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The aspect ratio of the height δ to the wavelength λ of the undulation generated by a 
vertical vibration of the granular layer was investigated experimentally, and its dependence 
on the frequency f and amplitude a is disclosed. We found that δ/λ is well described 
by an almost linear function of f a rather than by that of � ≡ (2π f )2a/g, irrespective of 
the horizontal size of the container, where g is the acceleration of gravity. Appearance of 
sub-arches to maintain the main eigenmode and the transitions between eigenmodes of 
undulation are also elucidated.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Vertically vibrated granular layer confined in a vessel shows typical wave motions depending on the amplitude a and 
frequency f of the external forcing [1–5]. In addition to the planar pattern [6–12] or cross-sectional pattern [13–19] of 
ripples, the cross-sectional structures on the vibrated granular layers, such as the regular pattern of defects [20], transverse 
bending [21], arches [22], and kinks [23] have been reported. In contrast to the ripples, the latter patterns have common 
features of wavy deformations characterized by arch-like undulation of an almost constant thickness layer with integer or 
half-integer number of waves along the layer, and alternating ridge-foot positions with a period twice of the forcing period. 
The onset of the undulation, or the regular pattern of defects, was investigated as early as 1989 by Douady et al. [20]. 
They proposed a relation between the minimum distance l between “solidified parts” of the layer normalized by the layer 
thickness h (as shown in Fig. 1) and the non-dimensional acceleration � ≡ (2π f )2a/g ( f and a are the frequency and 
amplitude of external oscillation, and g is the acceleration of gravity) described by

h

l
≈ 0.16(� − 4.2) (1)

We have performed an essentially similar experiment using an experimental apparatus, the details of which have been 
given in our previous papers [24–26]. A rectangular container made of a transparent acrylic resin with horizontal dimensions 
L × W (W � L) and height H was mounted vertically on an electromagnetic shaker. The container was oscillated sinusoidally 
with a frequency f and an amplitude a, so that the position of the container bottom z is given by z = a sin(2π f t). Here 
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Fig. 1. Definition sketch of undulation.

Fig. 2. (a) Dependence of h/l on �, and (b) time variation of h/l and δ/l. For the definition of h, l and δ, see the text and Fig. 1. All the data are due to the 
measurement of the undulation presented in this paper, which may not be appropriately described by a single linear fit in terms of �.

we have taken the Cartesian coordinate axes x and z in the horizontal and vertical directions, respectively. The pattern 
formation of a vertically oscillated layer of granular material of a prescribed thickness h consisting of about ten layers of 
spherical particles was observed from the side by a high-speed video camera.

We show in Fig. 2(a) the relation of the ratio h/l to the non-dimensional acceleration � as was described by Douady et 
al. [20], where all of the plotted data are the ones obtained in our experiment. In spite of larger scattering, an almost linear 
relation is recognized for respective frequencies f , which seems to confirm the results of Douady et al. [20]. The slopes and 
the critical � of the fitting curves, however, vary between different sets of external forcing. We also show the time variation 
of h/l for a particular case in Fig. 2(b). The abscissa is the time normalized by the period of oscillation T , where the time 
t = 0 is chosen when the container’s wall is at the lowest position. As has been expected, the horizontal extension l varies 
with time between 0 and a certain length (of the order of the container size), while the layer thickness is almost constant, 
so that the ratio h/l varies considerably. This raises a question on the timing of measurement of the arch structure. On the 
other hand, the ratio δ/l remains almost constant as is shown in Fig. 2(b), where δ is the height of the arch. These results 
imply that the original Douady plot may not be a universal relation, and/or the characteristic lengths ratio h/l, and � may 
not be appropriate parameters.
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Fig. 3. Frequency f and amplitude a of the external forcing, in which the undulations are reported in the present paper. Un refers the eigenmode of the 
granular layer confined in a container of horizontal size L, where n (being an integer or a half integer) is the number of waves of the bending motion of 
the layer.

The importance of the particle velocity v or f a, instead of �, on the characterization of the vertically oscillated granular 
layer has already been pointed out. For instance, Umbanhowar and Swinney [12] deals with the square/stripe patterns, and 
proposed the different wavelength scaling depending on the extent of “grain mobility” ṽgm ≡ 2πaf /

√
gd, which reflects 

solid–fluid transition. The scaling of dilatation and meltdown of the granular layer using the container velocity v0 (∝ f a) 
rather than acceleration � has also been pointed out by Götzendorfer et al. [27]. In the latter, the center of mass of the 
vibrating granular layer is plotted against v0 and is compared with the one scaled by �. They used different materials with 
selected frequencies of oscillation, and varied the oscillation amplitude in more detail. Their data show a larger scattering in 
the � plot, while better fitting by the v0 plot is obtained. The latter, however, deals with fluidization, so that no structure 
formation such as ripples or undulation is mentioned. We have also remarked the importance of momentum transfer (∝ f a)

for characterizing ripples in the vertically vibrated granular layer [16–19], which suggests a similar essential role in the 
formation of undulation.

So far the formation mechanism of undulation has been examined in detail [24–26], in which the buckling due to the 
dilatancy of the layer at the collision with the bottom wall is found to be the fundamental mechanism. Here, the horizontally 
dilated layer due to the impact on the container’s bottom wall is forced to bend so as to adjust the elongated length of the 
layer, which is reminiscent of the buckling and bending of the elastic plate [28]. The characteristics of undulation, however, 
are not yet fully understood. For instance, what determines the number of undulation waves n, or what determines the 
structure of undulation such as δ and λ? Obviously they will depend on the material properties of the particle, such as the 
diameter, the density, the friction constant, and the restitution coefficient, etc., as well as the magnitude of external forcing 
( f and a). It will also depend on the thickness h and on the horizontal size of the container L. The latter is included here 
as a control parameter, because the number of waves n, and hence the mode, is likely to increase with the increase in L, 
if other conditions to realize a particular undulation mode are the same. To avoid the complexity, we shall consider in this 
paper a single species of granular material of a fixed size and an otherwise fixed layer thickness, and focus our attention on 
the dependence of the undulation’s characteristics on the external forcing conditions ( f and a) and the container size L.

2. Experiment

We observed an undulation of about 10 layers of lead spheres of a diameter d = 1.09 ± 0.09 mm filled in a container of 
horizontal dimension L = 100∼200 mm, height H = 90 mm and width W = 5 mm. All the measurements were made after 
the stationary states of undulation were reached under atmospheric pressure. In our previous researches [24–26], the type 
of undulation with n arches of undulation (n being integers) is denoted by Sn , whereas the type with n − 1/2 arches by An . 
In the following, we denote both types by Un , where n is an integer or a half integer.

Fig. 3 is the f –a diagram, where some types of eigenmodes of undulation are recognized. Generally speaking, higher 
eigenmodes appear for larger f and/or larger a. An overlap of the region of undulation modes for different container sizes 
is recognized.
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Fig. 4. Undulations observed in the container of different sizes. Comparison of the wavelength under external forcing with almost the same f a. (a) U2, 
(b) U2.5, (c) and (d) U3, (e) U4 mode.

Fig. 5. Comparison of undulation modes in the container of different sizes, where the combination of f and a is varied. Error bars are omitted for L =
140 mm and 160 mm cases in order to avoid the overlapping of data points, but they are almost the same as those in other cases.

2.1. Container size dependence of the wavelength of the eigenmode

As has been mentioned, undulation is interpreted as eigenmodes of buckling of the granular layer. This naturally raises a 
question on the dependence of the container size on the wavelength. In order to clarify the latter, we performed experiments 
using a container of varied horizontal sizes, and compared the wavelengths of undulation. Fig. 4 is an example showing 
the dependence of the container size L on the undulation wavelength λ. These waves are realized under conditions that 
are close to eigenmodes in a given container. We can recognize the agreement between λ of the U2 mode in L = 100 mm
(Fig. 4(a)) and λ of the U4 mode in L = 200 mm (Fig. 4(e)) within the experimental accuracy. Fig. 5 compares the conditions 
under which such a wave is observed in a container of different sizes, where the combination of f and a is varied so that 
a stable state is reached. The ordinate is the wavelength, whereas the abscissa is the amplitude of external forcing a. As far 
as the near eigenmode is concerned, the wavelength under the same f a values looks almost the same irrespective of the 
container size L, so that the number of waves n of the eigenmode Un is proportional to L (in expectation of n = L/λ). In 
view of the exact eigenvalue problem for the buckling of a continuum elastic plate, the container size L required for U2.5
is 125 mm, which looks nearly satisfied in the L = 120 mm case (Fig. 4(b)). Similarly, the U3 mode requires L = 150 mm, 
which is marginally satisfied in the L = 140 mm case (Fig. 4(c) and L = 160 mm case (Fig. 4(d)). The latter two cases, 
however, suggest that the eigenvalue problem of the granular layer is not completely determined by the relation n = L/λ. 
The wavelengths in Fig. 4(c) and (d) are slightly modified to adjust the container size, which will be checked in detail in 
the next subsections.

2.2. Adjusting zone

In contrast to the buckling of a continuum elastic plate, where every eigenmode requires a well-defined wavelength L/n, 
wider variations of the wavelength are recognized in the undulation of a granular layer. A closer look of our observation 
reveals that the solidified part of the granular layer seems to play a role of effective boundary to form the foot of the arch, 
which relaxes the eigenvalue conditions on the container size L as well as the forcing conditions on f and a. Examples 
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Fig. 6. Typical undulations observed at the maximum amplitude of the arches (L = 200 mm, f = 25 Hz): (a) U4 mode, (b) U4 mode with the adjusting 
zone, and (c) U4.5 mode.

Fig. 7. Type of wavelength adjustment. Type I corresponds to one of the eigenmodes. Type II admits the part of the layer in contact with the bottom wall 
elongated and flattened so as to adjust the eigenmode condition. Sub-arches appear in Type III, which also adjust the eigenmode condition.

Fig. 8. Undulations accompanied by the formation of sub-arches (U2.5 mode under f = 39 Hz, a = 1.17 mm in a container of L = 140 mm). (a) Main arches 
denoted by “A” and sub-arches denoted by “B” at t = 0 (frame 34), (b) sub-arches disappear (frame 40), (c) four pictures at frames 44 (red), 46 (blue), 48 
(gray) and 50 (green) are superposed, which describe the direction of motion of particles shown by arrows, and (d) main arches and sub-arches at t ≈ T
(frame 59). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

of such snapshots are shown in Fig. 6, all of which are observed at the maximum amplitude of arches of the layer in the 
container L = 200 mm under f = 25 Hz. The U4 mode is observed at (a) a = 3.81 mm and (b) a = 4.00 mm, where an 
adjusting zone adjacent to the right side wall is recognized in the latter. Here, an “adjusting zone” is the part of the layer 
where the granular material is immobilized and bridges both ends of the waves (as illustrated by Type II in Fig. 7). With the 
increase of external forcing, the adjustment is no longer accomplished and a higher mode U4.5 appears in (c) a = 4.20 mm.

2.3. Sub-arches for adjustment

The adjustment shown in the previous subsection is mainly observed near the side walls of the container. A closer look 
at the experimental findings reveals the appearance of sub-arches as is illustrated by Type III in Fig. 7. These sub-arches are 
probably the same as the ones described by Douady et al. [20], but the latter did not deal with in detail. Typical example of 
the Type-III undulation is shown in Fig. 8, which is obtained at f = 39 Hz, a = 1.17 mm in the container L = 140 mm. The 
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container’s bottom wall is at the lowest position at phase (a) (frame 34, t = 0), whereas it is at the highest position at phase 
(d) (frame 59, t ≈ T ). In both cases, arches of two different sizes, the main arches of wavelength λ and the sub-arches of 
wavelength λs , denoted by “A” and “B”, respectively, in Fig. 8 are recognized. As the container’s bottom is pushed up, while 
the granular layer is almost in a stationary state, these arches decrease their heights, so that the sub-arches “B” disappear 
in (b). Fig. 8(c) shows the subsequent movement of particles. In the latter, four pictures at frames 44 (red), 46 (blue), 48 
(gray) and 50 (green) are superposed (the frame rate being one frame per one millisecond). The main arches in Fig. 8(a) 
and (b) become smaller in size but do not disappear because of the bridging associated with volume exclusion. On the 
other hand, the flat regions in Fig. 8(b), where sub-arches were previously observed, are compressed and yield buckling, so 
that these parts give rise to convex bending, and develop into the main arches in phase (d) (t ≈ T ). Here, the sub-arches 
(previously the main arches, which decrease in size and are solidified) serve as the effective boundaries for the main arches. 
The processes from (a) to (d) are repeated with the positions of main arches and sub-arches alternating with each other, so 
that the same pattern is reproduced after t = 2 T .

2.4. Eigenmode transition

We have shown that in a container of a given size, higher eigenmodes appear with the increase of external forcing 
f a. In contrast to the buckling of the plate of a continuum medium, where sharp transitions between eigenmodes occur, 
eigenmode transitions in the granular layer are not so sharp due to the appearance of adjusting zones (Fig. 7).

Figs. 9(a)–(c) show examples of mode transition from Un to Un+1/2, where n is an integer or a half-integer. The abscissa 
is the amplitude of forcing f a, whereas the ordinate is the difference δL(≡ L − nλ) normalized by the exact wavelength 
λe(≡ L/n) of the relevant eigenmode. The solid lines connect the states in the same mode through an adjustment of Type 
II (Fig. 7), whereas the broken lines correspond to the mode transitions. When δL/λe exceeds a certain amount, presumably 
0.1 or larger, a transition of mode Un to mode Un+1/2 may be invoked. Physical processes of these transitions are illustrated 
by Fig. 10. In the exact eigenstate, either in Un−1/2 or Un mode, δL is zero (see Fig. 10(b) and (e)). When the wavelength 
decreases in the former, δL becomes positive (Fig. 10(c)). With further decrease in the wavelength, almost one half wave of 
the undulation is recognized (as described in Fig. 10(d)), so that a transition of mode Un−1/2 to mode Un is admitted. The 
container, however, does not have sufficient space to allow a whole wave, so that δL < 0 at this stage (Fig. 10(d)). This type 
of transition from Fig. 10(c) to (d) was most frequently observed in our experiment, which we refer to as “Mode transition 
(I)” as is shown in Fig. 9(a). The mode transitions from (a) to (f) (“Mode transition (II)”), and the mode transitions from (a) 
to (d) (“Mode transition (III)”) were also observed as shown in Fig. 9(b) and (c), respectively. Other possible types of mode 
transition from (c) to (f) (“Mode transition (IV)”) was not observed in our present experiment.

2.5. Spatiotemporal behavior of undulation

We have ascribed the undulation to the buckling and bending of the granular layer due to the dilatancy of the layer at 
the impact of the container wall. The layer, of course, deforms dynamically both in space and time, so that a question arises 
at what phase of oscillation the structure of undulation is best characterized.

We show the illustrative space–time diagram of the contour of the “ideal” undulation in Fig. 11, where the amplitude of 
the oscillation of the container’s bottom wall is neglected. The abscissa is the horizontal position of the lower boundary of 
the granular layer extending two wavelengths (U2 case) and the ordinate is the time that covers a half cycle of undulation 
T (≡ 1/ f ). The initial “arch” of the layer decreases its width and height, becomes flat (but the layer itself is dilated) at time 
t = T /2, and new arches emerge at positions that are formerly valley regions. An example of experimental data, observed 
under f = 32 Hz, a = 2.26 mm in the container L = 140 mm, is shown in Fig. 12, which basically agrees with the ideal 
case shown in Fig. 11. A closer look of the experimental data, however, reveals some differences. At t ≈ T /2, the layer is 
almost flat, so that the void space between the grains and the space below the arches is indistinguishable, which blurs the 
boundary of arches. Moreover, a finite-amplitude vertical displacement of the container wall as well as the volume exclusion 
of particles induces the change of positions of the foots of arches sideways differently depending on the phase of collisions, 
which reflects the fore-and-aft asymmetry of the diagram at t ≈ T /2.

Fig. 13(a) illustrates the “ideal” spatiotemporal diagram of the Type III, where the amplitude of the oscillation of the 
container’s bottom wall is neglected. The contours of the lower boundary at typical timings are illustrated by thick solid 
lines. The broken lines describe the positions of the layer that are in contact with the container’s wall. The regions marked 
by “A” and “B” correspond to the main arches and sub-arches, respectively. An example of the space–time diagram of Type 
III undulation is shown in Fig. 13(b), which corresponds to the one described in Fig. 8. Main arches and sub-arches are also 
denoted by “A” and “B”, respectively, which alternate periodically both in space and time. In the region denoted by “C”, the 
void space between the grains and the space below the arches is indistinguishable in our experiment.

2.6. Aspect ratio of arch height to wavelength

In order to characterize the arch structure, we have measured the maximum height of the arch δ and the wavelength λ. 
Taking into account the adjusting zones and/or sub-arches stated in the previous subsections, we restrict our attention to 
the aspect ratios of the undulations in near eigenmodes. Fig. 14 is the result obtained in a container of L = 140 mm, where 
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Fig. 9. Adjustment of the wavelength and the mode transition observed in the container L = 140 mm. The ordinate is the difference of the observed 
wavelength normalized by the exact wavelength, whereas the abscissa is the amplitude of forcing (proportional to f a). The broken lines show the transition 
of the mode from Un to Un+1/2, where n is an integer or a half integer.

the ordinate is δ/λ. We adopted λ rather than l for normalizing the height δ to avoid the ambiguity of determining the 
accurate positions of the foot of the arch that are dynamically compacted. The abscissa of Fig. 14(a) is �, whereas that of 
Fig. 14(b) is f a. The former plots show that undulations appear in the � range between 6 and 10, but the data points are 
broadly distributed, which suggests that the scaling in terms of � is not necessarily appropriate. On the other hand, rather 
good fitting of δ/λ against f a is given by

δ

λ
= 0.00365 ( f a − 20.5) (2)

which suggests that the aspect ratio of the arch is well described by f a.
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Fig. 10. Illustration of the type of mode transitions. With the decrease of the wavelength, the mode Un−1/2 with δL > 0 easily exhibits a transition to Un

with δL < 0, as is described by transition mode (I) in the figure, where δL ≡ L − nλ.

Fig. 11. Space–time diagram of the “ideal” undulation, where the amplitude of the oscillation of the container’s bottom wall is neglected. Contours of the 
lower boundary of the granular layer at typical timings are illustrated by thick solid lines. The broken lines describe the positions of the layer that are in 
contact with the container wall. The regions marked “A” correspond to the arch. Peak and valley regions alternate periodically in space and time.

Fig. 12. An example of the space–time diagram of the undulating layer (L = 140 mm, f = 32 Hz, a = 2.26 mm). Periodic alternations of the peak and valley 
regions are recognized, but the boundaries of the arches are blurred because of the finite size of particles as well as the finite amplitude of the oscillation 
of the bottom wall.

Fig. 15 shows the aspect ratios δ/λ similarly obtained in a container of various sizes. The abscissa of Fig. 15(a) is �, 
whereas that of Fig. 15(b) is f a. In spite of some scattering, all the data seem to be well described by a line in the latter. 
Fig. 15(c) shows the dependence of the slopes and critical values giving the best fits of the data by a line

δ

λ
= α [ f a − ( f a)c] (3)

which suggests that the aspect ratio of arch height to wavelength is similarly described by f a irrespective of the container 
size.

3. Conclusion

We have experimentally investigated the undulation of the granular layer in a container of various horizontal dimensions 
L, which is sinusoidally vibrated vertically with frequency f and amplitude a. Our findings are as follows.
(i) We have confirmed that the undulation is due to the buckling of the granular layer by the lateral force associated 
with the dilatancy generated by the impact of the layer on the container wall. A higher eigenmode Un , whose number of 
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Fig. 13. (a) Space–time diagram of the “ideal” Type-III undulation, where the amplitude of the oscillation of the container’s bottom wall is neglected. The 
contours of the lower boundary at typical timings are illustrated by thick solid lines. The broken lines describe the positions of the layer that are in contact 
with the container wall. The regions marked by “A” and “B” correspond to the main arches and sub arches, respectively. (b) Space–time diagram of the 
Type-III undulation corresponding to the one described in Fig. 8 (L = 140 mm, f = 39 Hz, a = 1.17 mm). Main arches and sub-arches are denoted by “A” 
and “B”, respectively, which alternate periodically both in space and time. In the region denoted by “C”, the void space between the grains and the space 
below the arches is indistinguishable in our experiment.

undulation is n (n being an integer or a half integer), is generated for larger external forcing f and/or a under a given size 
container.
(ii) In contrast to the buckling of the continuum plate, where the wavelength should be equal to L/n (n being an integer or 
a half integer), the eigenmode conditions are relaxed in the granular layer. Adjustment of the wavelength to the container 
size is made by the emergence of the solidified parts of the layer or the formation of sub-arches, which play the role of 
effective side-boundaries for the main arches.
(iii) As far as the near eigenmode is concerned, the wavelength of the undulation (of the fixed thickness layer of the same 
material) is almost the same for the same value of f a, irrespective of the container size.
(iv) With the increase of the external forcing, the adjustment of the layer in a certain eigenmode Un (n being an integer or 
a half integer) becomes no longer attainable, and the transition to the mode Un+1/2 occurs.
(v) In the case of near eigenmodes of the vertically vibrated granular layer, the aspect ratio δ/λ of the undulation is one 
of the appropriate quantities to characterize the arch structure. A similarity relation is found between δ/λ and the forcing 
f a. Reasonable agreement of the linear fitting of the near eigenmodes with a common slope and an intercept is obtained 
irrespective of the container size.

4. Discussion

Our experiments were performed using only one species of particles filled in a container up to a certain fixed thickness, 
so that it is not clear how the slope and the intercept of Eq. (3) depend on the properties of the particle, such as the size 
d, density ρ , restitution coefficient e, surface roughness or friction, nor how they depend on the layer thickness h or the 
number of layers N(≈ h/d). Our previous studies [17–19], however, suggest the essential role of the momentum transfer 
due to the impact of the layer with the container wall on the pattern formation, i.e. the momentum given in the vertical 
direction induces the vertical compaction and horizontal dilatancy in the granular layer, which causes the buckling of the 
layer.

According to the theory of elasticity (see, e.g., Ref. [28]), the deformation of the elastic plate of length L, width W and 
height h, is described by the equation

d2θ

2
= −α2 sin θ (4)
ds
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Fig. 14. Dependence of the normalized maximum displacement of arch δ/λ on (a) �, and (b) f a. The dotted line in the latter is the least square fit given 
by Eq. (2).

where θ is the angle tangent to the arc measured from the horizontal direction (x direction), s is the length along the 
layer measured from one of its end, α = √

Fx/E∗ I , Fx is the force applied horizontally at both ends of the layer, E∗ is the 
effective Young’s modulus of the granular layer in the x direction, and I(≡ W h3/12) is the geometric moment of inertia 
of the cross-sectional area. By applying the boundary condition that the layer meets perpendicularly to the side walls of 
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Fig. 15. Dependence of the container size on the aspect ratio of undulation: (a) δ/λ vs. �, (b) δ/λ vs. f a, and (c) the slopes and critical values of Eq. (3) for 
various container sizes L.
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the container, the solution to Eq. (4) admits a particular eigenmode of undulation, whose form is described in terms of the 
elliptic functions [26]. Based on that theory, the aspect ratio of the wave height δ to wavelength λ is

δ

λ
= k

2E − K
(5)

where K (k) and E(k) are the complete elliptic integrals of the first and second kind, respectively, and k is the parameter 
adjusted at a certain position of the layer. When the initial flat layer of length L is undulated to form the arch, the amount 
of elongated layer δL is calculated to be

δL

L
= 2(K − E)

2E − K
(6)

For smaller k, Eq. (6) is approximated by

δL

L
= k2

(
1 + 9

8
k2 + · · ·

)

so that the otherwise flat layer is acted by the force Fx immediately before the buckling:

Fx = E∗(W h)
δL

L
≈ E∗W hk2 (7)

As is mentioned above, the latter force originates in the collision of the layer with the container’s bottom wall, which 
needs some caution. Our observation reveals that (i) the layer meets the bottom of the container at a certain time t0 when 
the latter is nearly at the lowest position, (ii) it is pushed up with the container, and then (iii) it is released at a time 
t1 when the latter is nearly at the highest upward velocity. This implies that t1 ≈ t0 + 1/(4 f ), so that the collision time 
	t ≈ 1/(4 f ). In a stationary state of undulation, however, it is not the whole layer that collides with the bottom wall at an 
instance of impact, so that we should consider the effective length of the layer L∗ for the estimation of momentum transfer. 
We shall denote the ratio of L∗ to the total layer length L by r. Then the force F z applied to the layer vertically is roughly 
estimated by F z ∼ M∗	v/	t . Here, M∗(= rρLW h) is the relevant mass of the layer, ρ is the density of the layer, and 	v
is the difference of the particle velocity before and after the collision. In order to estimate L∗ , we subtracted two successive 
images of the layer with a certain time interval (2 ms in this example) apart, where the position of the bottom wall was 
chosen as a baseline to observe the relative motion of the particles. Fig. 16(a) is an example of the collision of the layer 
with the container’s wall, and Fig. 16(b) shows the subtracted successive images of the layer. The darker parts of the layer 
in Fig. 16(b) are the regions with no relative particle motion due to the compaction by the collision, from which we can 
estimate the effective length L∗ , and hence the ratio r. Fig. 16(c) shows the relation between r and the amplitude a of the 
external oscillation for the cases described in Fig. 14. In spite of large error bars, an almost linear dependence of r on a is 
recognized (i.e. r = C1a).

The difference in the velocities 	v is estimated to be 	v = 2π f aC2 with C2 = cos(2π f (t0 +	t)) − cos(2π f t0), the latter 
being nearly equal to 1. Thus the excess pressure 	p due to this impact becomes

	p = F z

LW
= rρh

	v

	t
= 8πC1C2ρhf 2a2 (8)

which will exert the force

Fx = (−p0 + 	p)hW (9)

on the side walls. Here, p0 ≡ C3ρgh (C3 being a constant of order unity) is a “static” pressure, which acts outward normal 
to the side walls irrespective of the external forcing.

By comparing Eq. (7) and Eq. (9), we have

k2 ≈ 8πC1C2ρh

E∗ [( f a)2 − C] (10)

where

C = C3 g

8πC1C2

For smaller values of k, the aspect ratio of the undulation mode Un given by Eq. (5), combined with Eq. (10), is

δ

λ
= 2

π
k

(
1 + 3

4
k2 + · · ·

)
≈ 4

√
2C1C2ρh

πE∗
√

( f a)2 − C (11)

The latter may also be expressed by

δ ≈ 4

√
2C1C2ρh

∗ [ f a − ( f a)c] (12)

λ πE
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Fig. 16. Partial collision of the layer with the bottom wall: (a) an example of the collision of the layer with the container wall, (b) the subtraction of the 
successive images of the layer, where the darker parts are the region with no relative motion due to the compaction by the collision, and (c) f and a
dependence on the ratio of the compacted length to the total length of the layer.

for larger f a, where

( f a)c = C

2 f a

Note that the product ρh is constant in the granular layer because of the conservation of the number of particles (and hence 
the total mass of the layer) confined in a container with fixed L and W . The functional forms of Eq. (11) (i.e., y = √

x2 − C ) 
and Eq. (12) (i.e., y = x − D/x), are shown in Fig. 17, where C and D = C/2 are varied between 10 to 1000, taking into 
account that g/(8π) ≈ 390 and Ci (i = 1, 2, 3) are of the order of unity. The abscissa x is f a, and the relevant range of x is 
the one for y ≥ 0. Except the region very close to y = 0, an almost linear relation is recognized, so that Eq. (11) or Eq. (12)
reasonably explains our experimental results on the aspect ratio δ/λ.

The above relation also implies the independence of δ/λ on the container size, and the independence of the slope of the 
fitting line on the layer thickness h (or the number of layer N ≈ h/d). In Fig. 14(b), we have additionally plotted the similar 
data obtained for N = 7, which were reproduced from our previous papers [24–26]. In spite of larger error bars, the slope 
for the N = 7 case looks almost the same as that for the N = 10 case, in qualitative agreement with our theory.

The aspect ratio of the deformation of an elastic plate due to the force F applied normally to both ends is described by

δ

λ
∝ √

F − Fc (13)

near the onset of buckling, where Fc is the critical value of F . If we assume that the collision occurs uniformly over the 
layer and that the collision time 	t is constant, then F ∝ f a, so that Eq. (13) becomes

δ

λ
∝ √

f a − ( f a)c (14)

which is in remarkable contrast to Eq. (11) or Eq. (12). The functional dependence of the latters, therefore, stems from the 
characteristic behavior of the vibrating granular layer, in which space–time dependent collision processes play important 
roles. The details, however, are not completely clear, because Eq. (11) and/or Eq. (12) is based on the static theory of 
buckling, and the quantity E∗ and the constants Ci (i = 1, 2, 3) may also depend on the external forcing, which should be 
clarified in our future study.
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Fig. 17. Functional forms of Eq. (11) and Eq. (12).
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