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A moving quenched soda-lime glass plate with an initial edge crack is modeled, applying 
the eXtended finite-element method (XFEM) in order to investigate the stress field 
components and Von Mises stress around the crack. The convective heat with moving 
boundaries is considered in thermal formulation. The Crank–Nicolson time integration 
scheme is reformed and adjusted with a view to accurately solving the system of 
transient heat conduction matrix equations. In order to simulate the whole stages of 
the problem formulation, MATLAB XFEM (MXFEM) codes are written and employed. The 
stress distribution contours are plotted in detail and the stress fields around the crack tip 
are compared quantitatively. The variations of stress intensity factors (SIFs) during crack 
propagation are obtained through the calculation of the domain form of the interaction 
integral. In order to verify the procedure and display the ability of the developed 
formulation, the results are compared with experimental outputs from the literature.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Modeling crack propagation in a standard finite-element framework is laborious due to the need for the mesh to match 
the geometry of the discontinuity. This becomes a serious difficulty when treating problems with evolving discontinuities, 
where the mesh must be reproduced at each step. Furthermore, the crack tip singularity should be accurately represented 
through the approximation [1]. In reaction to this shortcoming, the traditional finite-element man evolved towards an 
extended one (XFEM), initially proposed by Belytschko and Black [2], i.e. a powerful and accurate approach for solving dis-
continuity problems while utilizing the notion of partition of unity, based on a standard Galerkin procedure accommodating 
the internal boundaries in the discrete model [3,4]. Some of the chief advantages of the XFEM, which reproduce the singular 
field near a crack tip avoiding cumbersome remeshing procedures, are its remarkable flexibility for crack growth problems, 
and the simple formulation and independent definition of the crack from the FEM mesh it involves [5]. Of course, this 
method needs a variable number of degrees of freedom per node, which can be considered its only drawback [6]. In the 
area of fracture mechanics, the XFEM has been the subject of considerable researches in the last decade [7], one of which is 
thermoelastic fracture mechanics through XFEM that was investigated in detail by Duflot [8], who considered both 2D and 
3D problems with different crack face thermal boundary conditions.

The study of thermoelastic fracture mechanics, which deals with the events of calamitous spreading of present cracks 
exposed to thermal loading, is considered to be essential in the design of many structures [9]. Structures such as glass 
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Fig. 1. Geometry of the specimen.

products can suffer sudden failure and catastrophic fracture, particularly in the presence of pre-existing cracks. Therefore, it 
is important to investigate the crack-growth behavior in glasses under thermal loading [10]. For the same reason, different 
analytical, experimental, and numerical studies have been reported to explain the mechanics of glass cracking [11–20]. All 
patterns of cracks, including straight, branched, and oscillating ones in thin glass plates subjected to thermal loads have been 
reported by Yuse and Sano [21]. Temperature jump and rapid cooling can affect the regulation of these patterns. Moreover, 
crack growth velocity can be controlled easily, and the cracks can be observed directly [22,23]. Yoneyama and co-workers 
experimentally assessed stress fields around a propagating crack tip in a quenched glass plate through instantaneous phase-
stepping photoelasticity [24,25]. Afterwards, the variation of the crack tip stress fields during crack propagation has been 
studied [26–28]. Later, for the same problem, they also applied an experimental–numerical hybrid method to analyze the 
stress field at the crack tip [29], as well as they evidenced that the compressive stress fields are distributed around the 
tensile stresses at the crack tip, which leads to both a higher stress intensity factor and crack oscillation.

As can be observed from the viewpoint of thermoelastic fracture mechanics, the study and the understanding of the 
mechanics of complicated crack growth in glasses is an attractive and also necessary subject for designing structural com-
ponents and machines. However, despite the great amount of works that have been done in these fields, there is no 
comprehensive satisfactory work that appropriately explains this phenomenon by considering the main parameters affected.

In this study, the eXtended Finite Element Method is implemented to model the effect of the transient heat conduction 
in a moving quenched thin soda-lime glass plate with an initial edge crack. The simultaneous effects of the movement of 
boundaries and of convection heat transfer in boundaries are taken into account in the thermal formulation. For obtaining 
the accurate temperatures from the system of ODE matrix equations, the Crank–Nicolson method is reformed and adjusted. 
The stress fields are analyzed around the crack, and the stress counters are plotted. The results illustrate that a compressive 
stress region is distributed around the tensile stress area at the crack tip, as it was reported in [29]. In addition, to study 
the crack propagation behavior, stress intensity factors are obtained versus time, using the calculation domain form of the 
interaction integral.

2. Problem statement

A thin soda-lime glass plate is considered, as shown in Fig. 1. The dimensions of the specimen are 26 mm in width, 
76 mm in height, and 0.9 mm in thickness. It has a 5-mm-long initial edge crack in its bottom, which is supposed to have 
been created by a local temperature gradient using a soldering iron after scratching the sample by a glass cutter. Then, 
in order to apply a thermal load to the specimen, it is heated in a furnace up to a constant temperature Th . Next, the 
specimen, as illustrated in Fig. 2, is translated vertically by a motor from a furnace to a cold bath. The distance from the 
top of the cold bath to the bottom of the furnace is 30 mm. The specimen enters the cold bath at a constant speed V . The 
cold bath is filled with water at a temperature Tc , and the crack starts to propagate. More details about the experimental 
procedure are given in [25–29].

In this paper, we suppose that the plate is isotropic and homogeneous, and that all thermophysical properties like 
thermal conductivity, heat capacity, and density are temperature independent, and, since the plate is very thin, all operations 
are calculated assuming plane stress conditions.

Two aspects of the confronted issue that have to be considered are thermal and elastic parts. The thermal part is a tran-
sient heat-conducting problem with moving boundaries. Indeed, in every specified time, a time-dependent heat conduction 
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Fig. 2. Schematic design of the experiment.

Fig. 3. A partial displacement of the plate into the cold bath in one time step.

problem with a new boundary and initial conditions has appeared, and their conditions depend on the prior moment. 
Therefore, it is important to solve the problem accurately in every step, because its result impacts the outputs of the next 
step as well as the mechanical part of the problem. Because of the low thermal conductivity and relatively high heat capac-
ity of the material, the dominant factor that caused the cooling of the specimen in the cold bath is the convective boundary 
condition. Thus, for increasing the accuracy of the model, it is assumed that both surfaces and edges of the plate make 
convective thermal exchanges in the cold bath as well as in the outdoors of the specimen. Nevertheless, since the length 
between the furnace and the bath is less than the length of the specimen, when the specimen enters the cold bath, its other 
side is still located in the furnace, and its temperature is regarded to be the same as the furnace temperature; consequently, 
there is no convective heat transfer in this part.

For the elastic part, an indirect and implicit approach has been employed. Instead of computing the new mechanical 
formulation resulting from the thermal loads, like stress fields, interaction integral and stress intensity factors, the equivalent 
mechanical force arising from the generated thermal strain due to temperature variations is obtained. After calculation of 
the displacement field, the other requirements for the analysis of the problem can be computed.

The finite-element mesh of the plate is considered in such a way that the distance travelled by the plate per time step 
is equal to the length of the mesh elements. On the other hand, the incremental advancement of the plate into the cold 
bath in each step is associated with the entrance of elements located in a single row into the cold bath (Fig. 3). So, the time 
steps and the total time for complete entrance of the plate can be calculated simply as:

�t = d

V

total time = H

V

where d is the length of the mesh elements in both directions, V is the constant vertical velocity of the plate, and H is its 
height. As it has been reported in several experimental works [25–28], the velocity of straight crack propagation is almost 
the same as that of the moving plate. So, for modeling this, the magnitude of the incremental crack growth in each step 
has been assumed to be equal to the length of the mesh elements.
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3. XFEM problem formulation

3.1. XFEM discretization

The extended finite-element method along with the level set method allows discontinuities to be represented indepen-
dently of the finite element mesh by using the partition of the unity finite-element method [30,31]. This method enriches 
all elements cut by a discontinuity with additional nodal degrees of freedom and by using enrichment functions satisfying 
the discontinuous behavior [2,32]. In general, the XFEM displacement approximation can be expressed as:

u(X) = uSTD(X) + uENR(X)

u(X) =
∑
i∈Ω

Ni(X)

(
ui +

∑
i∈Ωd

E(X)ei

)
(1)

where Ω is the overall domain, Ωd is the domain that encompasses discontinuities, Ni(X) are the standard finite-element 
shape functions, E(X) is the enrichment function utilized for the discontinuous domain, and ui , ei are the standard and 
enriched degrees of freedom (DOF), respectively. Notice that when Ω ∩ Ωd = ∅, the enrichment function E(X) disappears. 
Since the discontinuities are not defined by the finite-element mesh, the level set method [33,34] is exploited to track the 
discontinuities [35].

The approximation in Eq. (1) does not satisfy the interpolation property; i.e., ui �= u(Xi) owing to enriched degrees of 
freedom. A normal way to satisfy the interpolation property in applying XFEM is to shift the enrichment functions [36] as:

Si(X) = E(X) − Ei(X)

where Si(X) is the shifted enrichment function for the ith node and Ei(X) is the value of E(X) at the ith node. For modeling 
a crack in a homogeneous material, for an element completely cut by a crack, the Heaviside [32] enrichment function is 
used as:

h(X) =
{+1 above the crack

−1 below the crack
(2)

and so the shifted Heaviside enrichment function is:

H(X) = h(X) − hi(X) (3)

For an element containing the crack tip, the branch enrichment functions (asymptotic functions) [2,37] take the following 
form:

{
f j(X)

}4
j=1 =

{√
r sin

θ

2
,
√

r cos
θ

2
,
√

r sin θ sin
θ

2
,
√

r sin θ cos
θ

2

}
(4)

and for the shifted branch, the enrichment functions are:

F (X) = f (X) − f i(X) (5)

In Eq. (4), r and θ are the polar coordinates in the local crack tip coordinate system and the first function represents the 
discontinuity near the tip, while the other three functions are added to get accurate results with relatively coarse meshes. 
Note that when a node should be enriched by both Eqs. (2) and (4), only Eq. (4) is used. Fig. 4 shows how the elements 
containing discontinuities are selected in two successive increments. The sandy brown elements and their squared nodes 
are those cut by the crack tip and enriched by the branch functions, while the light green elements and their circled nodes 
are those cut by the crack face and enriched by the Heaviside function, whereas the yellow elements are those enriched at 
their nodes by both enrichments.

Ultimately, the XFEM approximation of the displacement field is:

u(X) =
∑

i

Ni(X)

(
ui + Hi(X)ai +

4∑
j=1

F j(X)bij

)
(6)

The two-dimensional form can be written as:

u(x, y) =
∑
i∈n

Ni(x, y)ui +
∑
i∈nh

Ni(x, y)Hi(x, y)ai +
∑
i∈nc

4∑
j=1

Ni(x, y)F j(r, θ)bij (7)

where ui are traditional degrees of freedom, ai are additional degrees of freedom corresponding to the Heaviside enrich-
ments, bij are additional degrees of freedom related to the crack-tip enrichments, nh is a set of Heaviside enrichment nodes, 
and nc is a set of crack-tip enrichment nodes.
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Fig. 4. The schematic of enrichment procedure; brown elements and their squared nodes are those cut by the crack tip and enriched by the branch 
functions, the green elements and their circled nodes are those cut by the crack face and enriched by the Heaviside function, and the yellow elements are 
those enriched at their nodes by both enrichments.

Fig. 5. The body with an internal crack that moves at a constant velocity.

In problems dealing with thermal fracture, the XFEM for temperature discontinuities can also be applicable. With the 
adiabatic crack assumption, the Heaviside function is suitable for elements cut by crack and having temperature jump. 
Concerning near-tip enrichment, the leading term of the asymptotic field for the temperature [8] can be written as:

T = − KT

k

√
2r

π
sin

θ

2

where k is the thermal conductivity, KT provides the strength of flux singularity at the crack tip. Therefore, the temperature 
field can be discretized like the displacement field, but with only the first branch function of Eq. (4), i.e.:

T (x, y, t) =
∑
i∈n

Ni(x, y)Ti +
∑
i∈nh

Ni(x, y)Hi(x, y)Ai +
∑
i∈nc

Ni(x, y)F1(r, θ)Bi (8)

where Ti , Ai , and Bi are unenriched, face-enriched, and tip-enriched unknown temperatures, respectively, and

F1(r, θ) = √
r sin

θ

2
− √

ri sin
θi

2

3.2. The elastic model

The problem is defined in the domain Ω bounded by Γ , as illustrated in Fig. 5, where Γ = Γu ∪ Γt and Γu ∩ Γt = ∅.
Newton’s second law of motion and Hook’s law for an isotropic homogeneous material are [38]:

σi j, j + b j = ρu j,tt i, j = 1,2,3 (9)

σi j = E

1 + ν

{
εi j + ν

1 − 2ν
εkkδi j

}
− Eα�T

1 − 2ν
δi j i, j = 1,2,3 (10)

respectively, where σi j are Cauchy stress tensor components, b j are body force vector components, u j are displacement 
vector components, εi j are strain tensor components, ρ is the density, E is Young’s modulus, ν is Poisson’s ratio, α is the 
thermal expansion, and �T is the nodal temperature change.

Eq. (9) in two dimensions with constant velocity V (static equilibrium), in the absence of body forces, and Eq. (10) in 
plane stress conditions are reduced to:
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σi j, j = 0 i, j = 1,2 (11)

σi j = E

1 + ν

{
εi j + ν

1 − ν
εkkδi j

}
− Eα�T

1 − ν
δi j i, j = 1,2 (12)

The boundary conditions are:

σi jn j = 0 on Γt

u = 0 on Γu

σi jn j = 0 on Γ +
d

σi jn j = 0 on Γ +
d (13)

Eq. (7) is substituted in the weak form of the combined Eqs. (11) and (12), applying the boundary conditions, and using the 
Bubnov–Galerkin method, a system of discrete linear equations is derived. The system of linear equations can be written in 
the form that is commonly associated with the finite-element method:

[K ]{U } = {F } (14)

where {U } = {uu
i , uv

i , au
i , av

i , bu
ij, b

v
i j}T is the vector of unknown displacement at the nodes, the superscripts u and v referring 

to x and y components of the displacement, respectively.
[K ] is the global stiffness matrix given by [39]:

[K ] =
ˆ

Ω

[B]T[C][B]dΩ (15)

and {F } is the equivalent thermal-load vector associated with the temperature variation over an element [40]:

{F } =
ˆ

Ω

[B]T[C]{εth}dΩ (16)

where {εth} is the thermal strain vector that is defined for an isotropic material in plane stress conditions as:

{
εth}=

⎧⎪⎨
⎪⎩

εth
xx

εth
yy

εth
xy

⎫⎪⎬
⎪⎭=

⎧⎨
⎩

1
1
0

⎫⎬
⎭α�T (17)

in which �T = Tt − Tt−�t is obtained in Section 3.3.1 and the other terms of [K ] and {F } are defined in the Appendix.
The vector of {F } and the matrix of [K ], in terms of their elements, are as follows:

{F } = {{
F u

u

} {
F v

u

} {
F u

a

} {
F v

a

} {
F u

b

} {
F v

b

}}T
(18)

[K ] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

[K uu
uu ] [K uv

uu ] [K uu
ua ] [K uv

ua ] [K uu
ub ] [K uv

ub ]
[K v v

uu ] [K vu
ua ] [K v v

ua ] [K vu
ub ] [K v v

ub ]
[K uu

aa ] [K uv
aa ] [K uu

ab ] [K uv
ab ]

[K v v
aa ] [K vu

ab ] [K v v
ab ]

Sym. [K uu
bb ] [K uv

bb ]
[K v v

bb ]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(19)

where [Kuu] is the stiffness matrix of the traditional finite-element method for the unenriched DOF that encompasses the 
large portion of the global stiffness matrix and will be constant at each step of crack growth, [Kua] and [Kub] are coupled 
matrices of enriched and traditional DOF, [Kaa] and [Kbb] are the stiffness matrices corresponding to enriched DOF. The 
same explanation can be given for the {F } vector.

Let us mention that the displacement of the nodes satisfied by the second boundary conditions is zero. Hence, the nodal 
displacement should be computed for the other free nodes as following:

{Ur} = [Krr]−1{Fr} (20)

where {Ur} are the free nodes rows in the displacement vector, [Krr] are the free nodes rows and columns in the stiffness 
matrix, and {Fr} are the free nodes rows of the force vector. After computing the nodal displacement vector, the components 
of strain and stress fields as well as Von Mises stress (see Appendix) around the crack and in the whole plate can be attained 
without difficulty. SIFs for the plane stress conditions can be obtained by using the domain form of the interaction integral, 
as follows [31]:
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Fig. 6. Schematic design of the problem domain.

K (1)
I = E

2
M(1,state one) (21)

K (1)
II = E

2
M(1,state two) (22)

where

M(1,2) =
ˆ

A

[
σ

(1)
i j

∂u(2)
i

∂x1
+ σ

(2)
i j

∂u(1)
i

∂x1
− W (1,2)δ1 j

]
∂q

∂x j
dA (23)

with

W (1,2) = σ
(1)
i j ε

(2)
i j = σ

(2)
i j ε

(1)
i j

q =
4∑

i=1

Niqi

K I is the mode-I stress intensity factor, K II is the mode-II stress intensity factor, M(1,2) is the domain form of the interaction 
integral. Superscript 1 denotes the actual state corresponding to the stress and displacement fields of the XFEM analysis, 
superscript 2 denotes the auxiliary state that has been chosen by Westergaard [41] and by Williams [42] for stress and 
displacement equations. The term of ‘state one’ is the auxiliary state as pure mode I, ‘state two’ is the auxiliary state as 
pure mode II. E is Young’s modulus, W (1,2) is the interaction/mutual strain energy of the body, q is defined as an arbitrary 
smooth function; standard finite-element shape functions have been used to interpolate its value.

A free MATLAB XFEM code [43] was reformed and has been applied for the presentation of elastic problem formulation. 
For FEM integrals on unenriched elements, a standard Gauss quadrature rule is used; however, for elements containing 
discontinuities, due to the high gradient and the existence of singularity, the technique based on subdividing quadrangles 
into triangles and integrating over each triangle is applied to avoid difficulties with integrating the discontinuous domain 
and to enhance the accuracy of the numerical integration.

3.3. The thermal model

Recall that the problem is in the domain Ω bounded by Γ and is moving downward with constant velocity V , as 
illustrated in Fig. 6. In this figure:

• Ωh(t) is the hot region in the furnace bounded by Γh(t) and the domain decreases over time,
• Ωc(t) is the cold region in the water bath bounded by Γc(t) and the domain increases over time,
• Ωa(t) is the remaining region that is assumed to be subjected to air at room temperature (standard temperature), 

bounded by Γa(t), the domain decreasing over time,
• Γd(t) is the crack boundary that is considered to be adiabatic and to consist of two coincident boundaries Γd(t)+ and 

Γd(t)− .

So it can be readily written that:

Ωh(t) ∪ Ωc(t) ∪ Ωa(t) = Ω and Ωh(t) ∩ Ωc(t) ∩ Ωa(t) = ∅
Γh(t) ∪ Γc(t) ∪ Γa(t) = Γ and Γh(t) ∩ Γc(t) ∩ Γa(t) = ∅
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Fig. 7. The plate’s edge and surface convection that is considered in the formulation.

with the assumption of temperature independence for the thermophysical properties, the general heat conduction equation 
for the moving solid, which is derived from the first law of thermodynamics, and the Fourier law equation are expressed 
as [44]:

∂qi

∂xi
+ ρcp

DT

Dt
= Q i = 1,2,3 (24)

qi = −ki
∂T

∂xi
i = 1,2,3 (25)

respectively. Where D
Dt is the substantial derivative, the qi s are the heat flux vector components, cp is the isobaric mass 

heat capacity, Q is the thermal heat generation rate, and ki s are the components of the thermal conductivity vector.
For an isotropic thin plate, with a heat convective surface [45] and without a thermal source that moves vertically at a 

constant velocity, the above two-dimensional equations are:

∂qi

∂xi
+ ρcp

(
∂T

∂t
+ ux1

∂T

∂x1

)
+ 2h(T − T∞) = 0 i = 1,2 (26)

qi = −k
∂T

∂xi
i = 1,2 (27)

where h is the convection coefficient, and T∞ is the ambient temperature of the surrounding fluid. It is mentioned that, 
since the surfaces of the thin plate are not assumed to be adiabatic, the third term on the left-hand side of Eq. (26) appears 
to be due to the first law of thermodynamics.

The initial conditions of the problem are given by:

T (x, y,0) = Th in Ω

Ti

(
x, y, t + �t

n

)
= T (x, y, t) in Ω (28)

where Ti is the initial temperature and the boundary conditions are:

∀(P , t) ∈ Ωh(t) → T (P , t) = Th

∀(P , t) ∈ Γh(t) → qini = 0

∀(P , t) ∈ (Γ +
d (t) ∪ Γ −

d (t)
)→ qini = 0

∀(P , t) ∈ Γc(t) → qini = hc
(
T (P , t) − Tc

)
∀(P , t) ∈ Γa(t) → qini = ha

(
T (P , t) − Ta

)
(29)

where Th , Tc , Ta are the temperatures of furnace, cold water, air, and hc , ha are the convection coefficients of cold water 
and air, respectively. The surface convection and the edge convection of the plate are shown in Fig. 7.

Notice that the initial conditions will be explained and implemented in Section 3.3.1.
By substituting Eq. (27) into Eq. (26):

k
∂2T

2
+ k

∂2T
2

− ρcp V
∂T + 2h(T − T∞) = ρcp

∂T
(30)
∂x ∂ y ∂x ∂t
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after substituting the XFEM discretized temperature field, Eq. (8), into Eq. (30), using the Galerkin finite-element method, 
as well as Green’s theorem in the plane and finally applying the boundary conditions of the problem, except the first one, 
the global system of linear ODE equations can be written as:[

C th]{Ṫ } + [
K th]{T } = {

F th} (31)

where {T } = {Ti, Ai, Bi}T is the vector of unknown temperatures at the nodes. Notice that if the thermophysical properties 
are temperature dependent, the above equations are nonlinear.

[C th] is the global capacitance matrix defined by:

[
C th]=

ˆ

Ω

ρcp[Ψ ]T[Ψ ]dΩ (32)

and [K th] is the global conductance matrix that can be shown as:[
K th]= [K D ] + [K V ] + [Khs] + [Khe] (33)

where

[K D ] =
ˆ

Ω

[
Bth]T[D][Bth]dΩ (34)

[K V ] =
ˆ

Ω

[Φ][V th][Bth]dΩ (35)

[Khs] =
ˆ

Ω

2h[Ψ ]T[Ψ ]dΩ =
¨

Ac(t)

2hc[Ψ ]T[Ψ ]dAc +
¨

Aa(t)

2ha[Ψ ]T[Ψ ]dAa (36)

[Khe] =
ˆ

Γ

h[Ψ ]T[Ψ ]dΓ =
˛

Sc(t)

hc[Ψ ]T[Ψ ]t dSc +
˛

Sa(t)

ha[Ψ ]T[Ψ ]t dSa (37)

with

Φ = [
Ψ T Ψ T

]
(38)

V th =
[

ρcp V 0
0 0

]
(39)

where t , A and S are the thickness, the surface and the periphery of the plate, whereas the other terms of global capacitance 
and conductance matrices are defined in the Appendix. Note that Eq. (35) arises from the movement of the plate, and that 
Eq. (36) results from the surface convection of the plate, while Eq. (37) corresponds to the edge convection of the plate.

{F th} is the thermal force vector that is expressed as:{
F th}= { fhs} + { fhe} (40)

where

{ fhs} =
ˆ

Ω

2hT∞[Ψ ]T dΩ =
¨

Ac(t)

2hc Tc[Ψ ]T dAc +
¨

Aa(t)

2ha Ta[Ψ ]T dAa (41)

{ fhe} =
ˆ

Γ

hT∞[Ψ ]T dΓ =
˛

Sc(t)

hc Tc[Ψ ]Tt dSc +
˛

Sa(t)

ha Ta[Ψ ]Tt dSa (42)

again Eq. (41) and Eq. (42) result from surface convection and edge convection, respectively.
The matrices of [C th] and [K th] and the vectors of {F th} in terms of their elements are:

[
C th]=

⎡
⎢⎣

[C th
T T ] [C th

T A] [C th
T B ]

[C th
AT ] [C th

A A] [C th
AB ]

[C th
BT ] [C th

B A] [C th
B B ]

⎤
⎥⎦ (43)

[
K th]=

⎡
⎢⎣

[K th
T T ] [K th

T A] [K th
T B ]

[K th
AT ] [K th

A A] [K th
AB ]

[K th ] [K th ] [K th ]

⎤
⎥⎦ (44)
BT B A B B
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Explanations similar to those of Eq. (19) can be invoked for the subscripts of the above matrices and the thermal force 
vector.

3.3.1. The adjusted Crank–Nicolson method
At first, it should be mentioned that in addition to temperature, which is varied versus time, the conductance matrix 

and the thermal force vector are also changed with time. As it was shown formerly, both of them have a time-variable 
domain/boundary integration, in which the h and T∞ terms are continuously changing for the nodes that are crossing from 
the borders of the furnace, bath, and outdoors. Apart from these, for both matrices, capacitance, conductance and thermal 
force vector, at each step, new elements emerge due to crack growth and the additional degrees of freedom for enriching 
new increments of the crack. These elements are assumed to be zero for the prior time steps of the matrices and the vector.

Another point is that the first thermal boundary condition of the problem is still not applied. It was:

∀(P , t) ∈ Ωh(t) → T (P , t) = Th (45)

For applying this boundary condition, the global system of ODE equations in Eq. (31) is partitioned as:[
C th

ss C th
su

C th
us C th

uu

]{
Ṫ s

Ṫu

}
+
[

K th
ss K th

su

K th
us K th

uu

]{
Ts

Tu

}
=
{

F th
s

F th
u

}
(46)

where the subscript u denotes terms associated with unknown (active) temperatures and the subscript s denotes terms 
associated with specified (constrained) temperatures. It is obvious that:

Ts = Th

Ṫ s = 0

So for the unknown temperatures, the partitioned equations can be written as:[
C th

uu

]{Ṫu} + [
K th

uu

]{Tu} = {
F th

u

}− [
K th

us

]{Th} (47)

which now appropriately takes into account the effects of specified temperatures as forcing functions on the right-hand 
side.

For obtaining the transient temperatures in each step, the generalized trapezoidal approximation [46] is adopted for 
numerically integrating the systems of ODE equations in Eq. (31). According to this technique, the temperatures at the time 
level p + 1 are:

{T }p+1 = {T }p + [
(1 − θ){Ṫ }p + θ{Ṫ }p+1]�t

n
(48)

where �t , as previously defined, is the time for elements in a row to enter the bath in each step, �t
n is the time substep 

between time levels p and p + 1, and θ is the temporal parameter that takes values between 0 and 1. The above equation 
for the unknown temperatures can be written as:

{Tu}p+1 = {Tu}p + [
(1 − θ){Ṫu}p + θ{Ṫu}p+1]�t

n
(49)

For time levels denoted as p and p + 1, the global system of ODE – (34) – can be written as follows:[
C th]p{Ṫ }p + [

K th]p{T }p = {
F th}p

(50)[
C th]p+1{Ṫ }p+1 + [

K th]p+1{T }p+1 = {
F th}p+1

(51)

Eqs. (50) and (51) for the unknown temperatures, in the form of Eq. (47), are:[
C th

uu

]p{Ṫu}p + [
K th

uu

]p{Tu}p = {
F th

u

}p − ([
K th

us

]{Th}
)p

(52)[
C th

uu

]p+1{Ṫu}p+1 + [
K th

uu

]p+1{Tu}p+1 = {
F th

u

}p+1 − ([
K th

us

]{Th}
)p+1

(53)

The above equations are substituted into Eq. (49), which, after some simplification, yields:(
n

�t

[
C th

uu

]p+1 + θ
[

K th
uu

]p+1
)

{Tu}p+1

=
(

n

�t

[
C th

uu

]p − (1 − θ)
[

K th
uu

]p
)

{Tu}p + (
θ
({

F th
u

}− [
K th

us

]{Th}
)p+1 + (1 − θ)

({
F th

u

}− [
K th

us

]{Th}
)p)

(54)

for different values of θ , different transient schemes have appeared. For θ = 1
2 , the semi-implicit scheme, the Crank–Nicolson 

method is obtained as following:
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(
n

�t

[
C th

uu

]p+1 + 1

2

[
K th

uu

]p+1
)

{Tu}p+1

=
(

n

�t

[
C th

uu

]p − 1

2

[
K th

uu

]p
)

{Tu}p + 1

2

(({
F th

u

}− [
K th

us

]{Th}
)p+1 + ({

F th
u

}− [
K th

us

]{Th}
)p)

(55)

This method is unconditionally stable. However, the approximate solutions can exhibit spurious oscillations due to the unfit 
selection of the time substep, whereas these oscillations do not occur in reality [46,47]. To arrive at an appropriate time 
substep, Von Neumann’s stability analysis can be employed [48]. For this problem, it can be written as:

κ(�t
n )

d2
≤ 1

2
(56)

where κ is the thermal diffusivity, and d, as defined formerly, is the length of mesh elements. Using the equality in the 
above equation, the minimum number of substeps for each step can be obtained as:

n = 2κ�t

d2
(57)

Substituting Eq. (57) into Eq. (55), the transient temperatures at time level p + 1 are:

{Tu}p+1 = [A]−1
(

[B]{Tu}p + 1

2

({F }p+1 + {F }p)) (58)

[A] = 2κ

d2

[
C th

uu

]p+1 + 1

2

[
K th

uu

]p+1
(59)

[B] = 2κ

d2

[
C th

uu

]p − 1

2

[
K th

uu

]p
(60)

{F } = {
F th

u

}− [
K th

us

]{Th} (61)

It should be mentioned that the initial conditions are not still applied. They were:

T (x, y,0) = Th in Ω

Ti

(
x, y, t + �t

n

)
= T (x, y, t) in Ω

According to the initial conditions, Eq. (58) is supplemented as:

– for the first time levels, p + 1 and p, at t = 0:

{Tu}p+1 = [A]−1
(

[B]{Th} + 1

2

({F }p+1 + {F }p)) where

{
p ∼= (t = 0)

p + 1 ∼= (t = �t
n )

(62)

which this is the first substep for obtaining the unknown temperatures of the next step, {Tu(�t)};
– for the first time levels, p + 1 and p, at t = t (any other time):

{Tu}p+1 = [A]−1
(

[B]{Tu(t)
}+ 1

2

({F }p+1 + {F }p)) where

{
p ∼= (t = t)
p + 1 ∼= (t = t + �t

n )
(63)

where {Tu(t)} is the ultimate temperature of the previous step and has been attained formerly, and Eq. (63) is the first 
substep for obtaining the unknown temperatures of the next step, {Tu(t + �t)}.

Now with these considerations, the transient temperatures vector in each step can be achieved. And through subtracting 
the temperature vectors of a step from the previous one, the temperature variation can be obtained over an element. It is 
mentioned that the temperature fields are acquired by substituting the nodal unknown transient temperatures in Eq. (8). 
Finally, the elemental temperature variations are substituted in Eq. (17), after obtaining the thermal strain of an element, 
and substituting it in Eq. (16), the equivalent thermal loads associated with temperature variations are attained. After having 
obtained this, the displacement vector and other mechanical parameters can be reached.

The MATLAB codes have been written for the presentation of thermal XFEM problem formulations, and it has been 
merged with the elastic part, to completely simulate the problem with the extended finite-element method.
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Table 1
The properties of the plate and of the surrounding fluids [29,44].

E Young’s modulus 71.6 GPa
ν Poisson’s ratio 0.20
ρ Density of plate 2500 kg/m3

k Thermal conductivity 1.005 J/m s K
α Thermal expansion coefficient 8.7 × (10−6) 1/K
cp Isobaric mass heat capacity 921 J/kg K
κ Thermal diffusivity 4.36 × (10−7) m2/s
hw Convection coefficient of the water 440 J/m2 s K
ha Convection coefficient of the air 5 J/m2 s K
T w Temperature of the cold water 290.2 K
Ta Temperature of the air of outdoors 298 K
Th Temperature of the furnace 360 K
V Velocity of the translated plate 0.0021 m/s

Fig. 8. Stress fields contours when the plate has completely exited the furnace.

4. Results and discussions

In order to illustrate the performance of the formulation framework, the numerical results are obtained for real me-
chanical and thermal properties. The properties of the material and of the surrounding fluids are presented in Table 1. The 
maximum hoop stress criterion is used for predicting the path of the crack propagation. As it was stated in Section 2, the 
distance travelled by the plate in each time step is equal to the length of the mesh elements, and in several experimental 
works [25–28] it has been reported that the straight crack growth velocity envisaged in this problem is almost the same as 
the velocity of the translated plate. Hence, for simulating this consideration, the magnitude of the crack growth increment 
in each time step is assumed equal to the length of mesh elements. Mesh resolutions for the numerical results is chosen 
such that the numbers of elements are 65 × 190, and the results are obtained for the time when the plate has completely 
exited the furnace. Notice that for these appointed time level, mesh resolution, and velocity of the plate (in Table 1), the 
number of time steps is NTS = 115. The contours of the stress field components as well as the Von Mises stress are shown 
in Fig. 8 and Fig. 9.

As it is observed, the stress field contours show that a compressive stress region is distributed around the tensile stress 
area at the crack tip, which can be considered as a main cause of a higher value of the K I . This result as well as the contours 
of stress field distributions are in good agreement with the experimental results presented in [29]. By considering the higher 
value of the K I and the negligible value of K II (as it was reported in [26–28]), from the maximum hoop stress criterion, it 
can be expressed that the crack propagates with the K I dominant condition and the crack growth path is straight as it was 
presented in [26–28] (Fig. 10). The values of SIFs during crack propagation are displayed in Fig. 11. As previously mentioned, 
because of the low thermal conductivity and relatively high specific heat of the glass, the dominant factor that caused the 
plate to cool is the boundaries of the plate that was located in the cold bath. So at the time the plate enters the bath, there 
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Fig. 9. (a) Von Mises’ stress contour. (b) Magnification of the contour around the crack tip.

Fig. 10. The path of crack growth: (a) experimental result in [28], (b) present work.

is not enough time for heat transfer in the plate and the temperature gradients are small. But with the lapse of time and 
when the distance between hot and cold regions is reduced, the temperature gradients are intensified and this in turn will 
cause an increase in the displacement and in stress intensity factor K I .

For a closer look at the stress contours and a quantitative comparison of them, a coordinate system (xy) is considered 
while its origin is attached to the crack tip, as it is shown in Fig. 12. A and B are the intersections of the x and y axis with 
the plate boundaries.

Fig. 13 shows the variations of the stress components along the vertical axis. The dash dot & dot lines, which are related 
to the present work, are in proximate agreement with the dash & solid lines, which belong to the experimental work [29]. 



D. Ghaffari et al. / C. R. Mecanique 344 (2016) 78–94 91
Fig. 11. Variations of the stress intensity factors over time.

Fig. 12. The coordinate system defined for investigating the stress fields.

Fig. 14 and Fig. 15 show the variations of the stress fields along the axes of the specified coordinate system for the time 
when the plate had completely exited the furnace.

The results show that the XFEM formulation provides satisfactory numerical results for the above-mentioned problem, 
which is in good agreement with experimental results [28,29]. This formulation considered all affected parameters, so it 
can be appropriately used to study similar phenomena. This framework also can help factories to improve the production 
process through getting a better view and more exact data about the behavior of cracks in glass plates.

5. Conclusion

In the present study, the XFEM model for transient heat conduction in a moving glass plate is performed in order to 
investigate the stress field components and the Von Mises stress around the crack tip. In the XFEM formulation, convective 
heat exchange with moving boundaries was considered, in which the different convection coefficients and various tem-
peratures of the various surrounding fluids were taken into account. Then, the Crank–Nicolson time integration scheme is 
developed and adjusted for accurately solving the global system of the ODE heat equations. Afterward, the contours of the 
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Fig. 13. Variations of stress fields along the vertical axis (Oy), (dash & solid lines: experimental curve in [29], dash dot & dot lines: present work).

Fig. 14. Variations of stress fields along the vertical axis (Oy), for the time when the plate has completely exited the furnace.

stress field components as well as of the Von Mises stress were plotted. In order to display the ability of the developed 
formulation, the results were compared with experimental data from the literature. The results illustrated that a compres-
sive stress region exists around the tensile stress area at the crack tip, which can be considered as a main cause for higher 
mode-I stress intensity factor, as it has been presented in the experimental results. The variations of the stress intensity fac-
tors versus time are depicted and, according to their magnitude, the K I dominant state was considered to predict the crack 
propagation. The changes in the variations of the stresses created along the axes of a specified coordinate system attached 
to the crack tip are compared numerically. Generally, it can be stated that the XFEM presented here can help construct a 
better view of similar problems in order to improve the production process.

Appendix A

The defined terms of global stiffness, capacitance and conductance matrices are:
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Fig. 15. Variations of stress fields along the horizontal axis (Ox) for the time when the plate has completely exited the furnace.

[B] = [
Bu Ba Bb

]
Bu =

⎡
⎣ N,x 0

0 N,y

N,y N,x

⎤
⎦ Ba =

⎡
⎣ (NH),x 0

0 (NH),y

(NH),y (NH),x

⎤
⎦ Bb =

⎡
⎣ (NF),x 0

0 (NF),y

(NF),y (NF),x

⎤
⎦

[
Bth]= [

Bth
T Bth

A Bth
B

]
Bth

T =
[

N,x

N,y

]
Bth

A =
[

(NH),x
(NH),y

]
Bth

B =
[

(NF1),x
(NF1),y

]
[Ψ ] = [

NT N A NB
]

NT = [N] N A = [NH] NB = [NF1]

[C] =

⎡
⎢⎢⎣

E
1−ν2

νE
1−ν2 0

νE
1−ν2

E
1−ν2 0

0 0 E
2(1+ν)

⎤
⎥⎥⎦ D =

[
k 0
0 k

]

The components of strain and stress fields as well as Von Mises stress are:

{ε} = εi j =
⎧⎨
⎩

εxx

εyy

εxy

⎫⎬
⎭= [B]{U }

{σ } = σi j =
⎧⎨
⎩

σxx

σyy

σxy

⎫⎬
⎭= [C]{ε}

σV =
√

σ 2
xx − σxxσyy + σ 2

yy + 3σ 2
xy
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