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This study focuses on heat conduction in unidimensional lattices also known as micro-
structured rods. The lattice thermal properties can be representative of concentrated 
thermal interface phases in one-dimensional segmented rods. The exact solution of the 
linear time-dependent spatial difference equation associated with the lattice problem is 
presented for some given initial and boundary conditions. This exact solution is compared 
to the quasicontinuum approximation built by continualization of the lattice equations. 
A rational-based asymptotic expansion of the pseudo-differential problem leads to an 
equivalent nonlocal-type Fourier’s law. The differential nonlocal Fourier’s law is analysed 
with respect to thermodynamic models available in the literature, such as the Guyer–
Krumhansl-type equation. The length scale of the nonlocal heat law is calibrated with 
respect to the lattice spacing. An error analysis is conducted for quantifying the efficiency 
of the nonlocal model to capture the lattice evolution problem, as compared to the 
local model. The propagation of error with the nonlocal model is much slower than 
that in its local counterpart. A two-dimensional thermal lattice is also considered and 
approximated by a two-dimensional nonlocal heat problem. It is shown that nonlocal and 
continualized heat equations both approximate efficiently the two-dimensional thermal 
lattice response. These extended continuous heat models are shown to be good candidates 
for approximating the heat transfer behaviour of microstructured rods or membranes.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

This paper deals with a nonlocal generalization of the heat equation that can be based on lattice arguments. Such non-
local theories may be useful to capture the scale effects of microstructured solids, when the discreteness at a subscale may 
play a predominant role at a larger scale. Such scale effects have been experimentally or numerically (based on molecular 
dynamics simulations) observed, for small scale structures, where size-dependent thermo-mechanical behaviour is noticed. 
Although the paper is mainly focused on thermal diffusion, fluid infiltration in porous media or electrical conductivity may 
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be considered as alternative basic diffusion problems [1]. Nonlocal thermomechanics has been developed since the 1960s 
based on well-founded thermodynamic arguments [2]. Eringen and Kim [3] or Eringen [4] calibrated the nonlocal elas-
ticity kernel (uncoupled mechanical problem) from lattice mechanics. Lattice mechanics is typically governed by discrete 
equations, whereas continuum models are known to be better suited for engineering applications, with some more math-
ematical available framework. There is a need to develop some continuous models which possess some information of the 
lattice ones. In that spirit, Collins [5] introduced the concept of quasicontinuum to representing a transition medium be-
tween the discrete lattice and the asymptotic local continuum. Collins [5] defined this quasicontinuum for a mechanical 
lattice, with specific application to the soliton phenomenon (see also [6,7]). Rosenau [8] obtained a nonlocal wave equation 
by continualization of the discrete wave equation. This nonlocal wave equation can be shown to be cast as a differential-
based nonlocal model [4], also called a stress-gradient nonlocal model. More recently, the source of nonlocality has been 
investigated, especially with respect to the inherent microstructure, and in particular for uncoupled mechanical problems 
(see, recently, [9–11] for nonlocal elasticity problems). Challamel et al. [12] also showed the key role of different microstruc-
tures, namely a concentrated or some distributed microstructures. Nonlocal mechanics may be used for characterizing the 
behaviour of the quasicontinuum. To the authors’ knowledge, this methodology has not yet been applied to the thermal 
analysis of the lattice, so the main aim of this paper is to fill this gap.

It has been demonstrated that the nonlocal kernel for elasticity problems may be related to the discreteness of the 
material at a fine scale, using a nonlocal differential model introduced by Eringen [4]:

σ − l2cσ
′′ = Eε with ε = u′ (1)

where σ is the uniaxial stress, ε is the uniaxial strain, u is the axial displacement, E is the Young modulus, and lc is 
a characteristic length which accounts for the specific lattice effect of the equivalent quasicontinuum. For axial vibrations 
problems, Challamel et al. [11] showed that the length scale of the nonlocal model can be calibrated from the lattice spacing 
a using:

l2c = a2

12
(2)

This value is slightly different from the one calibrated by Eringen [4] by comparing the wave dispersive properties of the 
nonlocal model with the lattice one, also referred to as the Born–Kármán lattice model.

In this paper, we adopt the same methodology used and applied in a one-dimensional problem of thermal diffusion evo-
lution. Nonlocal heat equations have been recently considered using space-fractional derivative operators instead of integer 
derivative ones [13–17]. In these approaches, the attenuation functions can be introduced by fractional derivative theory, 
leading to equivalent fractional power law decaying functions. Atanackovic et al. [13] considered a generalized fractional heat 
equation (also called fractional Cattaneo-type equation) (from the initial work of Cattaneo [18] – see also [19]) with both 
space- and time-fractional operators, and presented some numerical and analytical solutions. Some more general results in-
cluding existence and uniqueness properties of Cattaneo-type space–time fractional heat equation (and nonlocal wave-type 
equations) are available in the books of Atanackovic et al. [20,21]. Michelitsch et al. [14] studied nonlocal wave propagation 
and nonlocal diffusion processes for self-similar harmonic interactions media using fractional derivatives. Sapora et al. [15]
investigated a spatially nonlocal heat equation involving space-fractional derivative operators. Michelitsch et al. [14], Tarasov 
[16] or Zingales [17] built some space-fractional derivative nonlocal heat equations from a lattice model. Michelitsch et 
al. [14] or Tarasov [16] considered long-range lattice interactions (nearest-neighbour ones, but also interactions including 
some other neighbouring) for the physical justification of fractionality, whereas Zingales [17] investigated only nearest-
neighbour interactions with power-law lattice non-uniformity. Deseri and Zingales [22] considered a time-fractional Darcy 
equation (diffusion equation), which can be also considered as a kind of generalized Cattaneo-type equation. Yu et al. [23]
coupled Eringen’s nonlocal elasticity (integer order spatial differential model) with time-fractional order derivative for the 
heat conduction. Challamel et al. [9] analytically studied wave propagation in a nonlocal fractional differential-based model, 
highlighting the possible link between fractional nonlocality and Eringen’s differential-based model (see [4] for Eringen’s 
differential model applied to elasticity). Peridynamic heat transfer modelling (which makes use of nonlocal type diffusion 
equations) has been investigated by Oterkus et al. [24]. Recently, Zhan et al. [25] numerically noticed some length-dependent 
thermal conductivity in a one-dimensional carbon nanomaterial – diamond nanothread (DNT) – based on non-equilibrium 
molecular dynamics simulations.

In this paper, we consider an Eringen-type differential model for the nonlocal one-dimensional (and later two-
dimensional) generalization of Fourier’s law:

q − l2c q′′ = −λT ′ (3)

where q is the heat flux, T is the temperature, λ is thermal conductivity, and lc is a characteristic length which contains the 
microstructure information related to the discreteness of the material. The meaning of this nonlocal parameter is discussed 
further below. In Eq. (3), we can recognize an Eringen-type nonlocal differential model [4], where the heat flux acts as the 
stress and the temperature may be associated with the displacement in the analogous case of nonlocal elasticity. Eq. (3)
can also be classified as a Guyer–Krumhansl-type equation [26–29], restricted to the nonlocal space contribution as recently 
highlighted by Sellitto et al. [30], Jou et al. [31] or Jou et al. [32]. The additional nonlocal terms may appear in the kinetic 
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theory of gases in the so-called Burnett approximation [33]. Jou et al. [32] provided some thermodynamic arguments to 
justify such a family of models.

The energy balance equation may be written as:

ρcṪ = −q′ (4)

where ρ denotes the density and c is the specific heat capacity of the rod. Coupling Eq. (3) with Eq. (4) leads to the nonlocal 
heat equation:

Ṫ = αT ′′ + l2c Ṫ ′′ (5)

where α = λ/ρc is the thermal diffusivity. Eq. (5) is the Eringen-type nonlocal diffusion equation, which may be also 
formally valid for diffusion in porous media or electrical conduction.

This equation has been considered by Barenblatt [34] for the flow of liquids in fissured rocks (see also [35]). Some 
mathematical solutions in reference configurations are presented by Barenblatt [34] and Ting [36] (see also [37]). Recent 
studies on so-called weak nonlocal thermo-mechanical problems have been carried out by Maugin [38], Berezovski et al. 
[39], and Filopoulos et al. [40,41].

2. Solution to the nonlocal heat equation

We are searching for a solution to this spatially nonlocal evolution equation with the following boundary and initial 
conditions:

T (0, t) = T (L, t) = 0 and T (x,0) = f (x) (6)

Using the method of separation of variables, based on T (x, t) = X(x)Z(t), the nonlocal evolution equation gives:

Ż

Z
= α

X ′′

X
+ l2c

X ′′

X

Ż

Z
(7)

We can assume that Ż
Z = −αγ and then X ′′

X = −γα

α−γαl2c
= −δ2 with the following solutions:

Z(t) = Ae−αγ t (8)

X(x) = B sin(δx) + C cos(δx) (9)

From the boundary conditions, T (0, t) = T (L, t) = 0, which is equivalent to X(0) = X(L) = 0, we can therefore write:

X(x) = B sin

(
mπx

L

)
with δ = mπ

L
, m = 1,2,3 . . . (10)

Introducing δ = mπ
L , m = 1, 2, 3 . . . into X ′′

X = −γα

α−γαl2c
= −δ2, we obtain:

γ = (mπ
L )2

1 + l2c (
mπ

L )2
(11)

The general Fourier series solution can be expressed as:

T (x, t) =
∞∑

m=1

Am sin

(
mπx

L

)
e

−αm2π2t
l2c m2π2+L2 (12)

By setting lc = 0, the solution is reduced to the classical local solution (see, for instance, [1]):

T (x, t) =
∞∑

m=1

Am sin

(
mπx

L

)
e
− m2π2αt

L2 (13)

To satisfy the initial condition, we require for x ∈ [0; L]:

f (x) =
∞∑

m=1

Am sin

(
mπx

L

)
(14)

where the coefficient Am is given by:

Am = 2

L

L∫
f (x) sin

(
mπx

L

)
dx (15)
0
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Fig. 1. Lattice thermal behaviour.

for a specific hat function such as:

f (x) =
{

T0
2x
L , 0 ≤ x ≤ L

2

T0(2 − 2x
L ), L

2 ≤ x ≤ L
(16)

Based on Eq. (15), the coefficient Am is calculated as:

Am = 4T0

L2

L/2∫
0

x sin

(
mπx

L

)
dx + 4T0

L2

L∫
L/2

(L − x) sin

(
mπx

L

)
dx

= 8T0

(mπ)2
sin

(
mπ

2

)
=

{
8T0

(mπ)2 (−1)(m−1)/2, m is odd

0, m is even
(17)

The general Fourier series solution can then be expressed as:

T (x, t) =
∑

m=1,3,5,...

(−1)(m−1)/2 8T0

(mπ)2
sin

(
mπx

L

)
e

−αm2π2t
l2c m2π2+L2 (18)

The dimensionless parameters can be introduced as:

T ∗ = T

T0
, x̂ = x

L
, l̂c = lc

L
and τ = α

t

L2
(19)

The general Fourier series solution can then be expressed in a dimensionless form:

T ∗(x̂, τ ) =
∑

m=1,3,5,...

(−1)(m−1)/2 8

(mπ)2
sin(mπx̂)e

−m2π2

1+l̂2c m2π2 τ
(20)

3. Exact solution for the thermal lattice equation

In this study, we consider heat transfer in a lattice of n rigid elements (see Fig. 1). a is the lattice spacing, which 
has a physical meaning with respect to the physical discreteness of the thermal lattice. A similar lattice with additional 
inhomogeneities was recently studied by Zingales [17]. The discrete-based (or lattice) approach adopted here is based on 
the following spatially discrete Fourier’s law:

qi = −λ
Ti+1 − Ti

a
(21)

and the discrete energy balance equation, which may be written as:

ρcṪ i = −qi − qi−1

a
(22)

We then investigate the discrete diffusion equation formulated with:

Ṫ i = α
Ti+1 − 2Ti + Ti−1

a2
(23)

where again, α = λ/ρc is the thermal diffusivity and a = L/n is the lattice spacing.
Exact solutions of thermal lattice equations have been published with respect to the numerical treatment of the dis-

cretized time and spatial local heat equation (see [42–44] – see more recently [45]). It is noteworthy that the thermal 
lattice equations in the present paper coincide exactly with the finite-difference formulation of the spatial local heat equa-
tion with a continuous time parameter.

Following the methodology already described for the nonlocal heat equation, we use the method of separation of vari-
ables, based on Ti(t) = Xi Z(t), thus leading to:
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Fig. 2. Evolution of heat transfer using the lattice model, the local model and the nonlocal model based on l2c = a2/12 and n = 4.

Ż

Z
= α

Xi+1 − 2Xi + Xi−1

a2 Xi
(24)

We can assume that Ż = −αγ Z , which is easily integrated:

Z(t) = Ae−αγ t (25)

and then a linear second-order difference equation in space needs to be solved:

Xi+1 + (β − 2)Xi + Xi−1 = 0 with β = γ a2 (26)

whose solution can be expressed by (see, for example, [11]):

Xi = B sin(φi) + C cos(φi) with φ = arccos

(
1 − β

2

)
(27)

From the boundary conditions, T0(t) = Tn(t) = 0, which is equivalent to X0 = Xn = 0, we can therefore write:

Xi = B sin

(
mπi

n

)
with φ = mπ

n
, m = 1,2,3 . . . (28)

Introducing φ = mπ
n , m = 1, 2, 3 . . . into φ = arccos(1 − γ a2

2 ), we obtain:

γ = 4n2 sin2(mπ
2n )

L2
(29)

The general Fourier series solution can be expressed as:

Ti(t) =
∞∑

m=1

Am sin

(
mπi

n

)
e

−α4n2 sin2( mπ
2n )

L2 t
(30)

The local solution is again found when n tends to infinity. Using the Fourier decomposition given by Eq. (17), the exact 
solution of the thermal lattice equation is then written as:

T ∗
i (τ ) =

∑
m=1,3,5,...

(−1)(m−1)/2 8

(mπ)2
sin

(
mπi

n

)
e−[4n2 sin2( mπ

2n )]τ (31)

The temperature evolution of the lattice is represented in Figs. 2 and 3 for a lattice with n = 4 elements. It is clearly shown 
that the temperatures of the lattice model are higher than the values obtained with the local model.
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Fig. 3. Comparison of heat transfer evolution for the lattice model, the local model and the nonlocal model based on l2c = a2/12 and n = 4.

4. Identification of the length scale through microstructure analysis

Using a continualization procedure, it is possible to expand the spatial difference operators in Eq. (23) with a Taylor 
expansion based on Ti = T (x = ia) for a sufficiently smooth temperature function:

T (x + a) =
∞∑

k=0

ak∂k
x

k! T (x) = ea∂x T (x) with ∂x = ∂

∂x
(32)

This continualization method has been widely used for mechanical problems (see [5,6,8,46–48], but very few results are 
available for the diffusion equation. It is worth mentioning that Nielsen and Teakle [49] used a similar continualization 
approach for a Fick diffusion process, based on a Taylor-based asymptotic expansion of the field variable defined at discrete 
points.

The second-order finite difference operator can then be formulated using the pseudo-differential operator:
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Fig. 4. Evolution of heat transfer using the lattice model, the local model and the non-local model based on l2c = a2/12 and n = 8.

Ti−1 + Ti+1 − 2Ti = [
ea∂x + e−a∂x − 2

]
T (x) = 4 sinh2

(
a

2
∂x

)
T (x) (33)

The diffusion problem is then governed by the following system of pseudo-differential equations, obtained from Eq. (33):

Ṫ = 4
α

a2
sinh2

(
a

2
∂x

)
T (34)

Since the pseudo-differential operator can be efficiently approximated by a Padé approximant (for axial wave applications, 
see [8,46,48,49]):

4

a2
sinh2

(
a

2
∂x

)
= ∂2

x

1 − l2c∂
2
x

+ · · · with l2c = a2

12
(35)

By inserting the rational approximation Eq. (35) in Eq. (34) and by multiplying by 1 − l2c∂
2
x , Eq. (34) can then be efficiently 

approximated by the second-order differential equation:

Ṫ = αT ′′ + a2

12
Ṫ ′′ (36)

which is strictly equivalent to Eq. (3) with the length scale correspondence l2c = a2

12 .
Hence, the nonlocal diffusion equation may be physically supported by a lattice heat model. Figs. 2 and 3 show the 

efficiency of the quasicontinuous model (or nonlocal heat model) with respect to the lattice model for n = 4. Figs. 4 and 5
also compare both the nonlocal and the local models with respect to the reference lattice model for n = 8. The efficiency of 
the nonlocal model with respect to the local model is higher for small n values, i.e. in presence of strong microstructured 
effects. In fact, it is possible to quantify the relative error of the nonlocal model with respect to the reference lattice model 
from the following time-dependent function:

Err(i, τ ) = T ∗
i (τ ) − T ∗(x̂ = i/n, τ )

T ∗
i (τ )

=
∑

m=1,3,5,...(−1)(m−1)/2 8
(mπ)2 sin(mπi

n )[e−[4n2 sin2( mπ
2n )]τ − e

−m2π2

1+l̂2c m2π2 τ ]∑
m=1,3,5,...(−1)(m−1)/2 8

(mπ)2 sin(mπi
n )e−[4n2 sin2( mπ

2n )]τ (37)

The error is maximum at the middle of the lattice bar:

Err(n/2, τ ) = T ∗
n/2(τ ) − T ∗(x̂ = 1/2, τ )

T ∗
n/2(τ )

=
∑

m=1,3,5,...
8

(mπ)2 [e−[4n2 sin2( mπ
2n )]τ − e

−m2π2

1+l̂2c m2π2 τ ]∑
m=1,3,5,...

8
2 e−[4n2 sin2( mπ

2n )]τ (38)
(mπ)
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Fig. 5. Comparison of heat transfer evolution for the lattice model, the local model and the nonlocal model based on l2c = a2/12 and n = 8.

Error propagation during the diffusion process is shown in Fig. 6, and again, the superiority of the nonlocal model as 
compared to the local model clearly appears. Moreover, it is possible to calibrate the length scale of the nonlocal model to 
fit exactly the lattice model, from the fitting coefficient:

βopt(n/2, τ ) = 1

n2l̂2c,opt

or l2c,opt = a2

βopt(n/2, τ )
(39)

The best nonlocal parameter is numerically computed from:

Err(n/2, τ ,β) = T ∗
n/2(τ ) − T ∗(x̂ = 1/2, τ ,β)

T ∗
n/2(τ )

=
∑

m=1,3,5,...
8

(mπ)2 [e−[4n2 sin2( mπ
2n )]τ − e

−m2π2

1+ m2π2

βn2

τ

]∑
m=1,3,5,...

8
2 e−[4n2 sin2( mπ

2n )]τ = 0 (40)
(mπ)
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Fig. 6. Time evolution of the relative temperature error at the middle of the bar of the nonlocal model and the local model with respect to the reference 
lattice model for n = 4; Err(n/2, τ ) = T ∗

n/2(τ )−T ∗(x̂=1/2,τ )

T ∗
n/2(τ )

; l2c = a2/12 is chosen for the lattice model.

Fig. 7. Numerical evaluation of βopt(n/2, τ ) = 1
n2 l̂2c,opt

as a function of time τ for n = 4, n = 6, and n = 24 in order to have Err(n/2, τ ) =
T ∗

n/2(τ )−T ∗(x̂=1/2,τ )

T ∗
n/2(τ )

= 0.

Fig. 7 shows that βopt is a monotonic increasing function of time which grows up to 12, especially for larger values of n, 
which means that the time independent length scale l2c = a2

12 is reached after a transitory time for a sufficiently large number 
of lattice elements.
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5. Two-dimensional nonlocal heat problem

We are now considering the heat diffusion in a rectangular microstructured membrane of size L1 × L2. The two-
dimensional nonlocal heat equation is expressed from the two-dimensional generalization of Eq. (5) as:

Ṫ = α
T + l2c
Ṫ (41)

where α = λ/ρc is the thermal diffusivity. We are searching for a solution of this spatially nonlocal evolution equation with 
the following boundary and initial conditions:

T (x = 0, y, t) = T (x = L1, y, t) = T (x, y = 0, t) = T (x, y = L2, t) = 0 and T (x, y,0) = f (x, y) (42)

Using the method of separation of variables, based on T (x, y, t) = X(x)Y (y)Z(t), the nonlocal evolution equation gives:(
1 − l2c


)
XY Ż = αZ
(XY ) (43)

We can assume that Ż
Z = −αγ and then

−γ XY = (
1 − γ l2c

)

(XY ) (44)

For the boundary conditions considered in Eq. (42), the following solution may be considered:

Z(t) = Ae−αγ t (45)

X(x)Y (y) = B sin

[
mπx

L1

]
sin

[
pπy

L2

]
(46)

Introducing the solution of Eq. (46) into the partial differential equation in Eq. (44), we obtain:

γ = (mπ
L1

)2 + (
pπ
L2

)2

1 + l2c [(mπ
L1

)2 + (
pπ
L2

)2] (47)

The general Fourier series solution can be expressed as

T (x, y, t) =
∞∑

m=1

∞∑
p=1

Am,p sin

(
mπx

L1

)
sin

(
pπy

L2

)
e
−α

( mπ
L1

)2+(
pπ
L2

)2

1+l2c [( mπ
L1

)2+(
pπ
L2

)2] t

(48)

To satisfy the initial condition, we require for (x, y) ∈ [0; L1] × [0; L2]:

f (x, y) =
∞∑

m=1

∞∑
p=1

Am,p sin

(
mπx

L1

)
sin

(
pπy

L2

)
(49)

where the coefficient Am,p is given by (see [1]):

Am,p = 4

L1L2

L1∫
0

L2∫
0

f (x, y) sin

(
mπx

L

)
sin

(
pπy

L2

)
dxdy (50)

We study in this paper a two-dimensional hat-type temperature distribution characterized by:

f (x, y) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

T0
2x
L1

× 2y
L2

, 0 ≤ x ≤ L1
2 , 0 ≤ y ≤ L2

2

T0(2 − 2x
L1

) × 2y
L2

,
L1
2 ≤ x ≤ L1, 0 ≤ y ≤ L2

2

T0
2x
L1

× (2 − 2y
L2

), 0 ≤ x ≤ L1
2 , L2

2 ≤ y ≤ L2

T0(2 − 2x
L1

) × (2 − 2y
L2

),
L1
2 ≤ x ≤ L1,

L2
2 ≤ y ≤ L2

(51)

It is easy to check that:

Am,p = 64T0

(mπ)2(pπ)2
sin

(
mπ

2

)
sin

(
pπ

2

)
(52)

and the nonlocal temperature solution is finally written as:

T (x, y, t) =
∑

m=1,3,5,...

∑
p=1,3,5,...

(−1)(m−1)/2(−1)(p−1)/2 64T0

(mπ)2(pπ)2
sin

(
mπx

L1

)
sin

(
pπy

L2

)
e
−α

( mπ
L1

)2+(
pπ
L2

)2

1+l2c [( mπ
L1

)2+(
pπ
L2

)2] t

(53)
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6. Two-dimensional thermal lattice – exact solution and continualization approach

The heat diffusion in the rectangular microstructured membrane of size L1 × L2 with L1 = n1a and L2 = n2a is studied, 
where a is the lattice spacing in each direction. Following Rosenau’s reasoning for mechanical two-dimensional lattices [49], 
the thermal lattice difference equations are written by:

Ṫ i, j = α
Ti+1, j + Ti, j+1 + Ti−1, j + Ti, j−1 − 4Ti, j

a2
(54)

where a is the lattice spacing in each direction of the microstructured membrane. One recognizes the spatial finite difference 
equations of the local heat equation.

We are searching for a solution of these two-dimensional time-dependent lattice equations with the following boundary 
and initial conditions:

T0, j(t) = Tn1, j(t) = Ti,0(t) = Ti,n2(t) = 0 and Ti, j(t = 0) = f i, j (55)

The initial conditions are the same as the ones of the nonlocal two-dimensional problem, i.e. f i, j = f (ai, aj) in Eq. (51).
Following the methodology already described for the nonlocal heat equation, we use the method of separation of vari-

ables, based on Ti, j(t) = Xi Y j Z(t), thus leading to:

Xi Y j
Ż

Z
= α

[
Xi+1Y j + Xi Y j+1 + Xi−1Y j + Xi Y j−1 − 4Xi Y j

a2

]
(56)

We can assume that Ż = −αγ Z , which is easily integrated:

Z(t) = Ae−αγ t (57)

and then, the spatial difference equation in space to be solved is written by:

Xi+1Y j + Xi Y j+1 + Xi−1Y j + Xi Y j−1 + (
γ a2 − 4

)
Xi Y j = 0 (58)

the solution to which, for the boundary conditions given in Eq. (55), can be expressed by:

Xi Y j = B sin

[
mπai

L1

]
sin

[
pπaj

L2

]
(59)

Introducing the solution of Eq. (59) in Eq. (58), we obtain:

γ = 4

a2

[
sin2

(
mπa

2L1

)
+ sin2

(
pπa

2L2

)]
(60)

The general Fourier series solution can be expressed for the two-dimensional lattice as:

Ti, j(t) =
∞∑

m=1

∞∑
p=1

Am,p sin

(
mπi

n1

)
sin

(
pπ j

n2

)
e
−α 4

a2 [sin2( mπ
2n1

)+sin2(
pπ

2n2
)]t

(61)

The local solution is again found when n1 and n2 tend to infinity. For a square lattice, we have L1 = L2 and n1 = n2. The 
maximum temperature at the centre of the square lattice can then be expressed in a dimensionless form as:

T ∗
n/2,n/2(τ ) =

∑
m=1,3,5,...

∑
p=1,3,5,...

64

(mπ)2(pπ)2
e−4n2[sin2( mπ

2n )+sin2(
pπ
2n )]τ (62)

We will now show that the nonlocal heat model can be derived from continualization of the lattice equations, following the 
continualization reasoning of Rosenau [50], Andrianov and Awrejcewicz [51] or Lombardo and Askes [52] for mechanical 
lattices. The thermal lattice equations Eq. (54) can be continualized from the pseudopartial-differential operator:

Ṫ = 4
α

a2

[
sinh2

(
a

2
∂x

)
+ sinh2

(
a

2
∂y

)]
T (63)

A rational-based asymptotic expansion leads to:

Ṫ = α

[
∂2

x

1 − a2

12∂2
x

+ ∂2
y

1 − a2

12∂2
y

]
T (64)

which can be approximated by the following form:(
1 − a2




)
Ṫ = α

[

T − a2 ∂4T

2 2

]
(65)
12 6 ∂x ∂ y
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Some similar differential operators have been obtained by Rosenau [50], Andrianov and Awrejcewicz [51] or Lombardo and 
Askes [52] for the mechanical lattice. If the last coupling term is omitted (as discussed by Rosenau [50] for the mechanical 
lattice), this continualized model reduces to the simplified nonlocal heat equation considered in Eq. (41) with l2c = a2/12:(

1 − a2

12



)
Ṫ = α
T (66)

which can be obtained from the nonlocal two-dimensional formulation:

q − l2c∇2q = −λ∇T and ρcṪ = −∇.q with q =
(

qx

qy

)
and ∇ =

(
∂x

∂y

)
(67)

with ∇2 = 
1 and ∇ is the gradient operator. This is an Eringen’s type nonlocal Fourier law. Eq. (66) can be also obtained 
from the following alternative nonlocal law:

q − l2c∇(∇ · q) = −λ∇T and ρcṪ = −∇ · q (68)

Note that the two nonlocal Fourier laws differ, even if the partial differential equation for the temperature coincides, due to 
the fact that:

∇2 = 
1 =
(

∂2
x + ∂2

y 0
0 ∂2

x + ∂2
y

)
�=

(
∂2

x ∂x∂y

∂x∂y ∂2
y

)
(69)

For the square lattice, the nonlocal approximation of the dimensionless temperature in the centre, based on the continual-
ization of Eq. (66) is then given by:

T ∗
n/2,n/2(τ ) =

∑
m=1,3,5,...

∑
p=1,3,5,...

64

(mπ)2(pπ)2
e
− (mπ)2+(pπ)2

1+ 1
12n2 [(mπ)2+(pπ)2] τ

(70)

Considering now the continualization model given by Eq. (65), and following the reasoning presented for the truncated 
nonlocal model, the temperature field for the rectangular membrane would be calculated as:

T (x, y, t) =
∑

m=1,3,5,...

∑
p=1,3,5,...

(−1)(m−1)/2(−1)(p−1)/2 64T0

(mπ)2(pπ)2

× sin

(
mπx

L1

)
sin

(
pπy

L2

)
e
−α

( mπ
L1

)2+(
pπ
L2

)2+ a2
6 ( mπ

L1
)2(

pπ
L2

)2

1+ a2
12 [( mπ

L1
)2+(

pπ
L2

)2]
t

(71)

For the square lattice, the nonlocal approximation of the dimensionless temperature in the centre, based on the continual-
ization of Eq. (65) is then given by:

T ∗
n/2,n/2(τ ) =

∑
m=1,3,5,...

∑
p=1,3,5,...

64

(mπ)2(pπ)2
e
−

(mπ)2+(pπ)2+ (mπ)2(pπ)2

6n2

1+ 1
12n2 [(mπ)2+(pπ)2] τ

(72)

The thermal evolution at the centre of the squared membrane is plotted in Fig. 8, and compared to the nonlocal heat model, 
the continualized heat model and the local one for n = 4. The continualized model and the nonlocal one lead to very close 
responses, and approximated very efficiently the response of the lattice. In Fig. 9, the relative error is plotted with respect 
to the time. It is shown that the continualized nonlocal model – Eq. (65) – gets better result than the truncated nonlocal 
model – Eq. (66) –, especially for a sufficiently large time.

7. Conclusions

In this paper, we show that a microstructured lattice during heat transfer behaves as a quasicontinuum governed by a 
nonlocal Fourier’s law. The nonlocal Fourier’s law is similar to the differential model of Eringen [4] for mechanical elastic 
interactions. The nonlocal length scale is calibrated from the lattice spacing using a continualization procedure. It is shown 
that the nonlocality is similar for thermal and mechanical behaviour, with the same length scale for both phenomena. The 
results are valid for one-dimensional thermal lattice and two-dimensional thermal lattices, even if the two-dimensional 
continualized model may slightly differ from a phenomenological differential-based nonlocal thermal model. Definitely, 
nonlocal heat models are comforted by lattice arguments and inherently possess some length scale that can be decisive in 
presence of strong microstructured effects.

We have not explored the possibility for the time variable to belong to a discrete space (see Lee [53]), as we implicitly 
assumed a steady flow with respect to time. However, it is formally also possible to relax this assumption for coupled 
time–space discrete problems associated with both time and space nonlocality.
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Fig. 8. Evolution of T ∗
n/2,n/2(τ ) for n = 4 in the centre of the square membrane.

Fig. 9. Evolution of the relative error |Err(n/2,n/2, τ )| = |T ∗
n/2,n/2(τ )−T ∗(x̂=1/2, ŷ=1/2,τ )|

T ∗
n/2,n/2(τ )

for n = 4 in the centre of the square membrane.
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