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A new numerical method is presented with the purpose to calculate the Lamé coefficients, 
associated with an elastic material, through eigenvalues of the elasticity operator. The finite 
element method is used to solve repeatedly, using different Lamé coefficients values, the 
direct problem by training a direct radial basis neural network. A map of eigenvalues, 
as a function of the Lamé constants, is then obtained. This relationship is later inverted 
and refined by training an inverse radial basis neural network, allowing calculation of 
mentioned coefficients. A numerical example is presented to prove the effectiveness of 
this novel method.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In many practical problems of mechanical engineering, knowledge of material properties is one of the key elements in 
the design of safety systems or quality control. However, the measurement of material properties or quality control through 
non-destructive methods is a difficult task, since many materials used are anisotropic, composite or multilayer ones. In 
addition, many of these materials, especially the ones designed for safety reasons, must operate under, sometimes, extreme 
mechanical stress. A method for measuring and evaluating these properties is then necessary.

The inverse problems that arise in the context of elasticity are usually motivated by the need to have information 
concerning the properties and parameters of the materials under study. For example, we can mention:

– mathematical and computational methods for the reconstruction of cavities, cracks or inclusions (see [1,2]);
– ultrasonic waves for non-destructive testing of structures (see [3]);
– identification of model parameters such as Lamé coefficients, elastic moduli, mass density or wave velocity (see [4]);
– reconstruction of residual stresses (see [5]);
– model updating when local parameters are not known with sufficient accuracy, and therefore need to be corrected 

(usually with experimental information) on the dynamic response of the structure [6].

This article is devoted to the identification of model parameters. Specifically the paper proposes a method based on 
artificial neural networks to calculate the Lamé coefficients through eigenvalues of the elasticity operator. The applicability 
of this technique to solve real inverse problems depends on the measure, in practice, of the eigenvalues (or resonances) 
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associated with the elastic solid under study. Experimentally, it is possible to obtain both eigenvalues and model parameters 
using devices that use piezoelectric transducers. The operation of these devices is based on resonance methods such as 
resonant ultrasound spectroscopy (RUS) (see [7]). In a resonance experiment, we apply a periodical excitation (typically a 
sinusoidal excitation) to some point on the material, measure its response at some other point, and repeat the process for 
many frequencies. In typical RUS measurements, our purpose is to measure all of the resonances below some upper limit, 
because with a complete set of resonances we can assure the extraction of all the available information, which significantly 
simplifies the calculation process.

The Artificial Neural Network (ANN) proposed is a multilayered Radial-Basis Function (RBF) network (see Girosi et al. [8]). 
As discussed in Schilling et al. [9], a RBF ANN can approximate a function f using nonlinear functions that provides the best 
fit to the training data. Our aim is to evaluate the speed and accuracy of our neural network methodology in comparison 
with a method based on FEM, for a known operator whose eigenvalues can be obtained through more classical numerical 
methods. In other words, our purpose is to note that all the computation process using neural networks, including the 
training process, the validation process and the simulation process, needs less computational time than the FEM technique, 
with a good calculated error performance.

2. Eigenvalue problem in elasticity

Let � ⊂ R
k be a nonempty, open, connected and bounded domain, with a Lipschitz-continuous boundary � := ∂�. The 

unit normal vector into the exterior of � is denoted by n = (n1, n2, . . . , nk)
T ∈R

k and x = (x1, x2, . . . , xk)
T ∈R

k .

2.1. Constitutive relations

Let us denote the fourth-rank elasticity tensor by C i jrl , with indices {i, j, r, l} running from 1 to k. From thermodynamical 
energy considerations, the coefficients above have the following symmetry properties C i jrl = C rli j = C jirl . Furthermore, the 
elasticity tensor is positive definite. With this, the constitutive physic law relating the mechanical displacements u and the 
associated stresses σ i j (known as the generalized Hooke’s law) is given by

σ i j(u) = σ ji(u) =
∑
r,l

C i jrl S rl(u) (1)

where we have introduced the strain tensor S i j(u) = 1
2

(
∂ jui + ∂iu j

)
.

Let us notice that for an isotropic medium, the most general form for a fourth-rank elasticity tensor, independent of 
any rotation, is C i jrl = λδi jδrl + μ(δ jrδil + δilδir), where the constants λ and μ are known as Lamé constants, and δ·,· is the 
Kronecker delta function.

2.2. Eigenvalue problem

Let u = u(x) = (u1(x), u2(x), . . . , uk(x)) ∈ C
k be the mechanical displacements field and σ = σ (u) = {σi j(u(x))}1≤i, j≤k ∈

C
k ×C

k the stress tensor associated. Let us consider on the boundary � the following Dirichlet condition u = 0.
Thus, the elasticity eigenvalue problem (in the static case) can be written as:

− ∇ · σ = γ u for x ∈ � (2a)

u = 0 for x ∈ � (2b)

In an isotropic (and homogeneous) medium, we have:

∇ · σ = μ	u + (λ + μ)∇∇ · u (3)

Using (2) and (3), we have the following eigenvalue system equation:

− μ	u − (λ + μ)∇∇ · u = γ u for x ∈ � (4a)

u = 0 for x ∈ � (4b)

3. The direct and inverse problems

3.1. The direct problem

From now k = 2, thus � ⊂ R
2. Our purpose is to solve the following eigenvalue problem: find γ ∈ R and the non-null 

valued functions u that are solutions to{
−μ	u − (λ + μ)∇∇ · u = γ u in �

u = 0 on �
(5)
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Let us notice (see [10]) that the only non-null solutions to equations (5) are a countable pair sequence {(γ j, u j} j�1 of 
eigenvalues and eigenfunctions.

Let us define the following function R�,N associated with equation (5):

R�,N :R2 →R
N ,

−→γ N := (γ1, γ2, · · · , γN)T = R�,N(μ,λ) (6)

Let us notice that, given the values of the Lamé coefficients μ > 0 and λ > 0, R�,N (N ∈ N), for each domain � with 
its regular boundary �, solves the direct problem associated with equation (5), calculating the first N eigenvalues of the 
elasticity operator.

3.2. The inverse problem

Let us consider the following inverse problem associated with (5):
Find (μ, λ) ∈ R

2 such that the following holds{
−μ	un − (λ + μ)∇∇un = γn un in �

un = 0 on �
(7)

where the desired sequence 
{
γn, un

}
n

, with n ∈N and n ≤ N < +∞, is given.

Thus, now it is possible to define the function R−1
�,N

, which is the inverse function of R�,N , in order to solve the inverse 
problem associated with equation (7):

R−1
�,N

:RN →R
2, (μ,λ) = R−1

�,N
(
−→γ N) (8)

4. Solution to the direct problem

4.1. Variational formulation

Let us define the functional space

V = U =
{

v = (v1, v2) ∈ [H1(�)]2; vi = 0 on �, 1 � i � 2

}
(9)

equipped with the norm ‖v‖2
1,� = (

2∑
i=1

‖vi‖2
1,�)1/2.

Let us notice that the Sobolev space [H0(�)]2 coincides with [L2(�)]2, in which case the norm and inner product are 
denoted by ‖·‖0,� and (·, ·)0,� , respectively.

Since that the associated variational form of equations (4a) and (4b) introduces a “bad boundary condition”, we use the 
corresponding variational form of equations (2a) and (2b):

aμ,λ(u, v) :=
∫
�

σ (u) : S(v)dx =
∫
�

{
λ∇ · u∇ · v + 2μS(u) : S(v)

}
dx = γ

∫
�

u · v dx (10)

Thus the eigenvalue problem for the elasticity system with homogeneous boundary conditions (weak formulation) is 
given by: find (γ , u) ∈ (R, U) such that

aμ,λ(u, v) = γ (u, v)0,� ∀v ∈ V (11)

4.2. Discretization

The wellposedness of the discrete weak form of (11) can be guaranteed by the fact that the corresponding approximation 
spaces satisfy the Babuska–Brezzi condition (see [10–15]). Let {Th}h>0 be a regular family of triangulations of �, made up 
of triangles T of diameter hT , such that h := sup

T ∈Th

hT and � = ⋃ {T : T ∈ Th}. Let us select, associated with the mesh Th , the 

finite element space Vh ⊂ V of piecewise polynomials Pk of degree k, with k ≥ 1.
Let (γh, uh) ∈ (Vh, R) be the eigenpair solution to the discrete weak form of (11). It is well known that the Rayleigh 

quotient for each eigenvalue γh is given by:

γh = aμ,λ(uh, uh)

(uh, uh)0,�

= R�,N(μ,λ) (12)
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5. Solution to the inverse problem

Let us consider a direct RBF ANN (see Schilling et al. [9]) R̂θ1

�,N
: R2 → R

N as an approximation of the function R�,N , 
with one hidden layer containing s1 neurons and one output layer containing N neurons. Let us notice that the activation 
function associated with each neuron is characterized by y = exp{−x2}.

The function R̂θ1

�,N
has the following form:

−̂→γ N = R̂θ1

�,N
(μ,λ) = L1

W · exp(−y1(μ,λ) · ∗y1(μ,λ)) + b1
2 (13)

where −̂→γ N := (γ̂1, ̂γ2, · · · , ̂γN )T is the output vector and y1(μ, λ) = (I1
W · (μ, λ)T ) · ∗b1

1. Furthermore, θ1 is a vector con-
taining all the weights associated with the neural network, which must be determined in the training of the network. In 
other words, θ1 contains all coefficients associated with the design parameters L1

W (N × s1), I1
W (s1 × 2), b1

1 (s1 × 1) and 
b1

2 (N × 1). It is important to remark that “·” is the classic matrix vector product, and “·∗” is the component to component 
vectorial product.

Let us consider a training set with N(1)
t input–output vectors 

{
(μ(i), λ(i)), (−→γ N )(i)

}N(1)
t

i=1
, where (−→γ N )(i) =R�,N(μ(i), λ(i))

and let us define the following optimization problem:

θ̂1 = inf
θ1

J
N(1)

t
(θ1) = inf

θ1

{
1

N(1)
t

N(1)
t∑

i=1

(
(
−→γ N)(i) − R̂θ1

�,N
(μ(i), λ(i))

)2
}

(14)

The problem (14) can be solved iteratively using the backpropagation algorithm.
Once determined, the optimal value for θ1, i.e. the determined θ̂1, it is possible to consider a inverse RBF ANN R̂θ2

�,N
:

R
N → R

2, trained with simulated data obtained from the direct network, to calculate the inverse of equation (13), in order 
to obtain an approximation for R−1

�,N
, as follows:⎧⎪⎨⎪⎩

(μ̂, λ̂) = R̂θ2

�,N
(
−̂→γ N

) = L2
W · exp(−y2(

−̂→γ N
) · ∗y2(

−̂→γ N
)) + b2

2

y2(
−̂→γ N

) = (I2
W · −̂→γ N

) · ∗b2
1

(15)

where θ2 is a parameter vector containing everything that is going to be determined from the network training and associ-
ated with the design parameters L2

W (2 × s2), I2
W (s2 × N), b2

1 (s2 × 1) and b2
2 (2 × 1). Let us notice that s2 is the number 

of neurons in the hidden layer.
The problem of training this inverse network also can be solved using the backpropagation algorithm with N(2)

t input–
output vectors.

6. Numerical example

Let us consider a square domain � = (]0.0, 1.0[×]0.0, 1.0[) ⊂ R
2 and the following coefficients used for training the 

direct ANN: μi = E

2(1 + ν i)
and λi = Eν i

(1 + ν i)(1 − 2ν i)
, where the constant E = 21.5 is the Young’s modulus and ν i =

0.1 + 0.01(i − 1), with 1 ≤ i ≤ N(1)
t = 21, is Poisson’s ratio.

Once trained the network R̂θ1

�,N
, using the FEM technique with P2 elements in � (see Section 4), and calculated the 

associated vector θ̂1, we use this direct network to simulate a more larger amount of data N(2)
t , obtaining a set of training 

data for the inverse network R̂θ2

�,N
. In this case, 1 ≤ i ≤ N(2)

t = 201, ν i = 0.1 + 0.001(i − 1). This last training gives us the 
value of θ̂2. The algorithm used to train both networks is the backpropagation algorithm. Fig. 1 shows a comparison of 
the evolution of the Lamé coefficients, when ν i = 0.1 + 0.0001(i − 1) with 1 ≤ i ≤ 2001, as a function of the first N = 3
eigenvalues: 1) calculated using the inverse RBF ANN directly applied to the set of eigenvalues and 2) calculated from the 
inverse functional relationship between Lamé coefficients and eigenvalues obtained with the FEM technique. As seen in 
this figure, the Lamé coefficients calculated from the neural network method approach quite well the calculated coefficients 
using the inverse functional relationship.

Table 1 summarizes the computational performance using the mean squared error (MSE), the computational time, in 
seconds, using RBF ANN (CT ANN) directly applied to the set of eigenvalues, and also the computational time, in seconds, 
using the inverse functional relationship between Lamé coefficients and eigenvalues obtained with the FEM technique (CT 
FEM), required for simulations. The computer used to obtain the above results have a 2.16-GHz Intel Core Duo processor 
with 1 GB 667 MHz DDR2 SDRAM.
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Fig. 1. Lamé coefficients as a function of the first N = 3 eigenvalues: 1) calculated using inverse RBF ANN (in dashed line), 2) calculated using the inverse 
functional relationship (in solid line). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 
article.)

Table 1
Summary for computational performance and the computational time for 
the numerical example using Ns = 2001 simulation data.

Ns MSE λ MSE μ CT ANN CT FEM

2001 4.3863e–05 1.8435e–06 14.1525 573.39

Let us notice that CT ANN is obtained taking into account the computational time required to calculate the training 
data, through FEM, needed by the first network in each example. We observe from the above table the excellent computa-
tional time obtained by using the RBF ANN compared with the computational time obtained by using the FEM procedure, 
remarking the also good computational performance that is measured using the MSE.

Finally, let us remark that a more complex geometry of the domain will be necessary to train with more data N(1)
t the 

direct RBF ANN with the purpose of improving the MSE.

7. Conclusion

In this paper, an efficient numerical method, based on an artificial neural network is presented, in order to calculate 
approximately the Lamé coefficients associated with an elastic solid, using the eigenvalues of the linear elasticity operator. 
The results show that the calculation of the Lamé coefficients, associated with the elastic properties of the material under 
study, through the eigenvalues computed using a neural network method, is very efficient. In other words, the relative error 
is negligible, and the computation time is significantly smaller than the used FEM technique, as seen in Table 1.

A neural-network-based method has shown that it can be used as an approximate method for calculating the elastic 
features of solids. In summary, the main advantage of this method is that all the computation process using neural networks, 
including the training process, the validation process and the simulation process, needs less computational time than the 
FEM technique, with a good calculated error performance.
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