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Non-linear behavior of soils during a seismic event has a predominant role in current 
site response analysis. Soil response analysis consistently indicates that the stress–strain 
relationship of soils is non-linear and shows hysteresis. When focusing on forced response 
simulations, time integrations based on modal analysis are widely considered; however, 
parametric analysis, non-linear behavior and complex damping functions make difficult 
the online use of standard discretization strategies, e.g., those based on the use of finite 
element. In this paper, we propose a new harmonic analysis formulation, able to address 
forced response simulation of soils exhibiting their characteristic non-linear behavior. 
The solution can be evaluated in real-time from the offline construction of a parametric 
solution to the associated linearized problem within the Proper Generalized Decomposition 
framework.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

It is well known that solid mechanics can be formulated either in the time or in the frequency domains. The first one 
is preferred when calculating transient responses, whereas the frequency approach is an appealing alternative when forced 
response simulations are envisaged. There are decades of intense work in both kind of descriptions [7]. The general discrete 
form of linear solid dynamics writes

M
d2U(t)

dt2
+ C

dU(t)

dt
+ KU(t) = F(t) (1)

where M, C and K are respectively the mass, damping and stiffness matrices, U the vector that contains the nodal displace-
ments and F the nodal excitations (forces).

The main drawback related to the time integration of Eq. (1) lies in the necessity of solving a linear system (usually 
of very large size) at each time step, in particular when some of these matrices change in time for a variety of reasons 
(time-dependent behavior, non-linearities. . . ).
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Loads can be easily expressed in the frequency domain. In what follows, we consider without loss of generality the 
simplest scenario: F(t) = fg(t), with ‖f‖ = 1. The time function g(t) can be expressed from the superposition of harmonic 
functions eiωt , with ω the circular frequency and i = √−1. If we assume a single frequency harmonic excitation, g(t) =
eiωt , the response of a linear solid is expected to have the same frequency, but to exhibit a certain phase angle θ , i.e. 
U(t) = Ueiωt+iθ , where U is the vector containing the amplitude of the nodal displacements. This vector can be rewritten as 
U(t) = Ueiωt+iθ = Ueiωt , where now U = Ueiθ denotes a vector of complex entries, with U = Ur + iUi , where Ur and Ui are 
respectively the real and imaginary parts of U.

By introducing F(t) = feiωt and U(t) = Ueiωt into Eq. (1), one has the frequency-based description of solid dynamics(
−ω2M + iωC + K

)
U= f (2)

where the exponential factor eiωt was eliminated from both members.
Imagine for a while that damping vanishes, i.e. C = 0, and that we focus on the free response of the mechanical system, 

i.e. f = 0. In this case, Eq. (2) reduces to:

KU = ω2MU (3)

which defines an eigenproblem that results in the eigenmodes Ui and the associated eigenfrequencies ω2
i . Eigenmode Ui

scaled from some normalization condition is called normal mode and is noted by φ i . It is usual to normalize eigenmodes 
according to φT

i Mφi = Mi = 1, from which it results φT
i Kφi = Ki = ω2

i , where Mi and Ki are known as modal mass and 
modal stiffness, respectively. If normal modes are placed in the columns of matrix P, we could express U in the orthonormal 
basis defined by the normal modes, according to

U = P · η(t) (4)

Now, by injecting (4) into Eq. (1), premultiplying by the transpose of P and taking into account the orthogonality condi-
tions φT

j Mφi = 0 and φT
j Kφi = 0 when i �= j, it results

I
d2η(t)

dt2
+ PTCP

dη(t)

dt
+ diag(ω2

i )η(t) = PTF(t) (5)

where I is the unit matrix.
When damping vanishes, C = 0, the previous equation reduces to a linear system of uncoupled second-order ordinary 

differential equations.
When damping applies, matrix C̃ ≡ PTCP is not in general diagonal, compromising the efficiency of modal analysis. To 

circumvent this issue, different diagonalization procedures have been proposed and widely used. Two usual diagonalization 
procedures are: (i) diagonalization by model damping that expresses C̃ = diag(2ζiωi), where ζi denotes the damping ratio 
for the i-th natural mode; and (ii) Rayleigh diagonalization that by assuming C = a0M +a1K results in C̃ = diag(a0 +a1ω

2
i ) =

diag(2ζiωi), with ζi = 1
2

(
a0
ωi

+ a1ωi

)
. These choices imply approximations whose validity and accuracy must be checked. 

A more precise route consists in extracting the modes from the solution to the quadratic complex eigenproblem(
K + iωC − ω2M

)
U = 0 (6)

However, many time models involve parametric damping, that is, damping depends on some parameters grouped in 
vector μ, C(μ), and in that case the solution to parametric quadratic eigenproblems remains an open issue [16,18].

As we are interested in solving problems with parametric damping, as discussed later, we decide to renounce to direct 
time integrations and also to modal-analysis-based time integrations, in favor of an alternative approach, purely harmonic, 
making use of Eq. (2).

Imagine that the applied load can be written from the superposition of harmonic functions of angular frequency ω

g(t) =
∞∫

−∞
c(ω)eiωtdω (7)

where c(ω) represents the content of each harmonic eiωt in g(t). In fact, c(ω) is the Fourier transform of g(t):

c(ω) ≡ F(g(t)) =
∞∫

g(t)e−iωtdt (8)
−∞
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In general, c(ω < ω−) = c(ω > ω+) ≈ 0, i.e.

g(t) ≈
ω+∫

ω−
c(ω)eiωt dω (9)

which implies that Eq. (2) must be solved for any value of ω ∈ [ω−, ω+](
−ω2M + iωC + K

)
U(ω) = f (10)

which leads to the parametric solution U(ω), which, by applying the superposition principle that characterizes linear be-
haviors, leads to the general solution

U(t) =
ω+∫

ω−
c(ω) U(ω) eiωt dω (11)

The main drawback of that approach is the necessity of solving a linear system related to the solution to Eq. (10) for 
each value of ω involved in the discrete inverse transform (11), number that increases with the frequency interval length 
�ω = |ω+ − ω−| and with the resolution of the signal. For this reason, modal analysis is much more employed than 
harmonic analysis.

In the case of parametric models, mass, damping and stiffness matrices can depend on a series of parameters grouped 
in the vector μ, i.e. M(μ), C(μ) and K(μ), making difficult, as indicated above, the use of modal analysis, which requires 
solving parametric eigenproblems [16,18]. On the other hand, the use of harmonic analysis requires solving Eq. (10) for each 
frequency ω and each possible choice of the parameters μ j , U(ω; μ j) to finally compute the discrete sum related to

U(t;μ j) =
ω+∫

ω−
c(ω) U(ω;μ j) eiωt dω (12)

for any choice of the parameters μ j .
Thus, if for example we consider two parameters μT = (μ1, μ2), each one sampled using hundred values, μ j involves 

104 samples, i.e. j = 1, · · · , 104. Now, if we assume 104 discrete frequencies involved in the reconstruction of g(t), the 
calculation of the parametric solution U(ωi; μ j) requires solving 108 linear systems.

The use of the Proper Generalized Decomposition largely considered in our former works [3–6], allows solving the 
parametric model(

−ω2M(μ) + iωC(μ) + K(μ)
)
U(ω,μ) = f (13)

by assuming the separated representation

U(ω,μ1,μ2) ≈
N∑

k=1

Zk Wk(ω)M1
k (μ1)M2

k (μ2) (14)

where Zk is a vector of nodal displacements and Wk(ω), M1
k (μ1) and M2

k (μ2) are functions that depend on the extra-
coordinates ω, μ1 and μ2, respectively. The construction of the separated representation (14) implies the solution of a 
number of linear systems scaling with the number of terms involved in the finite sum, i.e. in the order of N linear systems 
(N being in general of few tens). When referring to soil models, the parameters are related to the strain–stress non-linear 
behavior, in fact to its linearized behavior as described later.

It is important to note that in soil mechanics [15], damping is also assumed scaling with frequency. The interested reader 
can refer to [8], where the theoretical consequences of assuming a frequency dependent dashpot parameter are analyzed. 
In [8], it was proved that even if such a choice succeeded to fit the experimental data, when coming back to the time space, 
causality is lost, and then the resulting expressions in the time domain were called non-equations. Anyway, it is important 
to note that even when considering complex non-linear frequency-dependent damping C(ω) in Eq. (2), the problem in the 
frequency domain remains linear because here the frequency is a model parameter (or a model extra-coordinate within the 
PGD framework).

In what follows, and as previously indicated, we are considering particular non-linearities that only apply in the fre-
quency domain. It is important to recall that as soon as a solid with a real non-linear behavior is excited with a load of a 
given frequency, the response can contain a large spectrum of frequencies. In the case of soils, when applying a load of a 
certain frequency, the response has the same frequency, however in the frequency space, the superposition principle fails 
to prove the existence of a non-linear behavior that depends on the strain amplitude [10,13,14]. This subtle issue will be 
revisited later.
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Fig. 1. Ground response representation: (a) bedrock motion; (b) bedrock outcropping motion.

Fig. 2. Amplitudes of the incident and reflected waves in the soil over bedrock and rock outcropping.

After this introduction that served to justify the choice of a fully harmonic description, we describe in the next section 
the rock outcropping motion problem that allows deriving the boundary conditions to be applied in the soil dynamic 
problem described in Section 3. The linearization strategy will be described in Section 4 and then it will be efficiently 
discretized in Section 5 within the Proper Generalized Decomposition framework, leading to an efficient non-linear solver 
described in Section 6. Finally, Section 7 illustrates the potentiality of the proposed approach from some numerical examples.

2. The rock outcropping motion

In soil analysis, the control is defined from the response spectrum, or its corresponding time history, at bedrock by what 
is known as rock outcropping motion (Fig. 1b). From the outcropping motion, the objective is to predict the bedrock motion 
covered by the soil deposit (Fig. 1a). This problem was solved in [11] for the special case of a layered non-linear deposit 
overlying a uniform linearly elastic half-space.

Considering the schema in Fig. 2, the bedrock is located at the base of a soil column in Case 1 and as rock outcropping 
in Case 2. In the case of rock outcropping, the incident and reflected waves (A and B in Fig. 2) are equivalent; however, in 
the other case, the reflected waves (B∗) differ because some waves are transmitted to the soil deposit.

In Appendix A it is justified that in the base of the soil column the bedrock half-space can be replaced by a dashpot 
whose behavior is modeled by

τ ∗
0 = ρ csU̇s − ρ csU̇∗

0 (15)

where ρ is the bedrock density, cs the wave velocity, U̇s the rock outcropping velocity (assumed measurable) and U̇∗
0 the 

velocity at the base of the soil column, that coincides with the soil-bedrock half-space interface and τ ∗
0 the shear stress at 

that position.
Thus, the bedrock half-space can be replaced by the boundary condition (15) that also includes the measured rock 

outcropping motion U̇s. In [11] this boundary condition was applied at the base of the soil deposit that was analyzed in the 
non-linear regime while taking into account the effects of the underlying bedrock half-space.

3. Wave equation for a linear soil deposit

The equation of linear dynamics in the case of a one-dimensional column reads:

ρ A
∂2u(z, t)

∂t2
= G A

∂2u(z, t)

∂z2
(16)

where u(z, t) is the displacement field, G is the shear modulus, ρ the density and A the area of the column. If a harmonic 
excitation of frequency ω applies, the solution to the shear wave propagation equation is also harmonic and of the same 
frequency, i.e. u(z, t) = U(z) eiωt . Thus it results
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−ρ Aω2U(z) = G A
∂2U(z)

∂z2
(17)

As previously discussed, for the purpose of modeling, the half-space is substituted by a viscous damper, that when 
considering a harmonic load of unit amplitude it results

G A
∂U(z)

∂z

∣∣∣
z=0

= 1 − cs ρ A iω U (0) (18)

On the other hand, the stress-free condition at the free surface reads

G A
∂U (z)

∂z

∣∣∣
z=L

= 0 (19)

In the case of a simple harmonic motion, damping can conveniently be expressed by using the concept of complex 
stiffness. The equivalent linear model represents the soil’s stress–strain response using a Kelvin–Voigt model. Thus, the 
shear stress τ depends on the shear strain γ and its rate γ̇ according to

τ = Gγ + G ′ dγ

dt
(20)

or in the frequency domain as

τ = (G + iωG ′)γ (21)

The complex shear modulus G∗ reads

G∗ = G + iωG ′ = G(1 + i2ζ ) (22)

Observe in Eq. (22) G ′ scales with the inverse of frequency in such a manner that the complex shear modulus is now 
frequency-independent. We refer to Section 1 for a deeper discussion on the consequences of this choice. Introducing 
Eq. (22) into Eq. (17) it results:

ρω2U(z) + G∗ ∂2U(z)

∂z2
= 0 (23)

The weak formulation related to the equation (23) is obtained by considering a test function U∗ defined in the domain 

z = (0, L), integrating by parts and considering the boundary conditions (18) and (19)∫


z

U∗(z)ρω2U(z)dz −
∫

z

∂U∗

∂z
G∗ ∂U(z)

∂z
dz + U∗(0)iρcsωU(0) − U∗(0) = 0 (24)

or ∫

z

U∗(z)ρω2U(z)dz −
∫

z

∂U∗

∂z
G(1 + i2ζ )

∂U(z)

∂z
dz + U∗(0)iρcsωU(0) − U∗(0) = 0 (25)

4. Non-linear modelling

The so-called equivalent linear approximation was introduced with the aim of improving constitutive laws of soils. It was 
implemented into the EERA (Equivalent-linear Earthquake Response Analysis) software [1], a recent implementation of the 
well-known concepts of equivalent linear earthquake site response analysis, starting from the same basic concepts as in 
SHAKE software [17]. The linear approximation considers the shear modulus G and the damping ratio ζ constant for each 
soil stratum and both dependent on the strain level [2]. Obviously, with both parameters depending on the strain, and the 
last at its turn depending on the parameters choice, the problem becomes non-linear and an iteration process is required 
for solving it.

The dependence of shear modulus and damping ratio on the effective strain is illustrated in the curves shown in Fig. 3
for sand and clay. The effective strain is given by γeff = 2

3 γmax (∼ 66% of the peak strain), with γmax = max(|γ (t)|).
When the strain varies significantly along the deposit deep, or when the soil deposit is composed of different strata of 

different materials, one must consider different layers to which different values of G and ζ are assigned, depending on the 
material and on the strain level.

In order to speed-up calculations, one could compute offline the parametric solution U(z, ω, G, ζ ) for the soil deposit, 
assuming the same values of G and ζ everywhere in the soil domain. When the soil column is partitioned in L layers, in 
which both coefficients are assumed constant, the parametric solution writes U(z, ω, G1, ζ1, · · · , GL, ζL).

As soon as such parametric solutions are available, the non-linear problem can be solved in real time because no new 
calculation is needed; the non-linear solver only needs particularize online the parametric solution calculated offline. The 
iteration process is detailed later, but before, the obtention of these parametric solutions within the Proper Generalized 
Decomposition framework (that allows circumventing the curse of dimensionality that highly dimensional problems entail) 
is summarized.
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Fig. 3. Shear modulus ratio (G/Gmax) and damping ratio ζ for sand and clay.

5. Proper generalized decomposition-based parametric solutions

In this section, we describe the construction of the parametric solutions within the Proper Generalized Decomposition 
framework. For this purpose, we consider first the separated representation of the single-stratum parametric displacement:

U(z,ω, G, ζ ) ≈
N∑

i=1

Zi(z)W i(ω)Gi(G)Ei(ζ ) (26)

The PGD constructor widely described in [6,5] proceeds by calculating from Un(z, ω, G, ζ ), assumed already known that

Un(z,ω, G, ζ ) =
n∑

i=1

Zi(z)W i(ω)Gi(G)Ei(ζ ) (27)

the new term of the finite sum, leading to the enriched approximate Un+1(z, ω, G, ζ )

Un+1(z,ω, G, ζ ) =
n∑

i=1

Zi(z)W i(ω)Gi(G)Ei(ζ ) + Zn+1(z)Wn+1(ω)Gn+1(G)En+1(ζ ) (28)

In order to calculate functions Zn+1(z), Wn+1(ω), Gn+1(G) and En+1(ζ ), we proceed from the extended weak form∫



U∗ρω2U d
 −
∫



∂U∗

∂z
G(1 + i2ζ )

∂U
∂z

d
 + U∗
z=0iρcsωUz=0 − U∗

z=0 = 0 (29)

where 
 = 
z ×
ω ×
G ×
ζ , with 
z = (0, L), 
ω = (ω−, ω+), 
G = (G−, G+) and 
ζ = (ζ−, ζ+) the domains in which 
the coordinates z, ω, G and ζ , respectively, are defined.

The four problems to be solved for calculating the four functions Zn+1(z), Wn+1(ω), Gn+1(G) and En+1(ζ ) are detailed 
in Sections B.1, B.2, B.3 and B.4 respectively, and summarized below.

(i) Calculation of Zn+1(z). With Un(z, ω, G, ζ ) known as well as Wn+1(ω), Gn+1(G) and En+1(ζ ) (randomly chosen at the 
first iteration or coming from the previous iteration of the non-linear solver), we introduce Eq. (28) into the weak form 
(29), where after integrating in 
ω × 
G × 
ζ the only unknown function is Zn+1(z). At this step, the test function U∗
is chosen in the form

U∗ = Z∗(z)Wn+1(ω)Gn+1(G)En+1(ζ ) (30)

The resulting weak form is the one related to a second-order BVP (boundary value problem) whose discretization using 
an adequate technique leads to the searched function Zn+1(z):
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∫

z

Z∗γ1 Zn+1 dz −
∫

z

Z∗′
γ2 Z ′

n+1 dz +
∫

z

Z∗
(

i=n∑
i=1

αi Zi + βi Z ′′
i

)
dz

+ Z∗(0)

i=n∑
i=1

(
βi Z ′

i(0) + Zi(0)iδi
) − Z∗(0) φ1 + Z∗(0)iφ2 Zn+1(0) = 0 (31)

where coefficients αi , βi , δi , γ1, γ2, φ1 and φ2 are the integrals in 
ω , 
G and 
ζ defined in Section B.1. By Z ′ and 
Z ′′ we denote the first and second derivatives of the univariate function Z , respectively. The previous weak form is 
discretized by using linear C0 finite elements after integrating by parts the term in the third integral involving second 
derivatives. Another possibility consists in reconstructing the second derivative before performing that integral.

(ii) Calculation of Wn+1(ω). With Un(z, ω, G, ζ ) known as well as Zn+1(z) (the just obtained), Gn+1(G) and En+1(ζ ), Eq. (28)
is introduced into the weak form (29) where after integrating in 
z × 
G × 
ζ the only unknown function is now 
Wn+1(ω). At this step the test function U∗ is chosen in the form

U∗ = Zn+1(z)W ∗(ω)Gn+1(G)En+1(ζ ) (32)

The resulting weak form is the one related to an algebraic problem whose discretization leads to the searched function 
Wn+1(ω):∫


ω

W ∗ (
γ1ω

2 − γ2 + iωφ2 Z 2
n+1(0)

)
Wn+1 dω

+
∫


ω

W ∗
[
−φ1 Zn+1(0) +

i=n∑
i=1

(αiω
2 − βi + iωZi(0)Zn+1(0)δi)W i

]
dω = 0 (33)

where coefficients αi , βi , δi , γ1, γ2, φ1 and φ2 are the integrals in 
z × 
G × 
ζ defined in Section B.2.
(iii) Calculation of Gn+1(G). With Un(z, ω, G, ζ ) known as well as Zn+1(z) and Wn+1(ω) (the just updated) and En+1(ζ ), 

Eq. (28) is introduced into the weak form (29), where after integrating in 
z × 
ω × 
ζ , the only unknown function 
now is Gn+1(G). At this step, the test function U∗ is chosen in the form

U∗ = Zn+1(z)Wn+1(ω)G∗(G)En+1(ζ ) (34)

The resulting weak form is the one related to an algebraic problem whose discretization leads to the searched function 
Gn+1(G):∫


G

G∗ (
γ1 − Gγ2 + iφ2 Z 2

n+1(0)
)
Gn+1 dG

+
∫


G

G∗
[
−φ1 Zn+1(0) +

i=n∑
i=1

(αi − βi G + iZi(0)Zn+1(0)δi)Gi

]
dG = 0 (35)

where coefficients αi , βi , δi , γ1, γ2, φ1 and φ2 are the integrals in 
z × 
ω × 
ζ defined in Section B.3.
(iv) Calculation of En+1(ζ ). With Un(z, ω, G, ζ ) known as well as Zn+1(z), Wn+1(ω) and Gn+1(G), all them just updated, 

Eq. (28) is injected into the weak form (29) where after integrating in 
z × 
ω × 
G the only unknown function is 
now En+1(ζ ). At this step, the test function U∗ is chosen in the form

U∗ = Zn+1(z)Wn+1(ω)Gn+1(G)E∗(ζ ) (36)

The resulting weak form is the one related to an algebraic problem whose discretization leads to the searched function 
En+1(ζ ):∫


ζ

E∗ (
γ1 − (1 + i2ζ )γ2 + iφ2 Z 2

n+1(0)
)
En+1 dζ

+
∫

ζ

E∗
[
−φ1 Zn+1(0) +

i=n∑
i=1

(αi − βi(1 + i2ζ ) + iZi(0)Zn+1(0)δi)Ei

]
dζ = 0 (37)

where coefficients αi , βi , δi , γ1, γ2, φ1 and φ2 are the integrals in 
z × 
ω × 
G defined in Section B.4.
(v) Checking convergence. Functions Zn+1(z), Wn+1(ω), Gn+1(G) and En+1(ζ ) are compared with the ones existing before 

the just four updates. If the difference is not small enough the previous four updates are performed again. When the 
difference becomes small enough, the procedure looks for the new approximate form Un+2(z, ω, G, ζ ) resulting from 
the just computed approximation Un+1(z, ω, G, ζ ).
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Fig. 4. Iteration process for determining the shear modulus G and damping ratio ζ as a function of the effective shear strain.

5.1. Parametric solution for stratified soil deposits

In the previous discussion, the properties of the material were assumed constant in the whole soil stratum. In this 
section, the soil deposit is assumed composed of L layers Dl , l = 1, · · · , L, in which the properties are assumed constant 
(these different properties are related to the consideration of different materials, different strain levels implying different 
behavior in the non-linear case, or a combination of both factors).

Each layer is identified from its characteristic function χl(z), l = 1, · · · , L, defined as

χl(z) =
{

1 if z ∈ Dl
0 if z /∈ Dl

(38)

The resulting weak form reads now∫



U∗(z)ρω2U(z)d
 −
∫



∂U∗

∂z
(G∗

1χ1 + G∗
2χ2 + · · · + G∗

LχL)
∂U(z)

∂z
d
 + U∗(0)iρcsωU(0) − U∗(0) = 0 (39)

where

G∗
l = Gl(1 + i2ζl) (40)

The parametric solution involves now the physical coordinate z, the frequency ω and the shear modulus and damping 
rate of each layer, Gl and ζl , l = 1, · · · , L:

U(z,ω, G1, ζ1, G2, ζ2, · · · , GL, ζL) ≈
N∑

i=1

Zi(z)W i(ω)G1
i (G1)E1

i (ζ1)G2
i (G2)E2

i (ζ2) · · ·GL
i (GL)EL

i (ζL) (41)

For constructing the separated representation (41), we proceed as just described, solving at each iteration 2 + 2L one-
dimensional problems. In the example addressed in Section 7, we consider three layers, L = 3, which implies a parametric 
problem defined in eight dimensions. In this case, the use of the Proper Generalized Decomposition allows circumventing 
the curse of dimensionality in the calculation of the parametric solution in such a multidimensional space.

6. Non-linear solver

As described in Section 4, the equivalent linear model assumes that the shear modulus and damping ratio are functions 
of shear strain amplitude. Thus an iteration process is required in order to solve the resulting non-linear problem.

As shown in Fig. 4, the values of both parameters G and ζ are initialized at their small strain values, and then, after 
solving the dynamic problem, the maximum and effective shear strains previously defined are calculated.

Then both (the shear modulus G and the damping ratio ζ ) are updated and the dynamic problem is solved again, in 
fact within the PGD framework, the parametric solution is particularized for the new couple of parameters. The iteration 
continues until reaching convergence. When the solid deposit is composed of different layers, the shear strain is calculated 
at each layer.

The whole solution procedure can be summarized as follows.

(i) Offline step: Construction of the PGD-based parametric monolayer or multilayer displacements, U(z, ω, G, ζ ) and 
U(z, ω, G1, ζ1, G2, ζ2, · · · , GL, ζL) respectively.

(ii) Online step: Calculation of the real-time non-linear dynamic response for a given time-dependent excitation, here as-
sumed expressed as F(t) = fg(t):
(a) perform the Fourier transform of the applied load

c(ω) = F(g(t)) (42)
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(b) make an initial estimation of shear modulus and damping ratio, G and ζ at the midpoint of each layer (assuming a 
linear regime, that is, small strains):

(G0
1, ζ

0
1 , G0

2, ζ
0
2 , · · · , G0

L, ζ 0
L) (43)

(c) repeat until convergence:
– the response to each frequency present in the excitation can be determined from the PGD parametric solution

U(z,ω, Gm
1 , ζm

1 , Gm
2 , ζm

2 , · · · , Gm
L, ζm

L ) (44)

where m indicated the non-linear iteration. The total response is obtained by superposition

Um(z, t) =
ω+∫

ω−
c(ω) U(z,ω, Gm

1 , ζm
1 , Gm

2 , ζm
2 , · · · , Gm

L, ζm
L ) eiωt dω (45)

– calculate the time evolution of the strain at the midpoint of each layer γ (zl, t) and from it calculate at the 
midpoint of each layer zl , l = 1, · · · , L, the maximum strain and the corresponding effective shear strain, γmax(zl)

and γeff(zl) respectively;
– from γeff(zl) update at each layer the values of the shear modulus Gm+1

l and the damping ratio ζm+1
l using the 

appropriate behavior curves, as the ones illustrated in Fig. 3;
– check convergence by defining the error Em:

Em =
L∑

l=1

(
|Gm+1

l − Gm
l |2

|G1
l |2 + |ζm+1

l − ζm
l |2

|ζ 1
l |2

)
(46)

Remark. Each “computational” layer is composed of a single material and the effective strain in it must be relatively homo-
geneous; both constraints serve to consider that the mechanical behavior everywhere in the latter can be represented by 
the one existing at the middle point. In practical applications, a few layers suffice for representing accurately a soil deposit, 
but this question must be carefully addressed in each particular case to conclude as regards solute convergence.

7. Numerical examples

In this section, two numerical examples for illustrating the potentialities of the technique just proposed are presented. 
The PGD approach was deeply compared with the solutions obtained by using the EERA software in [9]. In the first nu-
merical simulation we consider a single clay layer with the properties illustrated in Fig. 3 (G = 106 Pa, ζ = 0.0048 and 
ρ = 1966 kg/m3), whereas in the second simulation the three layers are composed of sand (G = 106 Pa, ζ = 0.001 and 
ρ = 1966 kg/m3). In the non-linear case, both the shear modulus and the damping ratio evolve as a function of the effec-
tive strain, as previously described. In the linear case, both remain constant all along the simulation.

7.1. Soil deposit composed of a single layer

First we consider a soil deposit consisting of a single stratum. The PGD method was used to calculate the paramet-
ric solution to the displacement field U(z, ω, G, ζ ). The problem’s coordinates are defined in the domains 
z = (0, 1), 

ω = 2π (0, 25) s−1, 
G = (107, 108) Pa and 
ζ = (0.004, 0.5) s−1. The different domains were discretized by considering 
respectively 100, 1023, 1000 and 1000 nodes. Even if 1000 nodes for discretizing the parametric domains seem too much, 
as the calculation of functions depending on the parameters does not imply the solution to linear systems, it is preferable 
to consider a rich-enough discretization to be sure of representing accurately the parametric solution. The separated repre-
sentation only involved five modes (the four most significant ones are depicted in Fig. 5). A detailed analysis of the solution 
accuracy with respect to the number of PGD modes employed and the number of nodes used for discretizing the different 
dimensions can be found in [6]. Fig. 6 depicts the fixed-point error evolution with respect to the PGD enrichment iterations, 
i.e. the error with respect to the number of PGD modes. Thus, the solution to around 5 × 4 one-dimensional problems for 
computing the five functions of the z, ω, G and ζ coordinates suffices to account for one million of scenarios (the number 
of nodes for discretizing the domain 
G times the ones involved in the discretization of 
ζ ). Moreover, each one has a res-
olution of 1023 frequencies uniformly distributed in 
ω . The offline computing time for calculating the parametric solution 
was of 7 s using a standard laptop using Matlab.

Then, the response under the linear behavior assumption and the one considering its dependence with the strain am-
plitude were calculated using the algorithm described in the previous section. The non-linear solution only required five 
iterations. The computational procedure when employing the parametric solution allowed reducing by more than one order 
of magnitude the online computing time, from one minute to a few seconds.
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Fig. 5. First four modes involved in the separated representation of the displacement field when considering a single stratum.

Fig. 6. Error versus number of PGD modes (iterations).

Fig. 7 shows the difference between the linear and non-linear displacement solution at the interface between the soil 
deposit and the elastic half-space, that is, at z = 0, for the given seismic excitation given in Fig. 8. Significant differences in 
the response can be noticed, justifying the non-linear approach, which, when using the PGD-based parametric solution, can 
be performed in real-time without increasing computational complexity.
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Fig. 7. Displacement versus time for linear (top) and non-linear (bottom) soil behaviors.

Fig. 8. Seismic loading: time (top) and frequency (bottom) representations.

7.2. Soil deposit composed of three layers

A more complex scenario consists of a soil deposit involving three strata. In this case, the PGD solution involves the 
space z, the frequency ω, the shear modulus of each layer G1, G2 and G3, as well as the three corresponding damping 
ratios ζ1, ζ2 and ζ3, that is, eight coordinates.

Now the domain 
z considered in the previous section is decomposed in three layer of thickness L/3. The consideration 
of six extra-coordinates (the shear modulus and the damping coefficient of each layer) increased the number of modes 
involved in the separated representation that now was of 200. In the present case, using 1000 nodes for discretizing the 
different domains related to the shear modulus – 
G = (104, 106) Pa – and the damping – 
ζ = (0.002, 0.6) s−1 – coeffi-
cients, the obtained parametric solution is able to describe the 10006 = 1018 possible scenarios. We considered 600 nodes 
for discretizing 
z and again 1023 in 
ω = (0, 157).

Then, the response under the linear behavior assumption and the one considering its dependence on strain amplitude 
were calculated using the algorithm described in the previous section. The non-linear solution only required five itera-
tions. Again, the solution procedure when employing the parametric solution allows reducing by more than one order of 
magnitude the computing time, from a few minutes to a few seconds.
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Fig. 9. Shear strain versus time at the third layer for the linear (top) and non-linear (bottom) soil behavior.

Fig. 10. G/Gmax and damping ratio (ζ ) for each layer at each iteration of the non-linear solver.

Fig. 9 illustrates the time evolution of the shear strain in the third stratum layer for both the linear and the non-linear 
cases, when the seismic loading represented in Fig. 8 applies. Significant differences in the response are again noticed. In 
the non-linear case at each iteration the shear modulus and the damping ratio at each layer are updated and the properties 
obtained after convergence differ from those characteristic of the linear behavior (first iteration), as reported in Fig. 10.

8. Conclusion

This paper proposes a new methodology able to compute very fast solutions to non-linear soil dynamics. The approach 
combines different ingredients: (i) a harmonic space-frequency description of the dynamic problem; (ii) the introduction 
of material parameters as model extra-coordinates, which, combined with the harmonic formulation, avoid the difficulties 
related to the calculation of parametric eigenproblems needed when considering usual modal-based analyses; (iii) an online 
integration that proceeds by particularizing the parametric solution for the material parameters, and then updating the 
material parameters from the just calculated solution.

More complex geometries and more complex rheological models are being considered. The first one is being addressed 
by considering richer parameterizations of the linearized behavior and the second by using multi-mode spring-dashpot 
elements with eventual fractional damping. These questions constitute a work in progress.
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Fig. 11. Control motion at outcrop.

Appendix A. Outcropping motion analysis

The transverse displacement in the rock outcropping is produced by shear waves propagation, that results from the 
solution to

G
∂2U

∂z2
− ρ

∂2U

∂t2
= 0 (A.1)

where G is the shear modulus and ρ the bedrock density.
The solution to equation (A.1) is given by

U = (A eikz + B e−ikz)eiωt (A.2)

where ω is the circular frequency, k the wave number, k = ω
cs

, cs the wave velocity (cs =
√

G
ρ ) and A and B the amplitudes 

of the waves propagating along the −z (upward) and +z (downward) directions, respectively (see Fig. 2).
Thus, the displacement Ub of points in the half-space (see Fig. 11 (right)) writes

Ub = (A eikz + B e−ikz)eiωt (A.3)

that implies the shear stress

τ = G
∂Ub

∂z
= ikG(Aeikz − Be−ikz)eiωt (A.4)

At the free surface, the shear stress, and consequently the shear strain, must vanish:

τ (z = 0) = Gγ (z = 0) = G
∂Ub

∂z

∣∣∣∣
z=0

= 0 (A.5)

implying A = B . Thus, the surface motion reads:

Us(t) = Ub(z = 0, t) = 2A eiωt (A.6)

In the combined system (bedrock half-space supporting the soil deposit) illustrated in Fig. 11(a) the motion in that 
bedrock half-space writes now

Ua = (A eikz + B∗ e−ikz)eiωt (A.7)

and the associated shear stress

τ ∗ = G
∂Ua

∂z
= ikG(A eikz − B∗ e−ikz)eiωt (A.8)

that when particularized at z = 0 imply

U∗
0(t) = Ua(z = 0, t) = (A + B∗)eiωt (A.9)

and

τ ∗
0 (t) = τ ∗(z = 0, t) = ikG(A − B∗)eiωt (A.10)

that lead to

U∗
o(t) + τ ∗

o (t) = 2A eiωt = Us(t) (A.11)

ikG



C. Germoso et al. / C. R. Mecanique 344 (2016) 24–41 37
Fig. 12. Half-space representation.

Therefore, from Eq. (A.11), the shear stress at the interface bedrock-soil deposit reads

τ ∗
o = ikG(Us − U∗

o) (A.12)

that with k = ω
cs

writes

τ ∗
o = i

ω

cs
G(Us − U∗

o) (A.13)

or making use of the relation cs =
√

G
ρ

τ ∗
o = iωρcs(Us − U∗

o) (A.14)

Hence, the shear stress at the soil-deposit-half-space interface reads

τ ∗
o = ρcs(U̇s − U̇∗

o) = ρcsU̇s − ρcsU̇∗
o (A.15)

whose first term corresponds to the measured outcropping motion and the second is like a dashpot [12]. Thus, the bedrock 
half-space can be substituted with boundary condition (A.15) (Fig. 12).

Appendix B. The Proper Generalized Decomposition construction

In this section the equations considered for updating the four functions involved in the displacement separated repre-
sentation Zn+1(z), Wn+1(
), Gn+1(G) and En+1(ζ ) are derived.

B.1. Computing Zn+1(z) from Wn+1(ω), Gn+1(G) and En+1(ζ )

In this case the test function reads

U∗ = Z∗(z)Wn+1(ω)Gn+1(G)En+1(ζ ) (B.1)

Introducing equations (28) and (B.1) into (29), we get:

∫

z×
ω×
G ×
ζ

Z∗ Wn+1Gn+1En+1ρω2

(
i=n∑
i=1

Zi W iGiEi + Zn+1Wn+1Gn+1En+1

)
dz dω dG dζ

−
∫


z×
ω×
G×
ζ

Z∗′
Wn+1Gn+1En+1 G(1 + i2ζ )

(
i=n∑
i=1

Z ′
i W iGiEi + Z ′

n+1Wn+1Gn+1En+1

)
dz dω dG dζ

+
∫


ω×
G ×
ζ

Z∗(0)Wn+1Gn+1En+1iρωcs

(
i=n∑
i=1

Zi(0)W iGiEi + Zn+1(0)Wn+1Gn+1En+1

)
dω dG dζ

−
∫


 ×
 ×


Z∗(0)Wn+1Gn+1En+1 dω dG dζ = 0 (B.2)
ω G ζ
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Integrating in 
ω × 
G × 
ζ and using the following notations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

αi = ∫

ω×
G ×
ζ

Wn+1Gn+1En+1ρω2W iGiEi dω dG dζ

βi = ∫

ω×
G ×
ζ

Wn+1Gn+1En+1 G(1 + i2ζ )W iGiEi dω dG dζ

δi = ∫

ω×
G ×
ζ

Wn+1Gn+1En+1ρωcsW iGiEi dωdG dζ

γ1 = ∫

ω×
G ×
ζ

(Wn+1Gn+1En+1)
2ρω2 dω dG dζ

γ2 = ∫

ω×
G ×
ζ

(Wn+1Gn+1En+1)
2 G(1 + i2ζ ) dω dG dζ

φ1 = ∫

ω×
G×
ζ

Wn+1Gn+1En+1 dω dG dζ

φ2 = ∫

ω×
G×
ζ

(Wn+1Gn+1En+1)
2ρωcs dωdG dζ

(B.3)

it results:

∫

z

Z∗γ1 Zn+1 dz +
∫

z

Z∗
i=n∑
i=1

αi Zi dz −
∫

z

Z∗′
i=n∑
i=1

βi Z ′
i dz −

∫

z

Z∗′
γ2 Z ′

n+1 dz

+ Z∗(0)

i=n∑
i=1

iδi Zi(0) + Z∗(0)iφ2 Zn+1(0) − Z∗(0)φ1 = 0 (B.4)

or, by integrating by parts,

∫

z

Z∗γ1 Zn+1 dz −
∫

z

Z∗′
γ2 Z ′

n+1 dz +
∫

z

Z∗
(

i=n∑
i=1

αi Zi + βi Z ′′
i

)
dz

+ Z∗(0)

i=n∑
i=1

(
βi Z ′

i(0) + Zi(0)iδi
) − Z∗(0)φ1 + Z∗(0)iφ2 Zn+1(0) = 0 (B.5)

Observe that integrals defined in Eq. (B.3) can be computed easily as the product of one-dimensional integrals defined 
on 
ω , 
G and 
ζ , respectively, thanks to the separated representation of the functions.

B.2. Computing Wn+1(ω) from Zn+1(z), Gn+1(G) and En+1(ζ )

Now the test function reads

U∗ = Zn+1(z)W ∗(ω)Gn+1(G)En+1(ζ ) (B.6)

and the problem weak form becomes

∫

z×
ω×
G×
ζ

Zn+1W ∗Gn+1En+1ρω2

(
i=n∑
i=1

Zi W iGiEi + Zn+1Wn+1Gn+1En+1

)
dz dω dG dζ

−
∫


z×
ω×
G×
ζ

Z ′
n+1W ∗Gn+1En+1 G(1 + i2ζ )

(
i=n∑
i=1

Z ′
i W iGiEi + Z ′

n+1Wn+1Gn+1En+1

)
dz dω dG dζ

+
∫


ω×
G×
ζ

Zn+1(0)W ∗Gn+1En+1iρωcs

(
i=n∑
i=1

Zi(0)W iGiEi + Zn+1(0)Wn+1Gn+1En+1

)
dω dG dζ

−
∫


ω×
G×
ζ

Zn+1(0)W ∗Gn+1En+1 dω dG dζ = 0 (B.7)



C. Germoso et al. / C. R. Mecanique 344 (2016) 24–41 39
Integrating in 
z × 
G × 
ζ and taking into account the expressions:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

αi = ∫

z×
G ×
ζ

Zn+1Gn+1En+1ρ ZiGiEi dz dG dζ

βi = ∫

z×
G ×
ζ

Z ′
n+1Gn+1En+1 G(1 + i2ζ )Z ′

iGiEi dz dG dζ

δi = ∫

G ×
ζ

Gn+1En+1ρcsGiEi dG dζ

γ1 = ∫

z×
G×
ζ

(Zn+1Gn+1En+1)
2ρ dz dG dζ

γ2 = ∫

z×
G×
ζ

(Z ′
n+1Gn+1En+1)

2 G(1 + i2ζ ) dz dG dζ

φ1 = ∫

G×
ζ

Gn+1En+1 dG dζ

φ2 = ∫

G×
ζ

(Gn+1En+1)
2ρcs dG dζ

(B.8)

it results∫

ω

W ∗(γ1ω
2 − γ2 + iωφ2 Z 2

n+1(0))Wn+1 dω

+
∫


ω

W ∗
[
−φ1 Zn+1(0) +

i=n∑
i=1

(αiω
2 − βi + iωZi(0)Zn+1(0)δi)W i

]
dω = 0 (B.9)

whose strong form reads

Wn+1 = φ1 Zn+1(0) + ∑i=n
i=1

(
βi − αiω

2 − iωZi(0)Zn+1(0)δi
)

W i

γ1ω2 − γ2 + iωφ2 Z 2
n+1(0)

(B.10)

B.3. Computing Gn+1(G) from Zn+1(z), Wn+1(ω) and En+1(ζ )

Now, with the test function given by:

U∗ = Zn+1(z)Wn+1(ω)G∗(G)En+1(ζ ) (B.11)

the weak form reads:∫

z×
ω×
G ×
ζ

Zn+1Wn+1G∗En+1ρω2

(
i=n∑
i=1

Zi W iGiEi + Zn+1Wn+1Gn+1En+1

)
dz dω dG dζ

−
∫


z×
ω×
G×
ζ

Z ′
n+1Wn+1G∗En+1 G(1 + i2ζ )

(
i=n∑
i=1

Z ′
i W iGiEi + Z ′

n+1Wn+1Gn+1En+1

)
dz dω dG dζ

+
∫


ω×
G ×
ζ

Zn+1(0)Wn+1G∗En+1iρωcs

(
i=n∑
i=1

Zi(0)W iGiEi + Zn+1(0)Wn+1Gn+1En+1

)
dω dG dζ

−
∫


ω×
G ×
ζ

Zn+1(0)Wn+1G∗En+1 dω dG dζ = 0 (B.12)

Integrating in 
z × 
ω × 
ζ and taking into account:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

αi = ∫

z×
ω×
ζ

Zn+1Wn+1En+1ρω2 Zi W iEi dz dω dζ

βi = ∫

z×
ω×
ζ

Z ′
n+1Wn+1En+1 (1 + i2ζ )Z ′

i W iEi dz dω dζ

δi = ∫

ω×
ζ

Wn+1En+1ρcsωW iEi dω dζ

γ1 = ∫

z×
ω×
ζ

(Zn+1Wn+1En+1)
2ρω2 dz dω dζ

γ2 = ∫

z×
ω×
ζ

(Z ′
n+1Wn+1En+1)

2 (1 + i2ζ ) dz dω dζ

φ1 = ∫

ω×
ζ

Wn+1En+1 dω dζ

φ2 = ∫

ω×
ζ

(Wn+1En+1)
2ρcsω dω dζ

(B.13)

the weak form writes
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∫

G

G∗ (
γ1 − Gγ2 + iφ2 Z 2

n+1(0)
)
Gn+1dG

+
∫


G

G∗
[
−φ1 Zn+1(0) +

i=n∑
i=1

(αi − βi G + iZi(0)Zn+1(0)δi)Gi

]
dG = 0 (B.14)

whose associated strong form reads

Gn+1 = φ1 Zn+1(0) + ∑i=n
i=1 (βi G − αi − iZi(0)Zn+1(0)δi)Gi

γ1 − Gγ2 + iφ2 Z 2
n+1(0)

(B.15)

B.4. Computing E(ζ ) from Zn+1(z), Wn+1(ω) and Gn+1(G)

Finally, with

U∗ = Zn+1(z)Wn+1(ω)Gn+1(G)E∗(ζ ) (B.16)

the weak form reads:∫

z×
ω×
G×
ζ

Zn+1Wn+1Gn+1E∗ρω2

(
i=n∑
i=1

Zi W iGiEi + Zn+1Wn+1Gn+1En+1

)
dz dω dG dζ

−
∫


z×
ω×
G×
ζ

Z ′
n+1Wn+1Gn+1E∗ G(1 + i2ζ )

(
i=n∑
i=1

Z ′
i W iGiEi + Z ′

n+1Wn+1Gn+1En+1

)
dz dω dG dζ

+
∫


ω×
G×
ζ

Zn+1(0)Wn+1Gn+1E∗iρωcs

(
i=n∑
i=1

Zi(0)W iGiEi + Zn+1(0)Wn+1Gn+1En+1

)
dω dG dζ

−
∫


ω×
G×
ζ

Zn+1(0)Wn+1Gn+1E∗ dω dG dζ = 0 (B.17)

that integrating in 
z × 
ω × 
G and considering the expressions⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

αi = ∫

z×
ω×
G

Zn+1Wn+1Gn+1ρω2 Zi W iGi dz dωdG

βi = ∫

z×
ω×
G

Z ′
n+1Wn+1Gn+1 G Z ′

i W iGi dz dω dG

δi = ∫

ω×
G

Wn+1Gn+1ρωcsW iGi dω dG

γ1 = ∫

z×
ω×
G

(Zn+1Wn+1Gn+1)
2ρω2 dz dω dG

γ2 = ∫

z×
ω×
G

(Z ′
n+1Wn+1Gn+1)

2 G dz dω dG

φ1 = ∫

ω×
G

Wn+1Gn+1 dω dG

φ2 = ∫

ω×
G

(Wn+1Gn+1)
2ρωcs dω dG

(B.18)

results∫

ζ

E∗(γ1 − (1 + i2ζ )γ2 + iφ2 Z 2
n+1(0))En+1 dζ

+
∫

ζ

E∗
[
−φ1 Zn+1(0) +

i=n∑
i=1

(αi − βi(1 + i2ζ ) + iZi(0)Zn+1(0)δi)Ei

]
dζ = 0

(B.19)

or

En+1 = φ1 Zn+1(0) + ∑i=n
i=1 (βi(1 + i2ζ ) − αi − iZi(0)Zn+1(0)δi)Ei

γ1 − (1 + i2ζ )γ2 + iφ2 Z 2
n+1(0)

(B.20)
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