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Elastic and piezoelectric waveguides may have infinite 

number of gaps in their spectra

Les guides d’ondes élastiques et piézoélectriques peuvent avoir un nombre 

infini de lacunes dans leur spectre
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We consider elastic and piezoelectric waveguides composed from identical beads threaded 
periodically along a spoke converging at infinity. We show that the essential spectrum 
constitutes a non-negative monotone unbounded sequence and thus has infinitely many 
spectral gaps.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Nous considérons des guides d’ondes élastiques et piézoélectriques réalisés à partir de 
perles identiques agencées de façon périodique le long d’un rayon convergeant à l’infini. 
Nous montrons que le spectre essentiel est une suite croissante positive non bornée. Cela 
prouve l’existence d’un nombre infini de trous spectraux.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Elastic waveguide

Let � ⊂ {x = (y, z) ∈ R
2 × R : z = x3 ∈ (0, 1)} be a domain with Lipschitz boundary ∂� and compact closure � =

� ∪ ∂� , where the surface ∂� has two planar parts γp = B
2
R ×{p} with p = 0, 1 and B2

R = {y : |y| < R}. We also introduce 
a Lipschitz domain ω ⊂ B

2
R/2 and an infinitesimal sequence {α j} j∈Z ⊂ (0, 1), where Z = {0, ±1, ±2, . . . }, as well as the sets
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� j = {x : (y, z − j) ∈ � }, ω j = {x : α−1
j y ∈ ω, z = j} for j ∈ Z (1)

The waveguide � (Fig. 1a),

� =
⋃
j∈Z

(� j ∪ ω j) (2)

consists of identical beads threaded periodically along a thin spoke, which converges at infinity. In other words, the neigh-
boring beads � j−1 and � j are connected through the aperture ω j .

Let waveguide (2) be filled with a homogeneous elastic material. The variational formulation of the elasticity problem on 
time-harmonic oscillations with a frequency κ > 0 reads as

(AD(∇)u, D(∇)v)� = λ(u, v)� + ( f , v)� ∀v ∈ H1(�) (3)

Here, λ = ρκ2 and ρ > 0 are the spectral parameter and the material density, ∇ = grad, f denotes mass forces and the 
Voigt–Mandel notation is in use so that u = (u1, u2, u3)

� ∈ R
3 and ε(u) = D(∇)u ∈ R

6 are the displacement and strain 
columns,

D(∇)� =
⎛
⎝∂1 0 0 0 α∂3 α∂2

0 ∂2 0 α∂3 0 α∂1
0 0 ∂3 α∂2 α∂1 0

⎞
⎠ , α = 1√

2
, ∂ j = ∂

∂x j
, ∇ =

⎛
⎝∂1

∂2
∂3

⎞
⎠

and � stands for transposition. Furthermore, A denotes a symmetric and positive definite 6 × 6-matrix of constant elastic 
moduli in the Hooke’s law σ(u) = AD(∇)u, where σ jk(u) are Cartesian components of the stress tensor composing the 
stress column

σ(u) = (σ11(u),σ22(u),σ33(u),
√

2σ23(u),
√

2σ31(u),
√

2σ12(u))�

Finally, (·, ·)� is the natural inner product in the Lebesque space L2(�) and H1(�) is the Sobolev space, either scalar or 
vector. The problem (3) realizes as the continuous mapping B − λ : H1(�) → H1

0(�)∗ , where H1
0(�)∗ is the dual space.

In principle, problem (3) should be supplied with appropriate radiation conditions, see [1] for a scalar problem and [2]
for elasticity. However, since we will only consider the inhomogeneous ( f �= 0) problem in the regularity field, it is not 
necessary to formulate them.

2. Motivation

The structure (2) of waveguide �, which consists of the periodic family of identical cells (1) connected through converg-
ing apertures, comes from the previous works of the authors [3–6] and their attempts to prove or disprove the existence 
of infinite number of spectral gaps for periodic elastic and piezoelectric waveguides. This question is related to the classical 
Bethe–Sommerfeld conjecture on a finite number of spectral gaps for any periodic waveguide in Rd , d > 1. The conjecture 
has been solved for some scalar problems only, mainly for the stationary Schrödinger equation, see [7–10] and [11] for 
an introduction to the topic. The (periodic) waveguide �ε in papers [3–6] was obtained as the union of the cells (1) and 
the thin cylinder 
ε = {(y, z) : ε−1 y ∈ ω, z ∈ R} where the domain ω ⊂ R

d−1 is as above, but ε > 0 is a small parameter. 
In other words, the cells are connected through small but fixed apertures ωε

j = {(y, z) : ε−1 y ∈ ω, z = j}. By constructing 
asymptotics of eigenvalues of a model problem in � obtained from (3) in �ε by the Gelfand transform, it was proven 
that, for any N ∈ N = {1, 2, 3, . . . }, there exists εN > 0 such that the spectrum of the problem in �ε with ε ∈ (0, εN ] has 
at least N opened spectral gaps. However, such asymptotic analysis does not seem to suffice for opening infinitely many 
gaps, because εN → +0 as N → +∞. On the other hand, the waveguide (2) is not periodic because diameters O (α j) of 
the apertures ω j connecting the identical beads � j and � j+1 decay as j → ±∞. Hence, Theorem 1 does not solve the 
Bethe–Sommerfeld conjecture.

3. Spectrum

According to the Korn inequality in � , see, e.g., [12], the left-hand side of the integral identity (3) constitutes a closed 
positive Hermitian form in H1(�). Hence, problem (3) is associated with a positive self-adjoint unbounded operator A in 
L2(�) with a domain D(A) ⊂ H1(�), see [13, Ch. 10]. Its spectrum ℘ belongs to the closed positive real semi-axis R+ and

℘ = ℘di ∪ ℘es, ℘di ∩ ℘es = ∅ (4)

where ℘di and ℘es are the discrete and essential spectra, respectively. To describe the latter component, we mention that 
the model problem of the elasticity theory in the bounded Lipschitz domain �

(AD(∇)U , D(∇)V )� = �(U , V )� ∀V ∈ H1(�) (5)

possesses the eigenvalue sequence
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Fig. 1.

0 = �1 = · · · = �6 < �7 � �8 � · · · � �k � · · · → +∞ (6)

and the corresponding vector eigenfunctions U 1, . . . , U k, . . . ∈ H1(�) can be orthonormalized in L2(�). The first six of 
them are the rigid motions.

Theorem 1. There holds ℘es = {�k}k∈N , where N = {1, 2, . . . }.

Since the sequence (5) is monotone and unbounded, Theorem 1 demonstrates that the operator A gets infinitely many 
spectral gaps, namely finite open intervals in R+ , which are free of the essential spectrum ℘es but have both endpoints in 
℘es. It looks quite probable that each point �k ∈ ℘es is an accumulation point of the discrete spectrum ℘di; however, at the 
moment the authors are not able to confirm this hypothesis. Instead, first, we have proven that the total multiplicity of the 
point spectrum in the segment [�k − δ, �k + δ] cannot be finite for any δ > 0 and, second, we construct the asymptotics of 
the eigenvalues λε

jk → �k , j → +∞ in the case α j = εα0
j , for ε ∈ (0, εk) and sufficiently small εk > 0.

4. Abstract spectral equation

To prove Theorem 1, it is convenient to reformulate the elasticity problem as the abstract equation

Bu = μu in H (7)

where H is the Sobolev space H1(�) with the inner product (recall the Korn inequality mentioned above)

〈u, v〉 = (AD(∇)u, D(∇)v)� + (u, v)� (8)

and B is a self-adjoint positive continuous operator in H determined by the formula

〈Bu, v〉 = (u, v)� ∀u, v ∈ H (9)

Comparing (7)–(9) with (3) yields the relationship of the spectral parameters

μ = (1 + λ)−1 (10)

Notice that B is related to the inverse operator (B + 1)−1 for the isomorphism B + 1 : H →H∗ .

5. Weyl singular sequence

For any eigenvalue �k = μ−1
k − 1 in (6), we will construct a sequence {ukj} j∈N ⊂H such that

1◦ . ‖ukj; H‖ � ck;
2◦ . ukj ⇁ 0 weakly in H;
3◦ . Bukj − μkukj → 0 strongly in H when j → +∞.

Then, the Weyl criterion, cf. [13, § 9.1], implies that μk belongs to the essential spectrum of the operator B, and we 
thus obtain the inclusion {� j} j∈N ⊂ ℘es using (10). Let χ be a standard smooth cut-off function, χ(x) = 1 for |x| < R/2 and 
χ(x) = 0 for |x| > R . Set

u jk(x) = X j(x)Uk(y, z − j) (11)

X j(x) = 1 − χ(α−1
j+1(y, z − j − 1)) − χ(α−1

j (y, z − j)), x ∈ � j (12)

Since the vector eigenfunction U k is smooth near the flat surfaces γp , we have ‖ukj; H‖2 = �k + 1 + O (α j−1). Hence, 
condition 1◦ is satisfied, and also condition 2◦ becomes evident, because the supports of ukj and ukm are disjoint for j �= m. 
Finally, (8)–(10) yield
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‖Bukj − μkukj;H‖ = sup
∣∣∣〈Bukj − μkukj, v〉

∣∣∣ = (1 + �k)
−1 sup

∣∣∣(AD(∇)ukj, D(∇)v)� − �k(ukj, v)�

∣∣∣ (13)

where the supremum is computed over the unit ball of H. Commuting the differential operator D(∇) with cut-off functions 
in (11) and applying the Hardy inequality to the test function v , we can evaluate the expression (13) as O (α j−1). Thus, 3◦
is true, too.

6. Parametrix

The most complicated part of our proof of Theorem 1 is to verify that C \ {�k}k∈N is the regularity field of the operator 
A. To this end, we employ general results [14, Ch. 4], which provide “almost inverse” operators for elliptic boundary-value 
problems in domains with singularly perturbed boundaries. Indeed, the beads � j and � j−1 in (1) are connected in (2)
through the aperture ω j , the diameter O (α j) of which decays when j → ±∞ so that ω j is nothing but a singular nucleation 
in the boundary ∂� j ∪ ∂� j+1. Using these results, we construct for any λ �∈ {�k}k∈N a right parametrix R(λ) for the 
problem (3), that is, a continuous operator

R(λ) : H1(�)∗ → H1(�)

such that (B − λ)R(λ) − 1 is a compact mapping in H1(�)∗ , the space of (anti)linear functionals in H1(�).
Assuming that f (v) = ( f , v)� of (3) belongs to H1(�)∗ , we search for R(λ) f in the form

R(λ) f (x) =
∑
j∈Z

X j(x)U j(y, z + j) +
∑
j∈Z

χ j(x)W j(ξ j) (14)

where ξ j = (α−1
j y, α−1

j (z − j)) are stretched coordinates, X j is defined in (12) and the smooth cut-off function χ j satisfies 
χ j(x) = 1 for r j := (|y|2 +|z − j|2)−1/2 < R/2, χ j(x) = 0 for r j > R . Furthermore, U j ∈ H1(�)3 is a solution to the following 
problem on the etalon bead � ,

(AD(∇)U j, D(∇)V)� − λ(U j,V)� = F j(V) ∀V ∈ H1(�) , where (15)

F j(V) = f (X jV j), V j(y, z) = V(y, z − j), (y, z) ∈ � j (16)

Since λ differs from the eigenvalues in (6), the variational problem (15) has a unique solution subject to the estimate 
‖U j; H1(�)‖ � cλ‖F j; H1(�)∗‖.

Due to the cut-off functions X j in (16) and (14), the first sum in (14) leaves discrepancies in the original problem (3), 
which are located in the cα j -neighborhoods of the apertures ω j and belong to L2(� j ∪ � j+1), but they nevertheless give 
rise to a non-compact mapping in H1(�)∗ because the domain � is unbounded. To compensate for these discrepancies, 
we follow [14, Ch. 4] and construct boundary layers W j : they must be written in the stretched coordinates and, according 
to (1), they are solutions to the elasticity problem in the union � of the half-spaces R3± = {ξ ∈ R

3 : ±ξ3 > 0} connected 
through the aperture ω in the wall ∂R3± = {ξ : ξ3 = 0}. Data of these problems have compact supports and they thus have 
solutions W j with finite Dirichlet integrals

‖∇ξW j; L2(�)‖2 + ‖(1 + |ξ |)−1W j; L2(�)‖2 < +∞
due to the Hardy inequality, cf. [12] and [15, Ch. 6]. Owing to the decay properties of the boundary layers W j(ξ) = O ((1 +
|ξ |)−1), the whole discrepancy h = f − (B − λ)R(λ) f of the function (14) in problem (3) falls into the weighted Lebesgue 
space with the norm

(∑
j∈Z

α−2
j ‖h; L2(� j)‖2

)1/2

which is compactly embedded into H1(�)∗ . This concludes the proof of Theorem 1.

7. Some remarks

1◦ . Theorem 1 remains valid in two-dimensional waveguides of similar shapes, although solutions to the model elasticity 
problem in the planar aperture domain � ⊂ R

2 do not decay at infinity. However, a modification of the procedure in 
Section 5 according to [14, Ch. 2] yields the result.

2◦ . The above consideration can be adapted to waveguides of different shapes; for example, beads can be connected by 
thin and short ligaments, see Fig. 1b, and [5,4,16], or can constitute a double-periodic family, see Fig. 1c.

3◦ . Both steps in our proof of Theorem 1 can be readily generalized for higher-order elliptic differential operators and 
systems. In Section 7, we also consider a non-self-adjoint elliptic system, the spectrum of which has the same pathological 
structure.



194 S.A. Nazarov, J. Taskinen / C. R. Mecanique 344 (2016) 190–194
8. Piezoelectric waveguide

In the following, we use the notation of Section 1 for mechanical components, but supply them with the superscript 
M, and moreover we introduce the electric potential uE , the electric field strength column −∇uE and the matrices of sizes 
9 × 9 and 9 × 4

A =
(

AMM AME

−AEM AEE

)
, D(∇) =

(
DM(∇) O6×1
O3×3 ∇

)
(17)

Here, Om×n is the null m × n-matrix, AEE is a symmetric positive definite 3 × 3-matrix of dielectric moduli and the block 
AME = (AEM)� �= O6×3 is comprised of piezoelectric moduli. We consider the low- and middle-frequency ranges of the 
spectrum, where the influence of electro-magnetic waves is negligible, cf. [17], and we formulate the spectral problem for 
the piezoelectric waveguide (2), the surface of which is traction-free and in contact with an absolute insulator:

(AD(∇)u, D(∇)v)� = �(uM, vM)� ∀v = (vM, vE) ∈ H1(�) (18)

Although the matrix A in (17) is not symmetric and the form on the left of (18) is not Hermitian, the absence of the 
electric component uE on the right-hand side of (18) allows us to reduce the problem to a positive self-adjoint operator 
with the spectrum (4), see [6], [18]. Also the model problem in � , derived from (18), is similar to (5) and has an eigenvalue 
sequence of type (6), although with seven null eigenvalues (a zero electric potential is added).

Theorem 2. Theorem 1 remains valid for the piezoelectricity problem (18).
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