
C. R. Mecanique 344 (2016) 151–166
Contents lists available at ScienceDirect

Comptes Rendus Mecanique

www.sciencedirect.com

Nonlinear vibrations of buckled plates by an asymptotic 

numerical method

Lahcen Benchouaf ∗, El Hassan Boutyour

Department of Applied Physics, Faculty of Sciences and Technology, Hassan 1st University, PO Box 577, Settat, Morocco

a r t i c l e i n f o a b s t r a c t

Article history:
Received 27 October 2015
Accepted 5 January 2016
Available online 3 February 2016

Keywords:
Nonlinear vibrations
Buckling
Von Karman plate
Asymptotic numerical method
Harmonic balance method
Finite-element method

This work deals with nonlinear vibrations of a buckled von Karman plate by an asymptotic 
numerical method and harmonic balance approach. The coupled nonlinear static and 
dynamic problems are transformed into a sequence of linear ones solved by a finite-
element method. The static behavior of the plate is first computed. The fundamental 
frequency of nonlinear vibrations of the plate, about any equilibrium state, is obtained. 
To improve the validity range of the power series, Padé approximants are incorporated. 
A continuation technique is used to get the whole solution. To show the effectiveness of 
the proposed methodology, numerical tests are presented.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Vibrations and buckling are common instability phenomena accompanied, generally, by large displacements and im-
portant changes in the shape of structures widely used in various industrial fields such as civil engineering, mechanics, 
aerospace, etc. For appropriate design, it is necessary to develop analytical, numerical or experimental tools able to ana-
lyze these problems in order to predict accurately critical loads and natural frequencies (instability and resonance regions). 
In the literature, various approaches coupling the two problems were developed. A relatively simple one consists, first, in 
computing static equilibrium branches with the corresponding critical loads and, secondly, in analyzing the vibrations of 
the structure about a given equilibrium position of the pre- or post-buckled domain. The majority of the realized works, 
using the indicated approach, concern only linear theory and consider beams, plates or shells structures. These studies 
show, especially, that the first frequencies can define bifurcation indicators that can be employed advantageously in the 
non-destructive control. Furthermore, some papers consider non-conservative loads leading to complex instabilities called 
flutter phenomena. But it is known that, when a shell is deflected more than approximately one-half of its thickness, sig-
nificant geometrical nonlinearities are induced and a variation of the frequency resonance with the vibration amplitude is 
shown [1]. However, to the author’s knowledge, only a few works have shown an interest in the coupling of the buckling 
and vibrations and taken into account these nonlinearities [2–12]. Min and Eisley [2] and Tseng and Dugundji [3] adopted 
analytical procedures based on Galerkin method and modal approximation to study beams subjected to in-plane load. Note 
that, experimental results were presented in the last paper. Using the same procedures with elliptic integrals, Lesatri and 
Hanagul [4] studied beams with elastic end restraints. Employing Kirchhoff plate theory and Harmonic balance method, 
Mahdavi et al. [5] examined the effect of in-plane load on embedded single layer graphene sheet (SLGS) in a polymer 
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Fig. 1. Geometry and coordinate system of a rectangular plate.

matrix aroused by nonlinear Van Der Waals forces. Shojaei et al. [6] proposed a numerical approach based on Galerkin 
procedure and a discretization of the space and time domains to investigate Euler–Bernoulli beams with different boundary 
conditions. Ansari et al. [7] studied microscale Euler–Bernoulli beams employing a couple stress theory. They also consid-
ered post-buckled von Karman nanoplates [8]. Based on a high order shear deformation theory, on a Galerkin method and 
a Newton–Raphson iterative procedure, Girish and Ramachandra [9] investigated laminated composite plates, with initial 
geometric imperfections and subjected to a uniform temperature distribution through the thickness. Li et al. [10] used von 
Karman plate theory, Kantorovich time-averaging method and a shooting method to study circular orthotropic plates with 
a centric rigid mass. Xia and Shen [11,12] considered sandwich plates with functionally graded material FGM face sheets 
and FGM plates with a layer of piezoelectric actuators in thermal environments and subjected to a compression load. The 
used formulation is based on a high-order shear deformation theory and takes into account thermo-piezoelectric effects. 
The motion equations are solved by a perturbation technique.

The aim of the present work consists in studying the nonlinear free vibrations of von Karman plates about a static 
equilibrium of the pre- or post-buckled domain, by an asymptotic numerical method (ANM) combined to a harmonic bal-
ance method. The unknowns of the problem (solution branches, natural frequencies and mode shapes) are determined by 
a perturbation technique whose terms are computed by a finite-element method. The coupled nonlinear problems (static 
and dynamic) are transformed into a sequence of linear ones with only two operators to be inverted. In this approach, one 
searches, first, the equilibrium branches and the bifurcation points. Secondly, the backbone curves, related to the fundamen-
tal frequency of nonlinear free vibration of the structure about any equilibrium position of pre and post buckling domain, 
are determined. At each stage of the proposed algorithm, Padé approximants are incorporated to improve the validity range 
of the power series and to reduce the computational cost. The whole solution branches at large displacements are derived 
by the continuation procedure. To show the effectiveness and the reliability of the proposed methodology, numerical tests 
are presented.

2. Formulation of the problem

The main objective of this paper consists in developing a methodological approach based on the asymptotic numerical 
method and coupling buckling and nonlinear free vibration of thin plates subjected to uniaxial load. Here, one follows ex-
actly the same methodology as that adopted in [13]. After determining the static fundamental branch, the bifurcation point 
and the bifurcated branches, the backbone curve corresponding to the fundamental frequency of the nonlinear vibrations of 
the plate about any equilibrium state of the pre- or post-buckled domain is determined.

2.1. Governing equation of static equilibrium

Let us consider an elastic and homogeneous rectangular plate of thickness h, length L, width l, middle surface Ω , density 
mass ρ , Young modulus E , Poisson’s ratio ν . In a rectangular coordinate reference frame (O ; x, y, z), the displacement 
components of a middle surface point of coordinates (x, y, z) are denoted by u, v , and w in the x, y and z directions, 
respectively. One assumes that the plate is subjected to a uniform axially compressive force F per unit length, in the 
x-direction, along the edges x = 0, L (see Fig. 1).

The governing equation of the nonlinear static behavior can be derived by the von Karman theory. To use easily a 
perturbation technique, a mixed principal is required. The stationarity of the Hellinger–Reissner functional gets [14]:

L
(
Us) + Q

(
Us,Us) − λF = 0 (1)

where Us = {us, vs, ws, Ns}t is a mixed unknown vector, the linear operator L(·) and the quadratic one Q(·, ·) are defined by:

〈
L
(
Us), δU

〉 = ∫ {
δN : (Γ l(us) − [Cm]−1 : Ns) + δΓ l(δu) : Ns + δκ : [Cb] : κs}dΩ (2)
Ω
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〈
Q
(
Us,Us), δU

〉 = ∫
Ω

{
δN : Γ nl(us,us) + Ns : 2Γ nl(us, δu

)}
dΩ (3)

The last term of Eq. (1) is given by:

〈F , δU〉 =
∫
Ω

{ fuδu + f vδv}dΩ (4)

where Γ = Γ l(us) + Γ nl(us, us) is the Green–Lagrange strain decomposed into a linear and a quadratic part, κs is the 
bending strain, Ns is the membrane force per unit length, [Cm] and [Cb] are the stiffness matrices of membrane and bending, 
respectively. λ is a scalar load parameter, fu and f v are the components of the applied force F in the x and y direction, 
respectively.

2.2. Vibration about a static equilibrium configuration

One assumes that, for a given applied load, the plate oscillates about its corresponding equilibrium deformed state Us. 
These oscillations are described by the time-dependent mixed vector U(u, v, w, t). The global response is assumed to be the 
sum of the static part and dynamic one [13]:

Us(us,vs,ws) + U(u,v,w, t) (5)

Note that the static deformed configuration can correspond to a pre- or post-buckled state. Based on Hamilton’s principle 
and neglecting in-plane and rotary inertia terms, the oscillations of the plate about the static deformed state are described 
by the following equation:

L
(
Us + U

) + Q
(
Us + U,Us + U

) + M(Ü) − λF = 0 (6)

where the inertia operator is given by:〈
M(Ü), δU

〉 = ρh
∫
Ω

{üδu + v̈δv + ẅδw}dΩ (7)

Let us recall that the nonlinear free vibrations of the unloaded plate can be investigated by numerically solving Eq. (6)
with Us = 0. On the other hand, putting U = 0 into Eq. (6), leads to the nonlinear static analysis of the plate. The governing 
equation of the nonlinear free vibrations of the plate about a static equilibrium state is deduced from Eq. (6) taking into 
account Eq. (1):

L(U) + 2Q
(
Us,U

) + Q(U,U) + M(Ü) = 0 (8)

Of course, neglecting Q(U, U) in Eq. (8) leads to linear vibrations problem of buckled plate which was largely discussed 
in [13] for various shell structures. Here, this term is taken into account. To solve the problem, one adopts the harmonic 
balance method [15–17]. The components of the dynamic part of the global displacement vector are assumed to be in the 
following form:

u(x,y, t) = u(x, y) cos2(ωt)

v(x,y, t) = v(x, y) cos2(ωt)

w(x,y, t) = w(x, y) cos(ωt) (9)

where ω denotes the natural frequency.
To study the history of the solution corresponding to a period, the initial time is set as t0 = 0 and the final time 

t1 = 2π/ω. Using the expressions given by Eq. (9) and after integration of Eq. (8) over the time range, one gets:∫
Ω

{
−δN1 : [Cm]−1 : N1 + 3

4
δN2 : (γ l(u) − [Cm]−1 : N2) + 3

4
γ l(δu) : N2 + δκ : [Cb] : κ

}
dΩ

+
∫
Ω

{
δN1 : 2γ nl(us,u

) + N1 : 2γ nl(us, δu
) + Ns : 2γ nl(u, δu)

}
dΩ

+ 3

4

∫
Ω

{
δN2 : γ nl(u,u) + N2 : 2γ nl(u, δu)+}

dΩ − ω2ρh
∫
Ω

{uδu + vδv + wδw}dΩ = 0;

∀(
δu, δv, δw, δN1, δN2) (10)

where N1 = [Cm] : {γ nl(us, u)} and N2 = [Cm] : {γ l(u) + γ nl(u, u)}.
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It is clearly seen that the dependence in time is transformed into a frequency one. The last variational problem can be 
written in an operational form:

L(U) + 2Q
(
Us,U

) + Q(U,U) − ω2M(U) = 0 (11)

where U = (u, v, w, N1, N2) is a mixed unknown vector and

〈
L(U), δU

〉 = ∫
Ω

{
−δN1 : [Cm]−1 : N1 + 3

4
δN2 : (γ l(u) − [Cm]−1 : N2) + 3

4
γ l(δu) : N2 + δκ : [Cb] : κ

}
dΩ (12a)

2
〈
Q
(
Us,U

)
, δU

〉 = ∫
Ω

{
δN1 : γ nl(us,u

) + N1 : γ nl(us, δu
) + Ns : γ nl(u, δu)

}
dΩ (12b)

〈
Q(U,U), δU

〉 = 3

4

∫
Ω

{
δN2 : γ nl(u,u) + N2 : 2γ nl(u, δu)

}
dΩ (12c)

〈
M(U), δU

〉 = ρh
∫
Ω

{uδu + vδv + wδw}dΩ (12d)

Herein, one searches the nonlinear fundamental frequency and its associated mode shape in the pre- or post-buckling ranges 
of the plate. Hence, the following coupled problems must to be solved:

L
(
Us) + Q

(
Us,Us) − λF = 0 (13a)

L(U) + 2Q
(
Us,U

) + Q(U,U) − ω2M(U) = 0 (13b)

3. Solution by an asymptotic numerical method

In this section, we propose, first, to solve the static equilibrium problem (13a) by an asymptotic numerical method such 
as it was done in previous works and tested for various shells structures by Potier-Ferry and co-workers. The fundamental 
branch, the bifurcation point and the bifurcated branch are computed. Secondly, one searches the solution of the dynamic 
problem described by Eq. (13b) using ANM in the same manner as in the static one. The solution branches (static or 
dynamic) are obtained analytically in the vicinity of a starting point. To get the whole of the responses, Padé approximants 
and a continuation technique are adopted [18,19].

3.1. Static equilibrium

3.1.1. Computation of the solution branches
The basic idea of the ANM consists in searching the solution branches of the nonlinear problem (13a) under an asymp-

totic expansion form in terms of a control parameter a. This expansion is investigated starting from a known and regular 
solution (Us

0, λ0):

Us − Us
0 =

n∑
r=1

arUs
r, λ − λ0 =

n∑
r=1

arλr (14)

where n is a truncation order and a is defined by:

a = 〈
us − us

0,us
1

〉 + (λ − λ0)λ1 (15)

By substituting Eq. (14) into Eq. (13a) and Eq. (15), respectively, and equating coefficients of like powers of a, one 
transforms the nonlinear problem into a sequence of linear ones solved by the finite-element method. For a large discussion 
of the supplementary condition (Eq. (15)), the reader will refer to [20].

3.1.2. Detection of bifurcation points
A bifurcation indicator well adapted to the ANM framework can be defined by introducing a fictitious perturbing force 

�μ f in the plate for a given equilibrium deformed state (Us, λ). �μ is the intensity of this force and �U its associated 
response. By superposing the fictitious perturbation and the applied load and neglecting the second order terms, one gets 
the following auxiliary problem:

Lt(�U) = �μ f (16)

where Lt is the tangent operator at the equilibrium point (Us, λ). Eq. (16) constitutes a linear system with respect to �U and 
�μ. To ensure the uniqueness of the solution of Eq. (16), an additional condition is introduced [21]. The problem is solved 
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by ANM in the same manner as for the equilibrium path. The obtained approximation of �μ(a) is highly accurate inside 
the validity range [0, amax]. The bifurcation and the limit points correspond exactly to the values of the load for which the 
operator Lt is singular, i.e. the roots of the indicator �μ.

�μ(a) = 0 (17)

Note that recently Cochelin and Medale [22] have proposed a new bifurcation indicator based only on the behavior of the 
branching path.

3.1.3. Computation of the post-buckling branch by the ANM
The bifurcated branch is searched using an asymptotic expansion starting from the bifurcation point. Because of the 

tangent stiffness matrix is singular, the first step of the bifurcated branch is computed in a specific way. First, the tangent 
directions from the simple bifurcation point are obtained by the classical bifurcation analysis, which leads to the well-known 
quadratic bifurcation equation. Secondly, the linear problems resulting from the asymptotic expansion are solved via an 
extended system [21]. The next steps of the bifurcating branch are determined by the classical ANM.

3.2. Nonlinear free vibrations of buckled plate

The purpose of this subsection consists in solving the nonlinear free vibrations problem given by Eq. (13b) using the 
asymptotic numerical method. The fundamental frequency parameter ω and the associated mode shape U corresponding to 
nonlinear free vibrations of the plate about any equilibrium position of the pre- or post-buckled domain are determined 
using the following asymptotic expansion:

U − U0 =
p∑

r=1

arUr, ω2 − ω2
0 =

p∑
r=1

arωr (18)

The control parameter of series Eq. (18) can be identified as the projection of the displacement increment (U − U0) and 
the frequency one (ω2 − ω2

0) on the tangent vector (U1, ω1).

a = 〈u − u0,u1〉 + (
ω2 − ω2

0

)
ω1 (19)

By substituting Eq. (18) into Eq. (13b) and Eq. (19), and equating coefficients of like powers of a, one gets the following 
set of linear problems:
order 0

L(U0) + 2Q
(
Us,U0

) + Q(U0,U0) − ω2
0M(U0) = 0 (20a)

order 1

L0
t (U1) − ω2

0M(U1) = ω1M(U0)

〈u1,u1〉 + ω1ω1 = 1
... (20b)

order p (p > 1)

L0
t (Up) − ω2

0M(Up) = ωpM(U0) +
p−1∑
r=1

ωrM(Up−r) −
p−1∑
r=1

Q(Ur,Up−r)

〈up,u1〉 + ωpω1 = 0 (20c)

where L0
t (•) = L(•) + 2Q(Us, •) + 2Q(U0, •).

Note that ω0 is obtained with the procedure described by [13], its corresponding form U0, given by Eq. (20a), is deduced 
by the Newton–Raphson iterative algorithm. The problem is then analytically solved. In order to use a classical displacement 
finite element, it is convenient to return to a pure displacement formulation [14]. The expansion of the constitutive law 
gives:
order 0:

N1
0 = [Cm] : {2γ nl(us,u0

)}; N2
0 = [Cm] : {γ l(u0) + γ nl(u0,u0)

}
(21a)

order 1:

N1
1 = [Cm] : {2γ nl(us,u1

)}; N2
1 = [Cm] : {γ l(u1) + 2γ nl(u0,u1)

}
(21b)

order p (p > 1):
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N1
p = [Cm] : {2γ nl(us,up

)}; N2
p = [Cm] :

{
γ l(up) + 2γ nl(u0,up) +

p−1∑
r=1

γ nl(ur,up−r)

}
(21c)

The insertion of Eqs. (21) into Eqs. (20) leads to a sequence of linear problems in pure displacement:
order 0:∫

Ω

{
2γ nl(us, δu

) : [Cm] : 2γ nl(us,u0
) + 3

4

(
γ l(δu) + 2γ nl(u0, δu)

) : [Cm] : (γ l(u0) + 2γ nl(u0,u0)
) + δκ : [Cb] : κ0

+ Ns : 2γ nl(u0, δu)

}
dΩ − ω2

0ρh
∫
Ω

{u0δu + v0δv + w0δw}dΩ = 0 (22a)

Order 1:∫
Ω

{
2γ nl(us, δu

) : [Cm] : 2γ nl(us,u1
) + 3

4

(
γ l(δu) + 2γ nl(u0, δu)

) : [Cm] : (γ l(u1) + 2γ nl(u0,u1)
) + δκ : [Cb] : κ1

+
(

3

4
N2

0 + Ns
)

: 2γ nl(u1, δu)

}
dΩ − ω2

0ρh

∫
Ω

{u1δu + v1δv + w1δw}dΩ

= ω1ρh

∫
Ω

{u0δu + v0δv + w0δw}dΩ (22b)

Order p (p > 1):∫
Ω

{
2γ nl(us, δu

) : [Cm] : 2γ nl(us,up
) + 3

4

(
γ l(δu) + 2γ nl(u0, δu)

) : [Cm] : (γ l(up) + 2γ nl(u0,up)
)

+ δκ : [Cb] : κp +
(

3

4
N2

0 + Ns
)

: 2γ nl(up, δu)

}
dΩ − ω2

0ρh

∫
Ω

{upδu + vpδv + wpδw}dΩ

= ωpρh

∫
Ω

{u0δu + v0δv + w0δw}dΩ +
p−1∑
r=1

ωpρh

∫
Ω

{up−rδu + vp−rδv + wp−rδw}dΩ

− 3

4

p−1∑
r=1

∫
Ω

{
N2

r : 2γ nl(up−r, δu) + (
γ l(δu) + 2γ nl(u0, δu)

) : [Cm] : γ nl(ur,up−r)
}

dΩ (22c)

3.3. Discretization by the finite element method

For the static equilibrium branches and the bifurcation indicator, details about the finite element discretization used 
in this paper are given in [21]. For the nonlinear vibrations problem, the discretization of Eq. (22a) and its solution by 
a classical Newton–Raphson procedure permits to get the starting point (U0, ω0). The discretized forms of Eq. (22b) and 
Eq. (22c) get:
order 1:

[
K0

t − ω2
0M

]{q1} = ω1M{q0}
〈q1,q1〉 + ω1ω1 = 1 (23)

order p (p > 1):

[
K0

t − ω2
0M

]{qp} = ωpM{q0} + {
Fnl

p

}
〈q1,qp〉 + ω1ωp = 0 (24)

where K0
t corresponds to the elastic stiffness matrix and M to the mass one, {qp} is the modal displacement vector of order 

p and the vectors {Fnl
p } is obtained from the right-hand side of Eq. (22c). Indeed, the series of Eq. (18) have a radius of 

convergence limiting its validity range, but this can be largely improved using Padé approximants [18,19]:
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U − U0 =
n−1∑
i=1

fi(a)aiUi,

ω2 − ω2
0 =

n−1∑
i=1

fi(a)aiωi (25)

where fi(a) are rational fractions having the same denominator and the vectors Ui are obtained from U by the classical 
Gram–Schmidt orthogonalization procedure. The validity range of the solution Eq. (25) is defined by the maximal value 
amax of the control parameter a requiring that the relative difference between the displacements at two consecutive orders 
must be smaller than a given parameter δ:

δ = ‖up
n (amax) − up

n−1(amax)‖
‖up

n (amax) − up
0‖ (26)

The principal steps of the proposed algorithm are organized as follows:

Computation of equilibrium branches

Step 1: Computation of a solution path

Evaluation of the solution at order 1:

Solve: [K0
t ]{U

L
1} = {F}

Compute: λ1 = 1/

√
1 + 〈U

L
1, U

L
1〉, {Us

1} = λ1{U
L
1}

Compute: Ns
1 = [Cm] : {γ L(Us

1) + 2γ NL(Us
0,Us

1)}
Evaluation of the solution at order p:

Solve: [K0
t ]{U

NL
p } = {F

NL
p }

Compute: λp = −λ1〈U
NL
p ,Us

1〉, {Us
p} = λp

λ1
{Us

1} + {U
NL
p }

Compute: Ns
p = [Cm] : {γ L(Us

p) + 2γ NL(Us
0,Us

p) + ∑p−1
r=1 γ NL(Us

r ,Us
p−r)}

Step 2: Detection of bifurcation points

Evaluation of the solution at order 0:

Solve: [K0
t ]{�U0} = �μ0{f} with �μ0 = 1

Evaluation of the solution at order p ≥ 1:

Solve: [K0
t ]{�Up} = {�Fp}

Compute: �μp = −〈�Fp ,�U0〉
〈 f ,�U0〉 , {�Up} = �μp{�U0} + {�Up}

[3pt] Compute: �Np = [Cm] : {γ L(�Up) + 2γ NL(Us
0,�Up) + ∑p

r=1 2γ NL(Us
r ,�Up−r)}

If �μ = 0, compute (Uc, λc, φ), go to step 3

Else return to step 1

Step 3: Computation of a bifurcating branch

Evaluation of the solution at order 1:

Solve: [Kc
t ]{W} = {F}

Compute: d = 〈φ, Q(W,W)〉 b = 〈φ, Q(φ,φ)〉 c = 〈φ, Q(W, φ)〉
Compute: η1 = 1/

√
〈φ,φ〉 + (1 + 〈W,W〉)(−c±

√
c2−db

d )2, λ1 = η1
−c±

√
c2−db

d

Compute: U1 = λ1W + η1φ

Evaluation of the solution at order p:

Solve: [Kc
t ]{Ûp} = {Fp}

Compute: N̂p = [Cm] : {γ L(Ûp) + 2γ NL(Uc, Ûp) + ∑p−1
r=1 γ NL(Us

r ,Us
p−r)}

Compute: β = 〈φ, Q (Us
1, Ûp)〉 + 1

2

∑p−1
r=1 〈φ, Q (Us

r ,Us
p+1−r)〉

Solve:
[ λ1d+ηp c λ1c+ηpb

λ1+〈W,Us
1〉 〈φ,Us

1〉
]{ λp

ηp

} = −[ β

〈Ûp ,Us
1〉

]
Compute: Up = λpW + ηpφ + Ûp
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Nonlinear vibration of buckled plate for any static equilibrium

Solution of the problem at order 0:

Solve: [Ke − ω2
0M]{U0} = 0

Compute: N1
0 = [Cm] : {2γ nl(Us,U0)}, N2

0 = [Cm] : {γ l(U0) + γ nl(U0,U0)}
Solution of the problem at order 1:

Solve: [K0
t − ω2

0M]{Û1} = M{U0}
Compute ω1 = 1/

√
1 + 〈Û1, Û1〉, {U1} = ω1{Û1}

Compute N1
1 = [Cm] : {2γ nl(Us,U1)}, N2

1 = [Cm] : {γ l(U1) + 2γ nl(U0,U1)}
Solution of the problem at order p:

Solve: [K0
t − ω2

0M]{Ûp} = {Fnl
p }

Compute: ωp = −ω1〈Ûp,U1〉, {Up} = ωp
ω1

{U1} + {Ûp}
Compute: N1

p = [Cm] : {2γ nl(Us,Up)},

N2
p = [Cm] : {γ l(Up) + 2γ nl(U0,Up) + ∑p−1

r=1 γ nl(Ur,Up−r)}

4. Numerical results

To show the efficiency and the applicability of the proposed algorithm, one considers the nonlinear free vibration of pre 
or post buckled isotropic homogeneous rectangular plate of length L, width l and thickness h = 1 mm. The used material 
properties are: Young’s modulus E = 70 GPa, Poisson’s ratio ν = 0.3 and mass density ρ = 2778 kg/m3. For the discretiza-
tion of the plate, a DKT triangular shell element having three nodes and six degrees of freedom per node (u, v, w, θx, θy, θz)

is adopted [23,24]. For symmetry reasons, only a quarter of the plate is modeled. In the present study, four boundary con-
ditions are considered: simply supported with movable edges {(w = θx = 0 at x = 0 and x = L) and (w = θy = 0 at y = 0
and y = l)}, simply supported with immovable edges {(u = v = w = θx = 0 at x = 0 and x = L) and (u = v = w = θy = 0
at y = 0 and y = l)}, clamped with movable edges (w = θx = θy = 0 at all edges) and clamped with immovable edges 
(u = v = w = θx = θy = 0 at all edges). The adopted parameters are nondimensionalized as follows: the nonlinear frequency 
is nondimensionalized with respect to its corresponding linear frequency ω∗ = ω/ω0, the axial load with respect to its 
corresponding critical buckling load, λ∗ = λ/λc, and the maximum amplitude with respect to the thickness W (center)/h. 
As it was shown in previous works [13,25], one takes a truncation order n = 20 and an accuracy parameter δ = 10−4. To 
improve the validity range of the series and to reduce the computational cost, Padé approximants are incorporated at each 
stage of the procedure. In Fig. 2a and b, one presents, respectively, the static equilibrium branches of clamped and simply 
supported plates with movables edges and subjected to uniaxial compression for various aspect ratios. These responses are 
determined using the procedure described in Subsection 3.1 and largely discussed in previous works [13]. They present a 
fundamental branch (pre-buckling), a bifurcation point and a bifurcated branch (post buckling). The fictitious perturbation 
force associated with the bifurcation indicator is concentrated and normal to the middle surface of the plate. The funda-
mental branch is obtained by only one step and the bifurcated one by only two steps for the two examples. As is well 
known, these bifurcations are symmetric and stable. Beyond the bifurcation points, the fundamental branch becomes insta-
ble and the bifurcated one is stable. It is then important to study the oscillations of the structure around these equilibrium 
states.

In order to verify the validity and the accuracy of the proposed methodology (formulation and computer program), one 
considers the nonlinear free vibrations of unloaded clamped and simply supported plates with immovable edges. In Table 1, 
one compares the results obtained by the present method and those reported by Azrar using an asymptotic numerical 
method [16] or a finite element method [26]; a good agreement is observed between these approaches. In Fig. 3, one 
illustrates the backbone curves of the nonlinear fundamental frequency ω∗ = ω/ωL for a clamped and simply supported 
plates with movable edges. These nonlinearities are of hard types.

In Fig. 4, one presents backbone curves of the fundamental frequency of nonlinear vibrations of a clamped plate with 
movable edges about a static equilibrium of the pre buckled domain for various aspect ratios (L/l). One notes that the linear 
fundamental frequency ω0 is first determined by the procedure described in [13]. The starting vector U0, used in Eq. (18), is 
secondly deduced using the Newton–Raphson algorithm. One observes that an increase in the applied load induces a shift 
of backbone curves to the left. In Fig. 5, one gives backbone curves related to a nonlinear free vibration of the considered 
plate about a post buckled equilibrium state. Contrary to the previous case, an increase in the applied load induces a shift 
of the backbone curves to the right. In the transition domain from the pre-buckling equilibrium to the post-buckling one, 
the response seems to be linear for small amplitudes. Moreover, for aspect ratio values equal to 1.75 or 2 and when λ∗ is 
close to 1, instability phenomena are observed with loops or limit points (Figs. 4d and 5d) inducing generally a jumping 
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Fig. 2. Influence of the aspect ratio (L/l) on the static response of plates with movable edges subjected to uniaxial load: (a) clamped, (b) simply supported.

Table 1
Frequency ratio ω/ωL according to the maximum amplitude at the center W (center)/h of an 
isotropic square plate with various boundary conditions.

Present results W (center)/h ω/ωL

W (center)/h ω/ωL Results [Azrar] Results [FEM]

Simply supported
0.20000475 1.02026 0.2 1.01976 1.0196
0.40000744 1.07889 0.4 1.07669 1.0763
0.60001124 1.17103 0.6 1.16596 1.1645
0.80001297 1.28906 0.8 1.28124 1.2779
1.00000150 1.42851 1.0 1.41666 1.4109

Clamped
0.20003733 1.00744 0.2 1.00723 1.0073
0.40006206 1.02933 0.4 1.02860 1.0291
0.60008235 1.06459 0.6 1.06321 1.0648
0.80004972 1.11215 0.8 1.10975 1.1138
1.00009200 1.17135 1.0 1.16672 1.1762

of the structure between different equilibrium positions. But, in the case of a square plate, for instance, and following the 
tests carried out, these phenomena are not detected. In Figs. 6 and 7, one presents backbone curves corresponding to the 
nonlinear fundamental frequency of a simply supported plate with respect to the aspect ratio and applied load ratio in 
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Fig. 3. Influence of the aspect ratio (L/l) of unloaded plates with immovable edges on the backbone curves of nonlinear vibration fundamental frequency: 
(a) clamped, (b) simply supported.

Fig. 4. Clamped plate with movable edges: Influence of the applied load ratio on the backbone curve of the fundamental frequency of nonlinear vibrations 
of the plate about a static equilibrium of the pre buckled domain for various aspect ratios L/l: a (1), b (1.5), c (1.75), d (2).
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Fig. 4. (continued)

pre-buckled or post-buckled domain, respectively. Compared to the last tests, the same phenomena are practically observed. 
The major difference lies in the fact that, for a given nonlinear frequency, the displacement amplitudes are large for the 
clamped plate.
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Fig. 5. Clamped plate with movable edges: influence of the applied load ratio on the backbone curve of the fundamental frequency of nonlinear vibrations 
of the plate about a static equilibrium of the post-buckled domain for various aspect ratios L/l: a (1), b (1.5), c (1.75), d (2).
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Fig. 5. (continued)

Fig. 6. Simply supported plate with movable edges: influence of the applied load ratio on the backbone curve of the fundamental frequency of nonlinear 
vibrations of the plate about a static equilibrium of the pre-buckled domain for various aspect ratios L/l: a (1), b (1.5), c (2).
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Fig. 6. (continued)

Fig. 7. Simply supported plate with movable edges: influence of the applied load ratio on the backbone curve of the fundamental frequency of nonlinear 
vibrations of the plate about a static equilibrium of the post buckled domain for various aspect ratios L/l: a (1), b (1.5), c (2).
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Fig. 7. (continued)

5. Conclusion

In this study, we have presented a methodological approach based on the asymptotic numerical method and harmonic 
balance method for the investigation of the nonlinear free vibrations of buckled von Karman plate. The coupled nonlinear 
problems (static and dynamic) are transformed into a sequence of linear ones with only two operators to be inverted. The 
backbone curves of the fundamental frequency of nonlinear vibrations of the plate, about any static equilibrium correspond-
ing to pre- or post-buckled domain, are obtained automatically. The incorporation of Padé approximants at each stage of the 
algorithm permits a large reduction of the computational cost. The realized numerical tests show the effectiveness and the 
reliability of the proposed methodology. It will be interesting to extend the analysis to other structures subjected to various 
load types.
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