of periodicity.

1. Introduction

Steklov’s spectral problem is well known and it has been studied for several decades (see, for instance [1–5]). There are 
numerous papers dealing with homogenization of problems in domains perforated along the boundary (e.g., see [6–15]).

In this paper, we study spectral problems with Steklov-type boundary conditions in 2D and 3D domains periodically 
perforated along part of the boundary, which are of interest in connection with the applications. Under the assumption that 
the ratio between the diameter of the cavities and the distance between them tends to zero, we present different cases of 
the limiting behavior of eigenpairs.

2. Setting of the problem and main results

Let � be a bounded domain in Rd , d = 2, 3, situated in the semi-plane x2 > 0 for d = 2 and in the semi-space x3 > 0 for 
d = 3. Its boundary � consists of two parts: � = �1 ∪ �2, where �1 is the segment [0,1] in the axis x2 = 0 for d = 2 and 
square [0,1]2 in the plane x3 = 0 for d = 3. For d = 2, the part �2 is infinitely differentiable and in a neighborhood of the 
points (0, 0) and (1, 0) coincides with the lines x1 = 0 and x1 = 1, respectively. For d = 3, the part �2 coincides with the 
lateral faces of the cube [0, 1]3 in a small neighborhood of the plane x3 = 0 and, in addition, it is infinitely differentiable 
everywhere, except the vertical edges.

Then assume that B is an arbitrary bounded domain with Lipschitz boundary. Denote Ba = {x : (
a−1(x1 − b1),

a−1(x2 − c)
) ∈ B} for d = 2, Ba = {x : (

a−1(x1 − b1), a−1(x2 − b2), a−1(x3 − c)
) ∈ B}, j = 1, 2, for d = 3, where 0 < b j < 1, 

c > 0 are arbitrary fixed numbers, a is a sufficiently small positive parameter, such that Ba lies in the semi-strip 
� = (0, 1) × (0, ∞) for d = 2 and in the semi-infinite parallelepiped � = (0, 1)2 × (0, ∞) for d = 3.

Denote Bk
ε,a = {x : (ε−1x1 − k, ε−1x2) ∈ Ba}, k ∈ Z for d = 2, Bk

ε,a = {x : (ε−1x1 − k1, ε−1x2 − k2, ε−1x3) ∈ Ba}, k = (k1, k2), 
k j ∈ Z for d = 3, Bε,a = ⋃

k
Bk

ε,a , �ε,a = ∂ Bε,a . Hereafter ε is a small positive parameter, ε = εN = 1
N , where N � 1 is a 

natural number. Define the domain �ε,a as � \ Bε,a (see Fig. 1).
Consider the boundary value problems

−�Uε,a = 0 in �ε,a, Uε,a = 0 on �ε,a

∂Uε,a

∂ν
= λUε,a + f on �1,

∂Uε,a

∂ν
= 0 on �2

(1)

−�U0 = 0 in �,
∂U0

∂ν
+ σdCd(B)AU0 = λU0 + f on �1,

∂U0

∂ν
= 0 on �2 (2)

where ν is an outer normal, λ ∈ R, and the respective spectral problems

−�uε,a = 0 in �ε,a, uε,a = 0 on �ε,a

∂uε,a

∂ν
= λε,auε,a on �1,

∂uε,a

∂ν
= 0 on �2

(3)

−�u0 = 0 in �,
∂u0

∂ν
+ σdCd(B)Au0 = λ0u0 on �1,

∂u0

∂ν
= 0 on �2 (4)

Hereafter σ2 = 2π , σ3 = 4π , C2(B) = 1 and C3(B) > 0 is the capacity of the domain B . In particular, C3(B) = 1, if B is a 
unit ball.

We prove the following statements.
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Theorem 2.1. Suppose that

− 1

ε ln a
−→ A �= ∞ for d = 2,

a

ε
−→ A �= ∞ for d = 3 (5)

f ∈ L2(�1) and λ is not an eigenvalue of the problem (4).
Then:

1) the boundary value problem (1) has a unique solution in W 1
2 (�ε,a) for any sufficiently small ε, and moreover the following uniform 

in ε estimate:

‖Uε,a‖W 1
2 (�) � C‖ f ‖L2(�1) (6)

holds true, where the function Uε,a is extended in Bε,a by zero;
2) for the solution to problem (1) the following strong convergence

Uε,a →
ε→0

U0 in W 1
2 (�) (7)

takes place, if A = 0, and the weak convergence

Uε,a ⇀
ε→0

U0 in W 1
2 (�) (8)

holds true, if A �= 0, where U0 is a solution to the homogenized (limit) problem (2).

Theorem 2.2. Suppose that the condition (5) holds, and the multiplicity of the eigenvalue λ0 to the problem (4) equals to n. Then there 
exist n eigenfunctions λ(l)

ε,a of problem (3), l = 1,n (with respect to their multiplicities) converging to λ0 as ε → 0.

Let u(l)
ε,a be orthonormalized in L2(�1) eigenfunctions of problem (3), corresponding to λ(l)

ε,a. Then from the sequence 
{
εk = 1

k

}∞
k=1

and any sequence {ak}∞k=1 (for which the convergence (5) takes place) one can choose subsequences {εk′ }, {ak′ } such that the conver-
gence

u(l)
ε,a −→

ε→0
u(l)∗ in W 1

2 (�)

holds, if A = 0, and weak convergence

u(l)
ε,a ⇀

ε→0
u(l)∗ in W 1

2 (�)

holds, if A �= 0, where the functions u(l)
ε,a are extended in Bε,a by zero, and u(l)∗ are orthonormalized in L2(�1) eigenfunctions of 

problem (4), corresponding to λ0 (they depend on the choice of the sequence {ak}∞k=1 and the subsequence).

The solution to the problems (1), (2), (3), and (4) is understood in a weak sense (in the sense of the integral identity, 
see, for instance, [16, Chapter IV]).

3. Construction of model functions in the semi-strip and in the semi-infinite parallelepiped

For d = 2 we denote by R2+ the semi-plane x2 � 0, and by x(k)
0 the points with coordinates x1 = b1 + k, x2 = c. Here 

k ∈ Z. For d = 3 we denote by R3+ the semi-space x3 � 0, and by x(k)
0 the points with coordinates x j = b j + k j , j = 1, 2, 

x3 = c. Here k = (k1, k2) and k j ∈ Z. Assume that x0 := x(0)
0 , y := x − x0 and  := {x : x1 ∈ (0, 1), x2 = 0} for d = 2,  := {x :

x1, x2 ∈ (0, 1), x3 = 0} for d = 3.
Define G2(t) := ln t , G3(t) := −t−1.
It is easy to prove the following lemma.

Lemma 3.1. There exists a function gd ∈ C∞
(
R

d+\ 
⋃
k

{
x(k)

0

})
, 1-periodic in x1 for d = 2 and in x1, x2 for d = 3, which satisfies the 

problem{
�gd = 0 if x ∈ � \ {x0}
∂ gd
∂ν = σd if x ∈ 

has the differentiable asymptotics

gd(x) = O
(

e−2πxd

)
, xd → +∞
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and in a neighborhood of x0 has the representation

gd(x) = Gd(|y|) + g(1)

d (x)

where g(1)

d (x) is an infinitely smooth function in the neighborhood of this point.

Corollary 3.2. The differentiable asymptotics

gd(x) = Gd(|y|) + c�,d + P�,d
1 (y) + O

(
|y|2

)
, y → 0

holds, where c�,d is a constant and P�,d
1 (y) is a homogeneous polynomial of the first order.

Using [17, § 5.8] we prove the following lemma.

Lemma 3.3. There exist functions V (d)
0 , V (d)

1 ∈ C∞ (
R

d\B
)
, being solutions to the problems

�V (d)
i = 0, x ∈R

d\B, V (d)
i = 0, x ∈ ∂ B

and having differentiable asymptotics

V (2)
0 (x) = ln |x| + cB + O (|x|−1), V (3)

0 (x) = 1 − C3(B)|x|−1 + P B,3
1 (x)|x|−3 + O (|x|−3)

V (2)
1 (x) = P�,2

1 (x) + c̃ + O (|x|−1), V (3)
1 (x) = P�,3

1 (x) − C3(P , B)|x|−1 + O (|x|−2)

as |x| → ∞, where P B,3
1 (y) is a homogeneous polynomial of the first order.

Lemma 3.4. Let d = 3. Then there exists a 1-periodic in x1, x2 function ̂g3 ∈ C∞
(
R

3+\⋃
k

{
x(k)

0

})
, which satisfies the problem

{
�ĝ3 = 0 if x ∈ � \ {x0}
∂ ĝ3
∂ν = 0 if x ∈ 

has the differentiable asymptotics

ĝ3(x) = O
(

e−2πx3
)

, x3 → +∞
and in a neighborhood of x0 has the representation

ĝ3(x) = P B,3
1 (y)|y|−3 + ĝ(1)

3 (x)

where ̂g(1)
3 (x) is an infinitely smooth function in the neighborhood of this point including this point.

Corollary 3.5. The differentiable asymptotics

ĝ3(x) = P B,3
1 (y)|y|−3 + ĉB,� + O (|y|) , y → 0 (9)

holds.

Denote �a = �\Ba (see Figure) and define in �a the following function:

Wa(x) :=
(

1 − χ

( |y|
aβ

))(
1 − 1

ln a

(
g2(x) + cB − c�,2

))
− 1

ln a
χ

( |y|
aβ

)(
V (2)

0

( y

a

)
+ aV (2)

1

( y

a

))
for d = 2

Wa(x) :=
(

1 − χ

( |y|
aβ

))(
1 + aC3(B)

(
g3(x) − c�,3

) + a2 (C3(P , B)g3(x) + ĝ3(x))
)

+ χ

( |y|
aβ

)(
V (3)

0

( y

a

)
+ aV (3)

1

( y

a

))
for d = 3

(10)

where β ∈ (0, 1).
Now, denote Bk

a = {x : (x1 −k, x2) ∈ Ba}, k ∈ Z for d = 2, Bk
a = {x : (x1 −k1, x2 −k2, x3) ∈ Ba}, k = (k1, k2), k j ∈ Z for d = 3, 

Ba = ⋃
k

Bk
a and extend the function Wa(x) 1-periodically in x1 for d = 2 and in x1, x2 for d = 3, keeping the same notation 

Wa(x).
Using Lemmas 3.1 and 3.3, we prove the following theorem.
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Theorem 3.6. The function Wa(x) ∈ C∞ (
R

d+\Ba
)

is 1-periodic in x1 for d = 2, and in x1, x2 for d = 3, has the differentiable asymp-
totics

Wa(x) = 1 − 1

ln a

(
cB − c�,2 + O

(
e−2πx2

))
as x2 → ∞ for d = 2

Wa(x) = 1 − a
(

C3(B)c�,3 + O
(

e−2πx3
))

as x3 → ∞ for d = 3

uniform in a, and satisfies the problem⎧⎪⎨⎪⎩
�Wa = Fa if x ∈ �a
∂Wa
∂ν = − 2π

ln a for d = 2, ∂Wa
∂ν = a4πC3(B) for d = 3, if x ∈ 

Wa = 0 if x ∈ ∂ Ba

where Fa ∈ C∞
0 (�a).

Moreover,

‖1 − Wa‖L2() = O

(
1

| ln a|
)

for d = 2, ‖1 − Wa‖L2() = O (a) for d = 3∥∥∥∥1 −
(

Wa + 1

ln a

(
cB − c�,2

))∥∥∥∥
L2(�a)

= O

(
1

| ln a|
)

for d = 2

‖1 − (
Wa + aC3(B)c�,3

)‖L2(�a) = O
(

a + a
3β
2

)
for d = 3

‖Fa‖L2(�a) = O

(
1

| ln a|
(

aβ + a1−2β
))

for d = 2

‖Fa‖L2(�a) = O
(

a1+ 3
2 β + a2− 1

2 β + a3− 7
2 β

)
for d = 3

4. Proof of Theorem 2.1

Before proving Theorem 2.1, we prove some auxiliary propositions. Using Theorem 3.6, we prove the following lemma.

Lemma 4.1. There exists a function Wε,a(x) from W 1
2

(
�ε,a;�ε,a

) ∩ W 2
2

(
�ε,a

)
, such that the relations

∂Wε,a

∂ν

∣∣∣∣
�1

= − 2π

ε ln a
for d = 2,

∂Wε,a

∂ν

∣∣∣∣
�1

= 4πC3(B)a

ε
for d = 3

‖1 − Wε,a‖L2(�) −→
ε→0

0

‖�Wε,a‖L2(�ε,a) −→
ε→0

0

‖1 − Wε,a‖L2(�) −→
ε→0

0∥∥∥∥∂Wε,a

∂ν

∥∥∥∥
L2(�2)

−→
ε→0

0

hold if (5) is true.

Next lemma follows from Lemma 4.1.

Lemma 4.2. Let condition (5) hold. Assume also that the function Uε,a ∈ W 1
2

(
�ε,a;�ε,a

)
converges weakly

Uε,a ⇀
ε→0

U∗ in W 1
2 (�)

Then for any functions v ∈ C∞(�) the convergences∫
�ε,a

Uε,a(vWε,a)dx →
∫
�

U∗v dx

∫
�ε,a

∇Uε,a∇(vWε,a),dx →
∫
�

∇U∗∇v dx + σdCd(B)A

∫
�1

U∗v dx1

take place.
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Proof of Theorem 2.1. Since the Fredholm alternative for problem (1) holds (see, for instance, [16, Chapter II, § 3]), then it 
is sufficient to show the estimate (6) to prove 1).

The standard norm in W 1
2 (�) is equivalent to the norm in ‖u‖H1(�) , generated by the following scalar product:

(u, v)H1(�) =
∫
�

∇u∇v dx +
∫
�1

uv ds

(see, for instance, [16, Ch. III, §5.6]).
Using the identity of the problems (1), (2), and applying the Cauchy inequality, we get, for any fixed λ ∈ R, the a priori 

estimate, uniform in ε and a, for the solution to problem (1), of the form∥∥Uε,a
∥∥

H1(�)
≤ C

(∥∥Uε,a
∥∥

L2(�1)
+ ‖ f ‖L2(�1)

)
(11)

If Uεm(k),ak = 0 on �1, then estimate (6) follows from (11).
Then, applying Lemma 4.2, we prove the statement 2) and complete the proof. �
In an analogous way, using Lemma 4.2, one can derive the following assertion.

Lemma 4.3. Let the condition (5) hold, assume also that λ is not an eigenvalue of problem (4), Uε,a is the solution to problem (1) for 
f = fε,a, U0 is the solution to problem (2) for f = f0 and the weak convergence:

fε,a ⇀
ε→0

f0 in L2(�1) (12)

holds.
Then the convergence (7) and (8) take place.

Obviously the following proposition holds true.

Lemma 4.4. Suppose that λ is not an eigenvalue of the problem (4), U ε,a be is the solution to problem (2) for f = fε,a, U0 is the 
solution to problem (2) for f = f0 and the weak convergence (12) holds.

Then the weak convergence

U ε,a ⇀
ε→0

U0 in W 1
2 (�)

takes place.

5. Proof of Theorem 2.2

Denote by Pε,a and P0 operators Pε,a, P0 : L2(�1) → L2(�1), mapping f to the traces on �1 of solutions to bound-
ary value problems (1) and (2), respectively, for λ = −1. It follows from the definition that these operators are compact, 
selfadjoint and positive.

Lemmas 4.3 and 4.4 lead to the following statements.

Lemma 5.1. If condition (5) and weak convergence (12) hold, then

Pε,a fε,a −→
ε→0

P0 f0, P0 fε,a −→
ε→0

P0 f0 in L2(�1)

strongly.

Lemma 5.2. If condition (5) holds, then

Pε,a ⇒
ε→0

P0

uniformly.

Denote by Lε,a, L0 : L2(�1) → L2(�1) the operators inverse to Pε,a, P0 : L2(�1) → L2(�1). From Lemma 5.2 and
[18, Ch.IV, §3.4] (see also [19, Ch. 9, §4]), we easily derive the following proposition.

Lemma 5.3. Suppose that the condition (5) holds, and the multiplicity of the eigenvalue �0 to the operator L0 equals to n. Then there 
exist n eigenvalues �(l)

ε,a of the operator Lε,a, l = 1,n (with respect to their multiplicities) converging to �0 as ε → 0.
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Since obviously �(l)
ε,a = λ

(l)
ε,a + 1, �0 = λ0 + 1, then the next assertion follows.

Lemma 5.4. Suppose that the condition (5) holds, and the multiplicity of the eigenvalue λ0 to the problem (4) equals to n. Then there 
exist n eigenvalues λ(l)

ε,a of problem (3), l = 1,n (with respect to their multiplicities) converging to λ0 as ε → 0.

Using the trick from the proof of Theorem 2.1, we prove the next lemma.

Lemma 5.5. Assume that condition (5) holds, λ(l)
ε,a, l = 1,n are eigenvalues of problem (3), converging to n-multiple eigenvalue λ0 of 

the limit problem (4) and u(l)
ε,a are the respective normalized in L2(�1) eigenfunctions. Then, from a sequence εk = 1

k and any sequence 
ak −→ 0 as k → ∞, one can chose subsequences {εk′ }, {ak′ }, such that the strong convergence

u(l)
ε,a −→

ε→0
u(l)∗ in W 1

2 (�)

holds, if A = 0 and a weak convergence

u(l)
ε,a ⇀

ε→0
u(l)∗ in W 1

2 (�)

holds if A �= 0, where u(l)∗ are orthonormalized in L2(�) eigenfunctions of the limit problem (4), corresponding to λ0 (which in general 
depend on the choice of the sequence ak −→ 0 as k → ∞, and the subsequence).

Proof of Theorem 2.2. The proof lies on Lemmas 5.4 and 5.5. �
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