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Flows forced by a precessional motion can exhibit instabilities of crucial importance, 
whether they concern the fuel of a flying object or the liquid core of a telluric planet. So 
far, stability analyses of these flows have focused on the special case of a resonant forcing. 
Here, we address the instability of the flow inside a precessing cylinder in the general case. 
We first show that the base flow forced by the cylinder precession is a superposition of a 
vertical or horizontal shear flow and of an infinite sum of forced modes. We then perform 
a linear stability analysis of this base flow by considering its triadic resonance with two 
free Kelvin modes. Finally, we derive the amplitude equations of the free Kelvin modes and 
obtain an expression of the instability threshold and growth rate.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Les écoulements de précession peuvent subir des instabilités dont la compréhension est 
cruciale, que ce soit pour prédire le mouvement du carburant liquide d’un objet volant ou 
celui des noyaux liquides des planètes telluriques. Jusqu’à présent, les analyses de stabilité 
de ces écoulements se sont focalisées sur le cas particulier d’un forçage à une fréquence de 
résonance. Ici, nous étudions l’instabilité d’un fluide dans un cylindre en précession, pour 
une fréquence de forçage quelconque. Premièrement, nous montrons que l’écoulement de 
base d’un fluide dans un cylindre en précession est une superposition d’un cisaillement 
vertical ou horizontal et d’une somme de modes forcés. Ensuite, nous analysons la stabilité 
de l’écoulement de base en considérant sa résonance triadique avec deux modes de Kelvin 
libres. Finalement, nous dérivons les équations d’amplitude des modes de Kelvin libres et 
obtenons une expression du seuil d’instabilité et du taux de croissance.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

Knowing the flow forced by precessional motion is of critical importance in several domains. In aeronautics, liquid 
propellants contained in flying objects can become resonant for specific geometries of their tank. The resulting flow can 
then create a destabilizing torque on the objects and dangerously modify their trajectories [1–9]. Modeling the flow inside 
a precessing cylinder is thus a necessary step to design tank geometries that avoid these unwanted resonances.

In geophysics, most planets have a motion of slow precession, which is mainly governed by the planet aspect ratio. In 
the presence of a liquid core, this precessional motion creates a weak forcing that can drastically modify the flow inside 
the core due to the presence of resonances and critical layers. Flows inside liquid planet cores are of primordial interest 
to understand the generation of magnetic field by dynamo effect. For the present-day Earth, the magnetic field is likely 
due to the convection between the hot solid inner core and the colder mantle [10–13]. However, a magnetic field was 
present on the early Earth although a solid inner core was not yet present. At that time, other mechanisms have generated 
and sustained the Earth’s magnetic field. Tides (leading to elliptic streamlines) have often thought to be a source of energy 
sufficient for geodynamo [10,14], but recently it has also been shown numerically that precession could generate a magnetic 
field [15,16] (although this was not clearly proven for the case of the Earth). Besides, there is still some debate as to whether 
the production of kinetic energy due to precession is sufficient to balance the Ohmic energy loss induced by the magnetic 
field [17–24]. In any case, even if precession is not the cause of magnetic field production on Earth, it might be different on 
other telluric planets.

To study the flow driven by a precessional motion, the cylindrical geometry offers a good alternative to a planet-like 
spheroidal geometry because of its simplicity. In a precessing cylinder, the base flow is a sum of a shear flow and an infinite 
set of forced modes [25,26]. For particular precessional frequencies, a forced mode may become resonant when the height 
of the cylinder equals an odd number of half wavelengths [27–30]. In the framework of an inviscid and linear theory, this 
resonance leads to a divergence of the forced mode amplitude. Viscous effects however may saturate this amplitude to a 
value scaling as the inverse square root of the Ekman number (due to Ekman layers) [22]. Nonlinear effects can also saturate 
the amplitude at a value scaling as the cubic root of the forcing [30]. This nonlinear saturation is due to the presence of 
a strong axisymmetric zonal flow (also called geostrophic flow), which tends to decrease the solid body rotation and thus 
detune the resonance of the forced mode [31].

When the Ekman number is decreased or the precessing angle is increased above a critical value, a resonant forced mode 
can become unstable [28,32–36]. For small tilt angles, we have shown that this instability is due to a triadic resonance 
between the resonant forced mode and two free Kelvin modes [37–39]. However, outside of resonances, the forced modes 
have a small amplitude and the base flow is not made of a single mode anymore. Here, our principal objective is to 
perform a stability analysis of the complete base flow (made of a shear flow and a sum of forced modes) in the case of a 
non-resonant precessing fluid cylinder. We will consider the triadic interaction of the base flow with two free Kelvin modes 
to determine the conditions of instability and derive an expression for the growth rate.

This paper is organized as follows. Section 2 presents the problem of a precessing cylinder by introducing the governing 
equations. In this section we determine the off-resonance base flow and discuss the symmetry properties of the problem. 
In § 3, we develop a linear stability analysis of the complete base flow, based on the mechanism of triadic resonance. 
We discuss the conditions of resonance, derive the amplitude equations of the instability modes and provide an analytical 
expression of the instability growth rate and threshold. In § 4 we present an application for a particular case, and determine 
its stability diagram. Finally, some conclusions are drawn and discussed in the context of the transition to turbulence in 
precessing flows.

2. Formulation of the problem

Consider a cylinder of radius R , height H , axis of revolution along k̂, entirely filled with a Newtonian fluid of kinematic 
viscosity ν . The cylinder rotates at the angular speed �1 about k̂, which also rotates at the angular speed �2 about the 
vertical axis and we denote by θ the precession angle, i.e. the angle between these two axes of rotation (Fig. 1).

To make the problem dimensionless, we introduce four numbers: the aspect ratio h = H/R , the frequency ratio ω =
�1/�, with � = �1 + �2 cos θ , the Ekman number Ek = ν/(�R2) and the Rossby number Ro = �2 sin θ/�, which will 
be assumed asymptotically small, i.e. Ro � 1 (weak precession). The dimensionless flow velocity in the cylinder’s frame 
of reference (O , î, ̂j, k̂) is denoted by u = U/ (R�). The dimensionless cylindrical coordinates are (r, ϕ, z), where z = 0
corresponds to the mid-height section of the cylinder and we note r the position vector of a fluid particle. In the cylinder’s 
frame of reference, the dimensionless Euler equations (assuming an inviscid fluid) are [30,39]

∂ u

∂ t
+ 2

(
k̂ + Ro δ

)
× u + ∇p = −2Roωr cos(ωt + ϕ) k̂ + u × (∇ × u) (1a)

∇ · u = 0 (1b)

with δ = cos(ωt) î − sin(ωt) ̂j. On the left hand side (LHS) of (1a), the first term is inertia, the second term is the Coriolis 
force and p is the dimensionless pressure field defined as
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Fig. 1. Sketch of a precessing cylinder of radius R and height H (left). The cylinder is rotating around its own axis with angular velocity �1, and this axis 
itself rotates around a second axis with angular velocity �2. The precession forces a shear flow which can be taken vertical (middle) or horizontal (right), 
but which does not respect the boundary conditions.

p = P

ρ�2 R2
− 1

2
r2 + Ro|1 − ω|rz cos(ωt + ϕ) + γO · r − 1

2
Ro2[z2 + r2 sin2(ωt + ϕ)] + 1

2
u2 (2)

where γO = 
O /R�2 is the dimensionless acceleration of the cylinder centroid O . On the right hand side (RHS) of (1a), the 
first term is the forcing due to precession, the second term is the convective nonlinear term. At this point, it is convenient 
to introduce the four components vector v = (u, p)T and recast equations (1) into a matrix formulation(

∂

∂t
I +M

)
v = 2Ro F0 cos (ωt + ϕ) + N(v,v) + Ro (D ei(ωt+ϕ) + c.c.)v (3)

where operators I , M, D, the forcing vector F0 and the bilinear function N are reported in Appendix A. The symbol c.c.
stands for the complex conjugate.

2.1. Base flow

In the limit of small Rossby numbers, the base flow forced by the precessional motion can be found by solving the Euler 
equations (3) at first order. We thus have to solve the following inhomogeneous linear differential equation for v(

∂

∂t
I +M

)
v = 2Ro F0 cos (ωt + ϕ) (4)

Projecting this equation onto k̂ yields

∂vz

∂t
+ ∂ p

∂z
= −2Ro rω cos(ωt + ϕ) (5)

There are two particular solutions to this equation, which can be found by assuming either p = 0 or uz = 0. The first 
assumption leads to a vertical shear given by

v = Ro vV
shear ei(ωt+ϕ) + c.c. with vV

shear =

⎛⎜⎜⎝
0
0
ir
0

⎞⎟⎟⎠ (6)

This vertical shear is schematically shown in Fig. 1 (middle) and corresponds to the flow that would be found in a cylinder 
with infinite height. However, there is an alternative particular solution given by the second assumption (uz = 0), which 
leads to a horizontal shear flow:

v = Ro vH
shear ei(ωt+ϕ) + c.c. with vH

shear = ωz

2 − ω

⎛⎜⎜⎝
i

−1
0

r (ω − 2)

⎞⎟⎟⎠ (7)

This horizontal shear is schematically shown in Fig. 1 (right). None of these particular solutions satisfy the boundary con-
ditions on the cylinder walls, and they have to be completed with homogeneous solutions to (4). In the case of the vertical
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Fig. 2. Comparisons of the base flows computed from Eqs. (8) and (9) for h = 2.3, ω = 1.34, t = 0. (a–c) Flow vH
base obtained from Eq. (9) when the sum of 

forced modes is truncated to 0, 1, and 5 modes respectively. (d–f) Same plots for vV
base from Eq. (8). In both cases, the vectors show the projection of the 

velocity field in the plane z = h/3 and the color-coded map shows vz in the same plane.

shear vV
shear, the full solution with proper boundary conditions has been found to be (e.g., [30])

v = Ro vV
base = Ro

⎛⎝vV
shear +

∞∑
j=1

aV
j vV

j

⎞⎠ei(ωt+ϕ) + c.c. (8)

where vV
j are forced modes of azimuthal wavenumber m = 1, frequency ω, and axial wavenumbers kV

j . The amplitudes aV
j

and the structure of the forced modes are given in Appendix A. Since here, these forced modes compensate the normal 
flow on the top and bottom walls of the cylinder, they have zero radial velocity ur = 0 at r = 1. This boundary condition 
forces the axial wavenumbers kV

j through the dispersion relation D(1, ω, kV
j ) = 0 given in Appendix A (it is stressed that the 

wavenumbers kV
j are not a multiple of π/h, since the forced modes do not satisfy the boundary condition uz = 0 on the 

top and bottom wall).
In the case of a horizontal shear vH

shear, a similar procedure yields the following base flow solution

v = Ro vH
base = Ro

⎛⎝vH
shear +

∞∑
j=1

aH
j vH

j

⎞⎠ei(ωt+ϕ) + c.c. (9)

The amplitudes aH
j and the structure of the forced modes vH

j are given in Appendix A. In this case, note that the axial 
wavenumbers kH

j are odd multiples of π/h (kH
j = (2 j − 1)π/h). Here, the forced modes vH

j satisfy the boundary conditions 
on the top and bottom walls, but not on the lateral walls (ur �= 0 at r = 1), because these forced modes have been added to 
compensate an horizontal shear flow.

In both cases (vV
base or vH

base), the base flow can be written as a superposition of a shear flow (vertical or horizontal 
respectively) and a sum of forced modes. These forced modes are similar to Kelvin modes [25,26]. However, we do not 
consider them as “real” Kelvin modes because they do not satisfy the free-slip boundary condition on all the cylinder walls. 
Fig. 2 shows the two base flow solutions with an increasing number of forced modes. It is clear that both solutions tend to 
be equal vV

base = vH
base = vbase when the number of forced modes is increased.

2.2. Symmetry properties

The stability analysis of the base flow described above will be presented below in § 3. Before that, it is worth recalling 
some symmetry properties of the problem. It can first be noted that the vertical shear flow vV

shear has only a vertical velocity 
component vz , which is an even function of z. In contrast, the horizontal shear flow vH

shear has no vertical component but 
its radial, azimuthal, and pressure components are odd functions of z. Both quadrivectors are thus of the type:

v− =

⎛⎜⎜⎝
f −(z, r,ϕ, t)
f −(z, r,ϕ, t)
f +(z, r,ϕ, t)
f −(z, r,ϕ, t)

⎞⎟⎟⎠ (10)
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where f + (resp. f −) denotes even (resp. odd) functions of z. Equation (43) shows that the forced modes vV
j and vH

j also 
have the same z-parity. As a consequence, the base flow calculated above is of the type v− . This could have been anticipated 
since the first-order terms of the Navier–Stokes equations only force this symmetry. However, at higher orders, the operators 
can generate a flow with the opposite symmetry of the type

v+ =

⎛⎜⎜⎜⎝
f +(z, r,ϕ, t)

f +(z, r,ϕ, t)

f −(z, r,ϕ, t)

f +(z, r,ϕ, t)

⎞⎟⎟⎟⎠ (11)

It is easy to show that the operators D, D, and N have the following properties

Dv− ∼ Dv− ∼ v+ (12a)

N
(
vbase,v−)∼ N

(
vbase,v−)∼ v+ (12b)

N
(
v−,vbase

)∼ N
(
v−,vbase

)∼ v+ (12c)

where the symbol ∼ means “same parity as” and vbase corresponds to either the vertical base flow vV
base or the horizontal 

base flow vH
base. This means that, even if the base flow is of the type v− at first order, the nonlinear terms may intro-

duce a different symmetry in the problem. It is actually easy to show that the previous equations remain valid under the 
permutation of signs (+, −) → (−, +).

A direct consequence of these symmetry properties is that a triadic resonance cannot develop if the perturbation has a 
single parity (v+ or v−). Indeed, in a mechanism of triadic resonance, the base flow interacts with two free Kelvin modes 
v1 and v2 through the nonlinear operator N. Let us assume that the free Kelvin modes have the same symmetry v− . The 
growth of the first free Kelvin mode is due to the nonlinear interaction of the second free Kelvin mode with the base 
flow, via the terms N(vbase, v−

2 ), N(v−
2 , vbase) and Dv−

2 which have the opposite symmetry v+ . These forcing terms are thus 
perpendicular to the first free Kelvin mode and such a triadic resonance is non constructive. This can be properly shown by 
defining the dot product

〈X,Y〉 =
∫
V

(
Xr Yr + XϕYϕ + XzY z + Xp Y p

)
d3 V (13)

where X refers to the conjugate of X and V is the volume of the cylinder. It is then straightforward to show, using 
Eqs. (12a–c) that the dot products 

〈
v−

1 ,N(v−
2 ,vbase)

〉
, 
〈
v−

1 ,N(vbase,v−
2 )
〉

and 
〈
v−

1 ,Dv−
2

〉
vanish because they only contain 

terms of the form

〈
v+,v−〉= h/2∫

−h/2

f +(z) f −(z)dz = 0 (14)

The same reasoning applies to free Kelvin modes with a symmetry v+ . The general conclusion is that the constructive triadic 
resonances must couple an even free Kelvin mode v+ with an odd free Kelvin mode v− . We will now use this property to 
restrict the number of possible instabilities that may arise in the linear stability analysis.

3. Linear stability analysis

To study the stability of the base flow, we introduce a small perturbation in form of a four-components vector ̃v = (̃u, p̃)T, 
so that the total flow is

v = Ro vbase + ṽ + o (Ro) (15)

where vbase is either vV
base or vH

base. Inserting this expansion into (3) yields an equation for the perturbation vector(
∂

∂t
I +M

)
ṽ = Ro

[
N(vbase, ṽ) + N(̃v,vbase) +

(
D ei(ωt+ϕ) + c.c.

)
ṽ
]
+ o (Ro) + o (|̃v|) (16)

where |̃v| = √〈̃v, ṽ〉 is the magnitude of ṽ. The first two terms on the RHS of (16) represent the nonlinear interactions 
between the base flow and the perturbation. The third term represents the interaction between the forcing due to precession 
and the perturbation. The perturbation vector satisfies the inviscid boundary condition

ũ · n = 0 at the walls (r = 1 or z = ±h/2) (17)
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To solve (16) and (17), we use a multiscale expansion in time with t a rapid time scale and τ = Ro t a slow time scale. We 
then expand ̃v as

ṽ = ṽ0 (r, τ , t) + Ro ṽ1 (r, τ , t) + o (Ro) (18)

Inserting (18) into (16) yields two equations: one of order 1 and one of order Ro that shall be studied now. The equation 
at order one gives the form of the free Kelvin modes, and the equation at order Ro gives their slow time dynamics, hence 
their stability properties.

3.1. Order 1: free Kelvin modes

At first order, the equation (16) and the inviscid boundary condition ũ · n are(
∂I
∂t

+M
)

ṽ0 = 0 (19a)

ũ0 · n = 0 at the walls (r = 1 or z = ±h/2) (19b)

The solution to this homogenous problem is a linear combination of free Kelvin modes with different z-parities [39]

ṽ0 =
∞∑

l=1

Al
+v+

l ei(ωlt+mlϕ) +
∞∑

l=1

Al
−v−

l ei(ωlt+mlϕ) + c.c. (20)

Vectors v+
l (resp. v−

l ) have axial wavenumbers k+
l (resp. k−

l ) which are even (resp. odd) multiple of π/h in order to respect 
the condition of no normal flow at the top and bottom (z = ±h/2). This property is interesting because the wavenumbers are 
separated into two families, which will restrict the number of possible triadic resonances. The components of the free Kelvin 
modes are given in Appendix A. In (20), A±

l , ml , and ωl are the amplitude, azimuthal wavenumber, and angular frequency 
of the free Kelvin mode vl

±ei(ωlt+mlϕ) . The wavenumbers are connected through the dispersion relation D(ml, ωl, k±
l ) such 

that the radial velocity of the mode vanishes at the cylinder wall r = 1.
To examine the mechanism of triadic resonance, the perturbation ṽ0 is reduced to a combination of two free Kelvin 

modes v1 and v2 with unknown amplitudes A1 (τ ) and A2 (τ )

ṽ0 = A1v1ei(ω1t+m1ϕ) + A2v2ei(ω2t+m2ϕ) + c.c. (21)

From now on, we attribute index 2 to the mode with the highest azimuthal wavenumber (i.e. m2 > m1).

3.2. Triadic resonance

We know from the symmetry properties presented in § 2.2 that a triadic resonance between the base flow and the 
two free Kelvin modes can be constructive only if it involves free Kelvin modes with different z-parities. Therefore, the 
wavenumbers k1 and k2 must be integer multiple of π/h with different parities. It follows that the difference between the 
two wavenumbers must be an odd multiple of π/h:

k2 − k1 = (2p − 1)π/h (22)

with p an integer.
In addition, the base flow will interact with two free Kelvin modes if the operator N appropriately couples their time and 

azimuthal Fourier components. Thus the coupling term N (vbase, ṽ0) + N (̃v0,vbase) in (16) has to contain the same Fourier 
components as vlei(ωlt+mlϕ) , l = 1, 2. Since these terms have the following time and azimuthal Fourier components

vle
i(ωlt+mlϕ) : Fourier components (ml,ωl) (23a)

N (vbase, ṽ0) + N (̃v0,vbase) : Fourier components (ml + 1,ωl + ω) , (ml − 1,ωl − ω) (23b)

the base flow will interact with the two free Kelvin modes if

m2 − m1 = 1 (24a)

ω2 − ω1 = ω (24b)

We recognize on the RHS the azimuthal wavenumber mbase = 1 and the angular frequency ωbase = ω of the base flow. The 
conditions (24a–b) are characteristic of triadic resonances occurring in various domains (surface waves, plate vibrations, 
etc.), and are the key ingredient of weak (or wave) turbulence theory.

To find a pair of free Kelvin modes that fulfill the conditions of resonance (24a–b), we proceed as shown in Fig. 3. In 
the plane (k2, ω2) we plot the dispersion relation of the free Kelvin modes (m2, ω2, k2) and the dispersion relation of the 
free Kelvin modes (m1, ω1, k1) translated horizontally by (2p − 1)π/h (with p an arbitrary integer) and vertically by ω. The 
intersection points correspond to free Kelvin modes satisfying the conditions of resonance (24a–b) and the condition induced 
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Fig. 3. Dispersion relations of the free Kelvin modes with azimuthal wavenumbers m1 = 2 (dashed lines) and m2 = 3 (solid lines). The dispersion relation 
for m1 = 2 is translated by π/h (h = 2.3) along the abscissae and by ω = 1.34 along the ordinate. Vertical dotted lines indicate the discretization of the 
axial wavenumber as a multiple of π/h imposed by the inviscid boundary condition at the top and bottom of the cylinder. A point lying at the intersection 
of the branches of the dispersion relations and a vertical line corresponds to a pair of resonant free Kelvin modes. The combination (m2 = 3, l1 = 1, l2 = 1)

(marked with a black circle) is an example of resonant free Kelvin modes. Coordinates for this point are k2 = 2π/h and ω2 = 0.874.

by parity (22). In addition, the free Kelvin modes have to fit in the cylinder, so their axial wavenumbers need to be multiple 
of π/h. It means that the intersection point has to lie on the vertical dotted line of Fig. 3. Such a tuned triadic resonance 
only occurs for particular aspect ratios (for a given forcing frequency ω). Otherwise, in most cases, the three curves do not 
intersect at the same point. Fig. 3 shows an example of a tuned triadic resonance for h = 2.3, ω = 1.34 with m1 = 2 and 
m2 = 3. The label for these points is (m2, l1, l2), where l1,2 is the branch number of the dispersion relations. There are an 
infinity of possible triadic resonances and they can all be studied in the inviscid case. However, when viscous effects are 
taken into account, the highest wavenumbers will be damped, such that in practice only the lowest axial, azimuthal and 
radial wavenumbers may be treated.

The procedure outline above shows how the axial, azimuthal and radial wavenumbers of two free Kelvin modes can be 
found to permit triadic resonance. In the next section, we consider the Euler equations at the next order in Ro, in order to 
calculate the slow temporal evolution of these free Kelvin modes and determine their stability.

3.3. Order Ro: slow time equations

At order Ro, equation (16) becomes(
∂I
∂t

+M
)

ṽ1 = N (vbase, ṽ0) + N (̃v0,vbase) +
[(

Dei(ωt+ϕ) + c.c.
)

− ∂I
∂τ

]
ṽ0 (25)

This O (Ro) problem is linear, with a forcing term given by the RHS of (25). To avoid secular terms in the solution ̃v1, the RHS 
must be orthogonal to the kernel of the LHS operator. This kernel being spanned by the free Kelvin modes, themselves given 
by the O (1) problem solved above, a solvability condition is obtained by taking the dot product of (25) with vlei(ωlt+mlϕ) , 
l = 1, 2. Since the problem is self-adjoint, i.e. 

〈
vlei(ωlt+mlϕ), (∂I/∂t +M) ṽ1

〉= 0, we show in Appendix B that the slow time 
equations for A1 and A2 are

dA1

dτ
= c1 A2 with c1 = d12 + n1s +∑

j a jn1 j

〈v1,Iv1〉 (26a)

dA2

dτ
= c2 A1 with c2 = d21 + n2s +∑

j a jn2 j

〈v2,Iv2〉 (26b)

The terms dAl/dτ come from the dot products 
〈
vlei(ωlt+mlϕ), ∂I

∂τ ṽ0

〉
. The terms d12 and d21 represent the interaction between 

the resonant free Kelvin modes and the forcing due to precession. They come from the dot products〈
vle

i(ωlt+mlϕ),
(
Dei(ωt+ϕ) + c.c.

)
ṽ0

〉
(27)

The terms n1s and n2s represent the nonlinear interactions between the resonant free Kelvin modes and the shear part of 
the base flow. They come from the dot products
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nls =
〈
vle

i(ωlt+mlϕ),N
(

vsei(ωt+ϕ) + c.c., ṽ0

)
+ N

(̃
v0,vsei(ωt+ϕ) + c.c.

)〉
(28)

where vs may be the vertical shear given by (6) or the horizontal shear given by (7). Finally, the terms n1 j and n2 j represent 
the nonlinear interactions between the resonant free Kelvin modes and the j-th forced mode of the base flow. They come 
from the dot products

nlj =
〈
vle

i(ωlt+mlϕ),N
(

v je
i(ωt+ϕ) + c.c., ṽ0

)
+ N

(̃
v0,v je

i(ωt+ϕ) + c.c.
)〉

(29)

Simplified expressions for all these terms are given in Appendix B.
Seeking solutions to the amplitude equations (26) as growing exponentials, A j ∼ eσ t ∼ eστ/Ro , yields an analytical pre-

diction for the complex growth rate σ of the instability

σ = |Ro|√c1c2. (30)

3.4. Amplitude equations using the horizontal shear decomposition

Amplitude equations (26) apply to any decomposition, vV
base or vH

base, of the base flow. If the vertical shear decomposition 
vV

base is chosen for the base flow, the formula for the growth rate contains infinite summations (corresponding to n1 j and 
n2 j). This is because, in this case, axial wavenumbers kV

j are not integer multiples of π/h and the integral from z = −π/h
to π/h in the dot products (29) cannot be easily simplified.

However, if the horizontal decomposition vH
base is chosen, it is possible to achieve such a simplification. In this case, the 

forced modes have axial wavenumbers kH
j that are odd multiples of π/h. These forced modes will interact with the resonant 

free Kelvin modes if the dot product between N 
(

vH
j ei(ωt+ϕ) + c.c., ṽ0

)
and vlei(ωlt+mlϕ) lead to a non-zero integral over z. 

Since these terms have the following z-Fourier components

vl : z-Fourier components ± kl (31a)

N
(

vH
j ei(ωt+ϕ) + c.c., ṽ0

)
: z-Fourier components kH

j ± kl,−kH
j ± kl (31b)

and since k1 and k2 have different parities and kH
j is an odd multiple of π/h, the axial wavenumber of the dot product 

only contains even multiple of π/h, i.e. multiple of 2π/h. As a consequence, the integral over z is non-zero only if the 
axial wavenumber of the dot product is equal to zero. It follows that only two forced modes of vH

base will interact with the 
resonant free Kelvin modes and their axial wavenumbers are

kH
j = k j1 = |k2 − k1| and kH

j = k j2 = |k2 + k1| (32)

It means that there are only two forced modes j1 and j2 which give non-zero coefficients n1 j and n2 j such that the infinite 
summations in (26) becomes sum of only two terms. The coefficients c1 and c2 thus simplify to

c1 = d12 + n1s + aH
j1

n1 j1 + aH
j2

n1 j2

〈v1,Iv1〉 (33a)

c2 =
d21 + n2s + aH

j1
n2 j1 + aH

j2
n2 j2

〈v2,Iv2〉 (33b)

3.5. Case of a resonant cylinder

In a resonant cylinder, the precession forces a flow that is dominated by a single forced mode, which is a Kelvin mode 
(i.e. a forced mode which satisfies the no-slip boundary conditions on the cylinder walls). In that case, the flow can become 
unstable if this forced Kelvin mode interacts constructively with two free Kelvin modes. As we have shown in a previous 
work, amplitude equations can be derived for a resonant cylinder [39]. In this section, we want to explain how to recover 
these amplitude equations from the amplitude equations of a non-resonant precessing fluid cylinder derived here in (26a,b).

When a forced mode is resonant, its amplitude a j predicted by the linear theory diverges. As shown by the equation 
(46), it happens when the dispersion relation D(1, ω, k j) = 0 holds for an axial wavenumber k j which is an odd multiple 
of π/h. For large Ekman numbers, the viscous effects saturate the amplitude of the forced Kelvin mode to an order Ek−1/2

larger than the amplitudes of the shear flow and the others forced modes, see refs. [22,30]. Thus, at main order the base 
flow vbase is a single forced Kelvin mode with amplitude |ε| = O (RoEk−1/2). It follows that the summations in (26) are 
truncated to the index of that mode and the amplitude a j must be replaced by ε/Ro. Since the terms d12, n1s , d21 and n2s

are of order O (1), they are negligible compared to ε/Ro and can be dropped in (26). The amplitude equations when the 
j-th forced mode is resonant thus become
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dA1

dτ
= A2

(ε/Ro)n1 j

〈v1,Iv1〉 = n1 (ε/Ro) A2 (34a)

dA2

dτ
= A1

(ε/Ro)n2 j

〈v2,Iv2〉 = n2 (ε/Ro) A1 (34b)

As explained in § 3.4, terms n1 and n2 are non-zeros only if the condition of resonance |k2 − k1| = k j = (2 j − 1)π/h or 
|k2 + k1| = k j = (2 j − 1)π/h is satisfied (together with similar conditions on m and ω: m2 − m1 = 1 and ω2 − ω1 = ω).

Seeking solutions to the amplitude equations (34) as growing exponentials A j ∼ eσ t ∼ eστ/Ro , yields an expression for 
the complex growth rate

σ = |ε|√n1n2 (35)

similar to the one obtained in [39]. As expected (based on similarities with the elliptic instability), the growth rate scales as 
the amplitude of the forced Kelvin mode. For large Ekman number, the growth rate of a resonant precessing fluid cylinder 
is thus an order Ek−1/2 larger than the growth rate of the non-resonant case.

For example, for h = 1.62 and ω = 1.18, the first Kelvin mode is forced at its first resonance and we recover (see Table 3 
in [39]) that the resonant combination (6, 1, 1) has n1 = −1.672, n2 = −2.456, leading to a growth rate σ = 2.026|ε|.

3.6. Including viscous and detuning effects

Amplitude equations (26a,b) have been derived under the assumption of an inviscid fluid and an exactly resonant com-
bination. Accounting for viscosity and free Kelvin modes that do not exactly satisfy the boundary conditions, the amplitude 
equations modify to

dA1

dτ
= c1 A2 − (α1/Ro) A1 (36a)

dA2

dτ
= c2 A1 − (α2/Ro) A2 (36b)

with αl = slEk1/2 + vlEk + iql�kl and where �kl represents the relative distance between a crossing point in Fig. 3 and the 
closest vertical line (see [39], for more details). The coefficients sl represent the surface viscous damping of the free Kelvin 
modes due to Ekman layers on the cylinder walls. They are complex numbers with a positive real part. The coefficients vl
are real and represent the volume viscous damping of the free Kelvin modes. They come from the Laplace operator of the 
Navier–Stokes equations, and are proportional to k2

l + δ2
l , such that they strongly damp the free Kelvin modes with large 

axial and radial wavenumbers. The coefficients ql are real and represent the damping of the two free Kelvin modes due to 
detuning effects. All these coefficients are given in [39]. Finally, when the free Kelvin modes are not exactly resonant, the 
equations (33) do not hold anymore and one has to use the equations (26) to compute the instability terms cl .

Assuming that the amplitudes are growing exponentials, i.e. A j ∼ eσ t ∼ eστ/Ro , the equation for the complex growth rate 
σ is obtained by canceling the determinant of (36) leading to

(σ + α1) (σ + α2) = Ro2c1c2 (37)

The critical Rossby number for which the instability appears can be determined from the condition of a vanishing real 
part of σ , leading to

|Rocrit| =
⎧⎨⎩αr

1α
r
2

c1c2

⎡⎣1 +
(

αi
1 − αi

2

αr
1 + αr

2

)2
⎤⎦⎫⎬⎭

1/2

(38)

where αr
l and αi

l are respectively the real and imaginary parts of αl . For large Ek, the volume viscous effects (which scale 
as Ek) are larger than the surface viscous effects (which scale as Ek1/2), such that Rocrit scales as Ek3/2. On the contrary, for 
low Ek, surface viscous effects are dominant and Rocrit scales as Ek [39].

Fig. 4 shows the critical Rossby number (Eq. (38)) as a function of the Ekman number, for a cylinder with an aspect 
ratio h = 1.62. For ω = 1.18, the first forced Kelvin mode is resonant: the amplitude of the base flow is maximum and the 
combination (6, 1, 1) (which is exactly resonant) is the most unstable, see [39]. Outside of the resonance, the amplitude of 
the base flow is less intense and the free Kelvin modes are not exactly resonant. It follows that a higher Rossby number is 
required to reach an unstable state. We note that the critical Rossby number does not necessarily increase as ω is moved 
further away from the resonance. This is actually due to the fact that the terms entering in the definition of the instability 
coefficients cl change their sign as ω is varied. In other words, depending on ω these terms either damp the instability or 
pump it up. Finally, Fig. 4 shows that the off-resonance prediction (38) agrees with the resonant forcing theory of [39] as ω
remains close to the resonant frequency.

In what follows we investigate the behavior of the system for a precessing frequency far away from a resonance.
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Fig. 4. Stability diagram of the flow inside a precessing cylinder, for h = 1.62. For ω = 1.18 (blue solid line at bottom) the first forced Kelvin mode is reso-
nant, and the (6, 1, 1) combination is unstable, see [39]. Extra curves correspond to the prediction (38) and show the stability threshold for non-resonant 
frequencies: ω = 1.25 (red dashed line, combination (6, 1, 1)), ω = 1.3 (yellow dotted line, combination (5, 1, 1)), ω = 1.35 (purple dash-dotted line, com-
bination (5, 1, 1)) and ω = 1.4 (green solid line at top, combination (5, 1, 1)). Symbols are from Fig. 10 of [39] and represent the predictions of the resonant 
forcing theory for Ek = 1.5 × 10−4.

Fig. 5. Resonance location in the ω–h plane. The resonances of the 1st (black curves), 2nd (red curves), 3rd (pink curves), 4th (green curves) forced modes 
are shown. The notation ω j,n refers to the n-th resonance of the j-th forced mode. The blue thick line indicates the values of ω and h for which the 
unstable modes combination (3, 1, 1) forms a perfect triadic resonance with the first forced mode (see Fig. 3). The black circle (ω = 1.34, h = 2.3) is the 
choice for the numerical application.

4. Numerical application far from a resonance

We first determine an aspect ratio h and a frequency ratio ω, such that the first 4 forced modes are away from a 
resonance, and such that combination of free Kelvin modes (m2 = 3, l1 = 1, l2 = 1) forms a perfect triadic resonance with 
the first forced mode (see Fig. 3). These two conditions are illustrated in Fig. 5: the first 5 resonances of the first 4 forced 
modes are noted ω j,n (n-th resonance of the j-th forced Kelvin mode) and are solutions to the dispersion relation

D

(
m j,ω j,n,

(4 − ω j,n
2)1/2

|ω j,n| (2n − 1)
π

h

)
= 0 (39)

The thick blue curve in Fig. 5 gives the aspect ratio and the frequency ratio for which the combination (3, 1, 1) is resonant. 
This curve is the solution to the equation



428 R. Lagrange et al. / C. R. Mecanique 344 (2016) 418–433
Fig. 6. Theoretical axial vorticity fields of the free Kelvin modes m1 = 2 (a) and m2 = 3 (b), which are expected to grow for h = 2.3 and ω = 1.34.

Fig. 7. Stability diagram of the flow inside a precessing cylinder, for h = 2.30 and ω = 1.34. The stable and unstable domains are separated by the solid line 
corresponding to the prediction (38).

ω2(k2 = 2π/h, l2 = 1,m2 = 3) = ω1(k1 = π/h, l1 = 1,m1 = 2) + ωi,n (40)

where ω2(k2 = 2π/h, l2 = 1, m2 = 3) means: the value of ω2 for k2 = 2π/h and l2 = 1 (first branch of the dispersion relation 
m2 = 3).

In the present numerical investigations, we choose h = 2.3 and ω = 1.34. It can be checked that for these aspect and 
frequency ratios, (3, 1, 1) is a resonant point (Fig. 3). The theoretical axial vorticity fields of the corresponding free Kelvin 
modes, m1 = 2 and m2 = 3, are shown in Fig. 6. Since these modes correspond to the first branches of the dispersion 
relation (l1 = l2 = 1), their vorticity fields exhibit only one ring of 4 (for m1 = 2) or 6 (for m2 = 3) counter-rotating vortices.

We have listed in Table 1 the values of the parameters needed to compute the instability growth rate and the critical 
Rossby number. It appears that the terms entering in the definition of the instability coefficients cl have different effects: 
the positive ones are stabilizing and the negative ones are destabilizing. From the values of cl , it comes an inviscid growth 
rate σr = |Ro|(√c1c2

)= 0.4732|Ro|. Since the combination (3, 1, 1) corresponds to free Kelvin modes with simple radial and 
axial structures, volume viscous damping (which scale as k2

l + δ2
l ) is small, which make these modes the perfect candidates 

for an instability. The stability diagram of the resonant combination (3, 1, 1) is shown in Fig. 7 in the Ek–Ro plane: in this 
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Table 1
Values of the parameters appearing in the amplitude equations. The aspect ratio and the frequency ratio are h = 2.30 and ω = 1.34. For these 
values, the combination (m2 = 3, l1 = 1, l2 = 1) is resonant and corresponds to a pair of free Kelvin modes (m1 = 2,ω1 = −0.466,k1 = π/h) and 
(m2 = 3,ω2 = 0.874,k2 = 2π/h). The forced modes are those with indices j1 = 1, j2 = 2 and have axial wavenumbers k j1 = π/h and k j2 = 3π/h. Their 
amplitudes are aH

j1
= 1.4983 and aH

j2
= 0.1130.

〈v1,Iv1〉 d12 n1s n1 j1 n1 j2 c1 s1 v1

27.1230 6.8448 1.1623 −12.7524 3.6628 −0.3940 1.22 − 0.15i 34.37

〈v2,Iv2〉 d21 n2s n2 j1 n2 j2 c2 s2 v2

35.2671 −6.8448 21.8624 −23.9177 6.8697 −0.5683 1.50 + 0.027i 39.08

graph, the prediction from (38) is represented by a solid line that splits the Ek–Ro plane into a stable and an unstable 
domain.

5. Conclusion

In this paper, the instability of a fluid inside a precessing cylinder has been addressed theoretically. First, we have shown 
that the base flow can be written as a superposition of a vertical or horizontal shear flow and a sum of forced modes. The 
stability of this base flow has then been studied for a forcing at a non-resonant frequency, thus completing previous studies 
performed for resonant or near-resonant frequencies [37,39]. We have shown that the non-resonant base flow can trigger 
a triadic instability with two free Kelvin modes only if these modes have different axial parities. We also have obtained a 
prediction of the instability growth rate, showing that the inviscid growth rate is proportional to the Rossby number, Ro, 
and an order Ek−1/2 smaller than the growth rate obtained for a resonant base flow. Finally, introducing viscous damping, 
we have given a prediction of Rocrit, the critical Rossby number for which the flow becomes unstable, as a function of Ek: 
for large (resp. low) Ek numbers, Rocrit scales as Ek3/2 (resp. Ek). Outside of the resonance, the amplitude of the base flow 
is less intensive and higher Rossby numbers are required for an instability.

We believe that the theoretical predictions provided in this paper will be valuable for future experimental and numerical 
studies of precessing flows performed at arbitrary frequencies. We shall note however that our analysis relies on the as-
sumption of a small Rossby number, i.e. a small precession angle. For strong forcing, very different phenomena are expected 
(e.g., Kelvin–Helmholtz, centrifugal, or boundary layer instabilities), due to the generation of powerful zonal flows.

In closing, the precessional instability is typical of transition to turbulence in rotating flows. The presence of rotation 
ensures that energy is continuously provided to the flow. It also supports the existence of inertial waves that can lead to 
several instabilities (elliptic instability, libration instability, etc.). The structure of turbulence is also modified by the presence 
of the rotation because of the anisotropy induced. There is much more work to be done on this fascinating topic if we want 
to understand the mechanisms at play in turbulent rotating flows.

This study was carried out under CEA–CNRS contract No. 012171.
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Appendix A. Operators of the Euler equations, forced mode vector v j , amplitudes aV
j and aH

j , free Kelvin modes vectors v+
l

and v−
l

Operators used for the matrix formulation (3) of the Euler equations are

I =

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

⎞⎟⎟⎠ , D =

⎛⎜⎜⎝
0 0 −i 0
0 0 1 0
i −1 0 0
0 0 0 0

⎞⎟⎟⎠ , M =

⎛⎜⎜⎜⎜⎜⎜⎝
0 −2 0 ∂

∂r

2 0 0 1
r

∂
∂ϕ

0 0 0 ∂
∂z

∂
∂r + 1

r
1
r

∂
∂ϕ

∂
∂z 0

⎞⎟⎟⎟⎟⎟⎟⎠ (41)

and

F0 =

⎛⎜⎜⎝
0
0

−rω
0

⎞⎟⎟⎠ , N (v1,v2) =
(

u1 × (∇ × u2)

0

)
(42)



430 R. Lagrange et al. / C. R. Mecanique 344 (2016) 418–433
The forced modes quadri-vector vV
j and vH

j are given by the same expression

vV
j = vH

j = 2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
w1,ω,k j

)
r
i sin

(
k j z
)(

w1,ω,k j

)
ϕ

i sin
(
k j z
)(

w1,ω,k j

)
z

cos
(
k j z
)(

w1,ω,k j

)
p

i sin
(
k j z
)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(43)

with

wm,ω,k =

⎛⎜⎜⎜⎜⎜⎜⎝

−1
4−ω2

(
ωδ J

′
m (δr) + 2 m

r Jm (δr)
)

−i
4−ω2

(
2δ J

′
m (δr) + ωm

r Jm (δr)
)

i k
ω Jm (δr)

−i Jm (δr)

⎞⎟⎟⎟⎟⎟⎟⎠ (44)

and where Jm is the Bessel function of the first kind, J ′
m its derivative and δ = √

4 − ω2k/|ω|. However, they have been 
named differently since they have different boundary conditions and thus different axial wavenumbers kV

j or kH
j . For the 

vertical shear, the radial wavenumber δ is imposed by the boundary conditions and k is deduced from the dispersion 
relation whereas for the horizontal shear, the axial wavenumber is imposed by the boundary conditions and δ is given 
again by δ = √

4 − ω2k/|ω|.
The dispersion relation is

D(m,ω,k) = ωδ J
′
m (δ) + 2m Jm (δ) (45)

The amplitudes of the forced modes are

aV
j = ω2

(ω − 2)(k2
j + 1)k j J1(δ j) cos(k jh/2)

(46a)

aH
j = − 2h(−1) jω(2 + ω)

π2(2 j − 1)2(ωδ j J ′
1(δ j) + 2 J1(δ j))

(46b)

Vectors v+
l and v−

l appearing in (20) are

v+
l = 2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
wml,ωl,k

+
l

)
r

cos
(
k+

l z
)(

wml,ωl,k
+
l

)
ϕ

cos
(
k+

l z
)(

wml,ωl,k
+
l

)
z
i sin

(
k+

l z
)(

wml,ωl,k
+
l

)
p

cos
(
k+

l z
)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, v−

l = 2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
wml,ωl,k

−
l

)
r
i sin

(
k−

l z
)(

wml,ωl,k
−
l

)
ϕ

i sin
(
k−

l z
)(

wml,ωl,k
−
l

)
z

cos
(
k−

l z
)(

wml,ωl,k
−
l

)
p

i sin
(
k−

l z
)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(47)

Appendix B. Derivation of amplitude equations

In this Appendix, we derive the amplitude equations (26), starting from the order Ro equation (25) that we report here(
∂I
∂t

+M
)

ṽ1 = N (vbase, ṽ0) + N (̃v0,vbase) +
[(

Dei(ωt+ϕ) + c.c.
)

− ∂I
∂τ

]
ṽ0 (48)

As explained in the core of the manuscript, a solvability condition is obtained by taking the dot product of this equation 
with vlei

(
ωlt+m jϕ

)
, l = 1, 2. The problem being self adjoint, we have 

〈
vlei(ωlt+mlϕ), (∂I/∂t +M) ṽ1

〉= 0, so that, we are left 
with 〈

vle
i(ωlt+mlϕ),

∂I
∂τ

ṽ0

〉
=
〈
vle

i(ωlt+mlϕ),
(
Dei(ωt+ϕ) + c.c.

)
ṽ0

〉
+
〈
vle

i(ωlt+mlϕ),N (vbase, ṽ0)
〉

+
〈
vle

i(ωlt+mlϕ),N (̃v0,vbase)
〉

(49a)

The computation of the LHS term is straightforward and follows from the linearity of the dot product and the orthogonality 
of the free Kelvin modes. Introducing the expression of ̃v0 given by (21) gives a LHS term equal to
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〈
vle

i(ωlt+mlϕ),

2∑
l=1

dA j

dτ
I
(

v je
i
(
ω j t+m jϕ

))〉
+
〈

vle
i(ωlt+mlϕ),

2∑
j=1

dA j

dτ
I
(

v je
−i
(
ω jt+m jϕ

))〉
(50a)

=
2∑

j=1

dA j

dτ

〈
vle

i(ωlt+mlϕ),ei
(
ω j t+m jϕ

)
Iv j

〉
+

2∑
j=1

dA j

dτ

〈
vle

i(ωlt+mlϕ),e−i
(
ω j t+m jϕ

)
Iv j

〉
(50b)

=
2∑

j=1

dA j

dτ

〈
vl,ei

[(−ωl+ω j
)
t+(−ml+m j

)
ϕ
]
Iv j

〉
︸ ︷︷ ︸

�=0 if j=l

+
2∑

j=1

dA j

dτ

〈
vl,ei

[(−ωl−ω j
)
t+(−ml−m j

)
ϕ
]
Iv j

〉
︸ ︷︷ ︸

0 because ∝
2π∫
0

e
−i
(

ml+m j

)
ϕ

dϕ

(50c)

= dAl

dτ
〈vl,Ivl〉 (50d)

Eq. (50c) shows that it is not necessary to take into account the c.c. part of A jv jei
(
ω j t+m jϕ

)
in (49a) since it leads to 

0 integral terms. This observation still holds for computations with operators D, D and N since they do not change the 
wavenumbers in the exponential when applied to vlei(ωlt+mlϕ) . Therefore, the c.c. part of A jv jei

(
ω j t+m jϕ

)
will be omitted in 

the next computations.
Plugging (50d) into (49a) yields the amplitude equations

dAl

dτ
=
〈
vlei(ωlt+mlϕ),

(
Dei(ωt+ϕ) + c.c.

)
ṽ0
〉+ 〈

vlei(ωlt+mlϕ),N (vbase, ṽ0) + N (̃v0,vbase)
〉

〈vl,Ivl〉 (51)

We now proceed with the calculation of the RHS terms of (51). Computations are performed with l = 1 so that results for 
l = 2 will follow from the permutation of indices (1, 2) → (2, 1). Also, from the operators properties presented in § 2.2, we 
know that the free Kelvin modes v1ei(ω1t+m1ϕ) and v2ei(ω2t+m2ϕ) must have different z-parities to give nonzero coupling 
terms. Thus, for l = 1 we can directly substitute in (51) vector ̃v0 by v2ei(ω2t+m2ϕ) and (51) writes

dA1

dτ
=
〈
v1ei(ω1t+m1ϕ),

(
Dei(ωt+ϕ) + c.c.

)
v2ei(ω2t+m2ϕ)

〉
〈v1,Iv1〉 +

〈
v1ei(ω1t+m1ϕ),N

(
vbase,v2ei(ω2t+m2ϕ)

)〉
〈v1,Iv1〉

+
〈
v1ei(ω1t+m1ϕ),N

(
v2ei(ω2t+m2ϕ),vbase

)〉
〈v1,Iv1〉 (52a)

In what follows we compute each of the terms in the RHS of (52a) and we assume that the resonance conditions (24a)
are fulfilled in order to drop the exponential terms.

B.1. Computation of 
〈
v1ei(ω1t+m1ϕ),

(
Dei(ωt+ϕ) + c.c.

) (
v2ei(ω2t+m2ϕ)

)〉
Expanding the complex conjugate leads to 2 terms:〈

v1ei(ω1t+m1ϕ),ei(ωt+ϕ)ei(ω2t+m2ϕ)Dv2

〉
+
〈
v1ei(ω1t+m1ϕ),e−i(ωt+ϕ)ei(ω2t+m2ϕ)Dv2

〉
The first term vanishes because the azimuthal Fourier components are different on each side of the dot product such 

that the integral over ϕ gives zero. In contrast, in the second term, the azimuthal Fourier components are equal and can 
thus be dropped. This term can thus be written as

d12 = 〈
v1,Dv2

〉
. (53)

B.2. Computation of 
〈
v1ei(ω1t+m1ϕ),N

(
vbase,v2ei(ω2t+m2ϕ)

)〉
Here vbase = vbei(ωt+ϕ) + c.c. is the base flow given either by (8) or (9) depending on which decomposition (vertical or 

horizontal shear) is used to express the base flow. We have〈
v1ei(ω1t+m1ϕ),N

(
vbase,v2ei(ω2t+m2ϕ)

)〉
(54a)

=
〈
v1ei(ω1t+m1ϕ),N

(
vbei(ωt+ϕ) + c.c.,v2ei(ω2t+m2ϕ)

)〉
(54b)

=
〈
v1ei(ω1t+m1ϕ),N

(
vbei(ωt+ϕ),v2ei(ω2t+m2ϕ)

)〉
+
〈
v1ei(ω1t+m1ϕ),N

(
vbe−i(ωt+ϕ),v2ei(ω2t+m2ϕ)

)〉
(54c)

=
〈
v1ei(ω1t+m1ϕ),ei(ωt+ϕ)ei(ω2t+m2ϕ)Nim2 (vb,v2)

〉
+
〈
v1ei(ω1t+m1ϕ),e−i(ωt+ϕ)ei(ω2t+m2ϕ)Nim2

(
vb,v2

)〉
(54d)
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where Nim2 corresponds to operator N where d/dϕ has been replaced by im2. As previously, the first term vanishes and the 
exponential can be dropped from the second term. Introducing the expression of vb makes this whole term equal to〈

v1,Nim2

⎛⎝vs +
∞∑
j=1

a jv j,v2

⎞⎠〉 = n1s2 +
∞∑
j=1

a jn1 j2 (55a)

with n1s2 = 〈
v1,Nim2

(
vs,v2

)〉
and n1 j2 = 〈

v1,Nim2

(
v j,v2

)〉
(55b)

B.3. Computation of 
〈
v1ei(ω1t+m1ϕ),N

(
v2ei(ω2t+m2ϕ),vbase

)〉
We have〈

v1ei(ω1t+m1ϕ),N
(

v2ei(ω2t+m2ϕ),vbase

)〉
(56a)

=
〈
v1ei(ω1t+m1ϕ),N

(
v2ei(ω2t+m2ϕ),vbei(ωt+ϕ) + c.c.

)〉
(56b)

=
〈
v1ei(ω1t+m1ϕ),N

(
v2ei(ω2t+m2ϕ),vbei(ωt+ϕ)

)〉
+
〈
v1ei(ω1t+m1ϕ),N

(
v2ei(ω2t+m2ϕ),vbe−i(ωt+ϕ)

)〉
(56c)

=
〈
v1ei(ω1t+m1ϕ),ei(ω2t+m2ϕ)ei(ωt+ϕ)Ni (v2,vb)

〉
+
〈
v1ei(ω1t+m1ϕ),ei(ω2t+m2ϕ)e−i(ωt+ϕ)N−i

(
v2,vb

)〉
(56d)

where Ni and N−i correspond to operator N where d/dϕ has been replaced by i and −i, respectively. As previously, the 
first term vanishes and the exponentials can be dropped from the second term. Introducing the expression of vb makes this 
whole term equal to〈

v1,N−i

⎛⎝v2,vs +
∞∑
j=1

a jv j

⎞⎠〉= n12s +
∞∑
j=1

a jn12 j (57a)

with n12s = 〈
v1,N−i

(
v2,vs

)〉
and n12 j = 〈

v1,N−i
(
v2,v j

)〉
(57b)

B.4. Conditions of resonance and amplitude equations

Collecting (53), (55b) and (57b) together, the amplitude equations (51) rewrite

dA1

dτ
= A2

d12 + n1s +
∞∑
j=1

a jn1 j

〈v1,Iv1〉 (58a)

dA2

dτ
= A1

d21 + n2s +
∞∑
j=1

a jn2 j

〈v2,Iv2〉 (58b)

where coefficients in (58a) are

d12 = 〈
v1,Dv2

〉
(59a)

n1s = n1s2 + n12s = 〈
v1,Nim2

(
vs,v2

)〉+ 〈
v1,N−i

(
v2,vs

)〉
(59b)

n1 j = n1 j2 + n12 j = 〈
v1,Nim2

(
v j,v2

)〉+ 〈
v1,N−i

(
v2,v j

)〉
(59c)

Coefficients in (58b) are

d21 = 〈v2,Dv1〉 = −d12 (60a)

n2s = n2s1 + n21s = 〈
v2,Nim1 (vs,v1)

〉+ 〈v2,Ni (v1,vs)〉 (60b)

n2 j = n2 j1 + n21 j = 〈
v2,Nim1

(
v j,v1

)〉+ 〈
v2,Ni

(
v1,v j

)〉
(60c)
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