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In this paper, a new methodology for taking into account uncertainties in a gearbox 
transmission system of a horizontal-axis wind turbine is proposed. Gearbox transmission 
is the major part of the wind turbine’s drive train. For a more reasonable evaluation of 
its dynamic behaviour, the influence of the uncertain parameters should be taken into 
consideration. The dynamic equations are solved by using the Polynomial Chaos method 
combined with the ODE45 solver of Matlab. The effects of the random perturbation caused 
by the aerodynamic torque excitation on the dynamic response of the studied system are 
discussed in detail. The proposed method is an efficient probabilistic tool for uncertainty 
propagation. For more accuracy, the Polynomial Chaos results are compared with direct 
simulations.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Wind energy is one of the most efficient renewable energies. Wind turbines harvest the kinetic energy of air and convert 
it into a usable power such as electricity power. For this, the capacity of wind turbines has increased and they have become 
the fastest-growing new sources of electricity generation.

Many scientific studies have investigated the dynamic behaviour of wind turbines [1–3]. In their analysis, gear power 
transmission was considered as the perfect system. However, the gearbox system presents constantly precocious failures [4]. 
Therefore, in a wind turbine, an adequate knowledge of the dynamic characteristics of gearboxes system is necessary.

In this context, several studies have been developed to study the dynamic behaviour of wind turbines. The dynamic 
behaviour of a two-stage gear reducer in the presence of aerodynamic excitation has been investigated by Abboudi et al. 
[5] and a lamped mass dynamic model with 12 DOFs has been developed. Under wind speed fluctuations and system 
disturbances, the dynamic behaviour and transient stability of fixed-speed wind turbines has been studied by Rahimi et 
al. [6]. The combined effects of gravity, input torque, bending moment and bearing clearance of planetary wind turbine 
gearboxes are reported by Guo et al. [7]. In 2011, Helsen et al. [8] investigated the modal behaviour of a wind turbine 
gearbox using flexible multi-body modelling techniques.

All previous studies have investigated the dynamic behaviour of the wind turbine considering the deterministic pa-
rameters as the system’s parameters. However, the instability of rotor inflow caused by the atmosphere creates persistent 
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Nomenclature

k1(t) Meshstiffness of the first stage
k2(t) Meshstiffness of the second stage
x j and y j Translations of each block j (i = 1 to 3).
θ ji Angular displacements of the component i

in block j (i = 1 and 2, j = 1 to 3).
α Pressure angle (generally adopted equal to 

20◦)
rb ji Base radius of the gear (m)
I ji Moments of inertia of gears
δ1(t), δ2(t) Displacements along the line of action
r Radius of the rotor (m)
np Number of blades
c Chord (m)
φ Inflow angle (rad)
D Rotor diameter (m)
ρair Air density (Kg/m3)
Ω Turbine rated speed (rad/s)

CL Lift coefficient
CD Drag coefficient
a Axial induction factor
a′ Tangential induction factor
V 0 Wind velocity far up stream
kxj Stiffness to bending according to the X di-

rection (N·m)
kyj Stiffness to traction – compression accord-

ing to Y direction (N·m)
km Average mesh stiffness (N·m)
kθ j Torsional stiffness of the shaft (Nm/rad)
Z(12), Z(21) Number of teeth
Z(22), Z(31)

εα1, εα2 Contact ratio
Cg(t) Electromechanic torque
Q aero(t) Aerodynamic torque

variations of blade loads and rotor torque. Therefore, an increased penetration of wind turbine systems calls for a suitable 
modelling of the system parameter and incorporates the model into various uncertainty parameters. Until now, system pa-
rameters present a random parameter and suffer from a lack of accuracy focusing on the measurement of the parameters. 
The choice of the design parameters is very critical to optimise the performance of the system. Therefore, it becomes neces-
sary to take into account uncertainty parameters [9,10]. In this context, advanced techniques and methods of uncertainties 
are developed. Monte Carlo simulation is a well-known technique in this field [11]. For reasonable accuracy, it requires a 
great number of samples; therefore, it is too costly. The Polynomial Chaos (PC) method is considered as the best framework 
in dealing with uncertainty quantification. This method is more attractive and more efficient compared to other methods 
such as Monte Carlo approaches [12,13].

Ghanem and Spanos [14,15] have used successfully the Polynomial Chaos (PC) method in their study of uncertainties in 
the structural mechanics and vibration fields. The PC method represents the random state and input parameter variables 
as a probability distribution in the stochastic system state governed by the differential equations of motion. Indeed, the PC 
method is defined as a spectral representation of the uncertainty in random space in terms of an expansion of orthogonal 
polynomials that are functions of the random input variables.

The computational accuracy and efficiency supplied by the Polynomial Chaos method in nonlinear problems is reported 
through scientific works in many fields such as in fluid dynamics [16–19], in solid mechanics [20,21], in chemical reactions 
[22], in terramechanics [23,24], etc. Due to the accuracy and efficiency of the Polynomial Chaos method in previous studies 
with different fields, this method is considered to investigate the dynamical behaviour of a wind turbine taking into account 
the parameters of the uncertainty system.

The originality of this study is to investigate the effects of the uncertainty input gear system parameter of a horizontal-
axis wind turbine. The main objective is to capture the dynamical behaviour of a two-stage spur gearbox transmission 
system subjected to an uncertain input parameter. In order to calculate the dynamical response of the studied model, the 
PC method is used to deal with uncertainty and to discuss the capabilities of this new methodology. Monte Carlo simula-
tions are reserved to the treatment of reference examples in order to test the validity and the properties of the Polynomial 
Chaos method.

2. Dynamic model

The wind turbine is composed by the rotor, the transmission power system and the generator. The transmission model 
implemented in this work is a two-stage spur gearbox system with twelve degrees of freedom (12 DOF) and three main 
blocks ( j = 1 to 3) as shown in Fig. 1.

Each block is supported by a flexible bearing characterised by two stiffness parameters kxj and kyj according to the x
and y directions, respectively. The connecting shafts admit a torsional stiffness parameter kθ j according to the x direction. 
The four gears (gear 12, gear 21, gear 22 and gear 31) are considered as spur gears.

The gear system is subject to a random aerodynamic torque Q aero(t), which represents the effect of wind on the three-
bladed rotor. The aerodynamic torque expression is given in paragraph 3. The output electromechanic torque is defined by 
Cg(t).

In addition to the external excitation, the system is also submitted to two internal excitations, which are the periodic 
fluctuations of mesh stiffness k1(t) and k2(t). In fact, every contact is modelled by a variable stiffness represented by a 
linear spring following the line of action, whose temporal expression is described in paragraph 4.
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Fig. 1. Two-stage gear system in a wind turbine.

According to Lagrange’s formalism, the kinematic differential equations governing the system motion are given by Equa-
tion (3):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

I11θ̈11 + kθ1(θ11 − θ12) = Q aero

I12θ̈12 − kθ1(θ11 − θ12) + k1(t)rb12δ1(t) = 0

I21θ̈21 + kθ2(θ21 − θ22) + k1(t)rb21δ1(t) = 0

I22θ̈22 − kθ2(θ21 − θ22) + k2(t)rb22δ2(t) = 0

I31θ̈31 + kθ3(θ31 − θ32) + k2(t)rb31δ2(t) = 0

I32θ̈32 − kθ3(θ31 − θ32) = −Cr(t)

m1ẍ1 + kx1x1 − k1(t)δ1(t) sinα1 = 0

m2ẍ2 + kx2x2 + k1(t)δ1(t) sinα1 + k2(t)δ2(t) sinα2 = 0

m3ẍ3 + kx3x3 − k2(t)δ2(t) sinα2 = 0

m1 ÿ1 + ky1 y1 + k1(t)δ1(t) cosα1 = 0

m2 ÿ2 + ky2 y2 − k1(t)δ1(t) cosα1 − k2(t)δ2(t) cosα2 = 0

m3 ÿ3 + ky3 y3 + k2(t)δ2(t) cosα2 = 0

(1)

x j and y j are the translations of each block j (i = 1 to 3). θ ji are the angular displacements of the component i in block 
j (i = 1 and 2, j = 1 to 3). α is the pressure angle, it is generally adopted equal to 20◦ . The base radius of the gear is rb ji
and the moments of inertia of gears are I ji .

The displacements δ1(t) and δ2(t) along the line of action are expressed by:

δ1(t) = (x1 − x2) · sin(α1) + (y1 − y2) · cos(α1) + rb12θ12 + rb21θ21 (2)

δ2(t) = (x2 − x3) · sin(α2) + (−y2 + y3) · cos(α2) + rb22θ22 + rb31θ31 (3)

3. Aerodynamic modelling

The developed method in the aerodynamic part is the blade element theory (BEM) [25]. It has been introduced by 
Glauert in 1930 [2]; it takes into account the rotation of the air flow in order to calculate the aerodynamic loads and 
to investigate the evaluation of the performance of the wind turbine. This theory is often used in the fields of the wind 
industry and it is the most frequently used by science and industry [26–29].

Blade Element Theory enables us to design the rotor blade by fluid dynamics, to choose the geometric parameters of the 
turbine and to evaluate the forces acting on the blades. By using this theory, the torque applied and the turbine performance 
can be modeled by uncertain parameters.

Blade element theory consists in dividing up the blade into many elements. For each element, characterized by a radius r, 
a thickness dr and a section dA = 2πrdr, we calculate the flow and the aerodynamic elementary forces generated by this 
flow by applying momentum and angular momentum conservation equations.
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Fig. 2. Components of the relative wind velocity into the blade section.

Then a summation of these actions is applied along the blade. The aerodynamic force (torque) acting on the blades is 
calculated to evaluate the performance of the rotor.

Blade element theory relies on some key assumptions:

• there are no aerodynamic interactions between the different blade elements,
• the forces on the blade elements are solely determined by the lift and drag coefficients,
• static pressure is considered equal to the atmospheric pressure downstream of the rotor.

By applying the BEM theory to the fluid dynamic wind turbine design, it is possible to evaluate the torque dQ aero [30]
for each blade element as given in equation (4):

dQ aero = ρair

2
npcU 2

rel(CL sinφ − CD cosφ)r dr (4)

In this work, only the relative velocity of wind U reI is considered, which is the result of an absolute velocity V and a 
training velocity U .

Axial and tangential induction coefficients (respectively a and a′) are introduced. These coefficients significantly affect 
the real value of the velocities. Fig. 2 shows the components of the relative wind velocity (U reI) on a section of the blade. 
φ is the inflow angle, r is the radius, V 0 is the wind velocity far up stream and Ω is the angular velocity of the rotor.

The wind, flowing around the blade, creates the resultant aerodynamic force. The last force (Fig. 2) could be split into 
two components called Lift and Drag. The lift force acts on the blade in a direction perpendicular to the relative wind. The 
drag force is the resistance that opposes the motion of the airfoil through the air. It acts on the blade in a direction parallel 
to that of the relative wind. Lift and drag forces acting on the blade element are written respectively as follows [30]:

CL = 2CL max sinφ · cosφ (5)

CD = CD max sin2 φ (6)

where CL max and CD max are constants determined from the graphs presented in [31].
The aerodynamic torque expression for each blade element can be written in this form, taking into account the modelling 

of the wind velocity and lift and drag forces.

dQ aero = ρ

2
np

V 0(1 − a)

sinφ

Ωr(1 + a′)
cosφ

(
(2CL max sinφ cosφ) sinφ − (

CD max sin2 φ
)

cosφ
)
crdr (7)

In this paper, we suppose that the inflow angle φ is the uncertain parameter. We are interested in studying the effects of 
this uncertainty on the dynamic behaviour of the gear transmission system.

4. Mesh stiffness modelling

In this work, the gear mesh stiffness function ki(t) is modelled by a square wave form (Fig. 3). The periodic square wave 
form is the most representative of the real phenomenon of gearing systems according to Walha et al. [32] and Jairo et al. 
[33].

Two main components establish the stiffness of the mesh. The first one is noted Km,i . It is constant over time and 
represents the mean value of the stiffness. To this component is added a second variable component, whose extreme values 
are written as follows [5]:
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Fig. 3. Gear meshing modelling.

Table 1
Gear meshing values.

Number of teeth Meshing values (N/m)

First gear meshing 72/18 km,1 = 2 · 108

kmin,1 = 1.3926 · 108

kmax,1 = 2.3321 · 108

Second gear meshing 54/18 km,2 = 2 · 108

kmin,2 = 1.3966 · 108

kmax,2 = 2.3143 · 108

kmin,i = km,i

(
1 − 1

2εαi

)
(8)

kmax,i = km,i

(
1 + 2 − εαi

2εαi(εαi − 1)

)
(9)

εα represent the contact ratio.
The variation of the mesh stiffness over time is explained by the number of pairs of teeth in contact at a given time t .
In this work, we present the gear meshing values in Table 1.

5. Polynomial chaos method

Different techniques exist to model the propagation of uncertainty. These methods are generally classified into three 
categories: the simulation methods, the perturbation methods, and the spectral methods.

Monte Carlo simulations are considered as reference methods for calculations on systems with uncertain parameters. Its 
major disadvantage is the very large quantity of calculations, which complicates the use of these methods.

The perturbation method is based on a Taylor series development of the response around its mean. The main problem of 
this method comes from the conditions ensuring the convergence of these series. The variables must have low dispersion. 
This method presents a difficulty during the calculations of the dynamic responses.

For this, the method adopted to take into account uncertainty in this work is the Polynomial Chaos method. The funda-
mental idea of the Polynomial Chaos method, coined by Norbert Wiener in 1938, is to establish a separation between the 
stochastic components of a random function and its deterministic components.

The random process of interest is approximated by sums of orthogonal Polynomial Chaos of random independent vari-
ables. In this context, any uncertain parameter can be viewed as a second-order random process. So, a second-order random 
variable u can be expanded in terms of orthogonal Polynomial Chaos as [34]:

u =
∞∑

i=0

ūiψi(ξ) (10)

where ξ is a vector of standard normal random variables, ūi are the stochastic modes of the random variables u and ψi are 
the multivariate orthogonal polynomials, such as Hermite, Legendre, etc. The choice of the polynomial family depends on the 
density distribution of the uncertain input parameter. Indeed, optimal correspondences between the families of probability 
laws and the families of orthogonal polynomials have been established.

The orthogonal polynomials satisfy the orthogonally relation [34]:
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〈ψn,ψm〉 =
1∫

−1

ψn(ξ)ψm(ξ)W (ξ)dξ (11)

where 〈·〉 means the internal product operator and W (ξ) is the probability density function (PDF) of the random variables 
that make up the vector ξ .

In practice, the generalized Polynomial Chaos expansion is truncated to a finite number of terms. The truncation of the 
infinite series is necessary to keep the problem computationally feasible. In this work, we will truncate the series in such 
a way that all expansion polynomials up to a certain maximum degree, denoted by p, are included. The number of terms 
(P +1) in the expansion now follows from this maximum degree p and the dimensionality n of the random vector according 
to:

P = (p + n)!
p!n! (12)

By using the method of Polynomial Chaos, three fundamental steps are essential to study the propagation of uncertainties 
in stochastic models namely:

• choosing the appropriate polynomial basis to the problem studied,
• fixing the order p of Polynomial Chaos,
• calculate the coefficients of the expansion of the Polynomial Chaos (the stochastic modes).

The last step consists in characterizing the solution u(x, t, ξ) of a differential equation whose general form is as follows:

D
[
u(x, t, ξ)

] = f
[
u(x, t, ξ), x, ξ

]
(13)

where

• D is a differential operator,
• f is a given function,
• u(x, t, ξ) is the solution depending on the space (x), the time (t) and the uncertainty (ξ ).

The solution of the differential equation is expressed as a series expansion of orthogonal polynomials.

u(x, t, ξ) =
P∑

i=0

ūi(x, t)ψi(ξ) (14)

The intrusive approach used in this study is presented through the following steps:

a. Substitute the expression (14) of the solution of the problem in the differential equation (13)

D

[
P∑

i=0

ūi(x, t)ψi(ξ)

]
= f

[
P∑

i=0

ūi(x, t)ψi(ξ), x, ξ

]
(15)

b. Apply Galerkin’s projection. The two members of equation (15) will be multiplied by the polynomials of the chosen 
base. Then the mean statistical will be applied.〈

D

[
P∑

i=0

ūi(x, t)ψi(ξ)

]
,ψL(ξ)

〉
=

〈
f

[
P∑

i=0

ūi(x, t)ψi(ξ), x, ξ

]
,ψL(ξ)

〉
; L = 0, . . . , P (16)

Due to the orthogonality property, a deterministic system that defines the dynamic of the stochastic modes ūL(x, t) is 
obtained:

˙̄uL(x, t) =
(

1

〈ψL(ξ),ψL(ξ)〉
)〈

f

[
P∑

i=0

ūi(x, t)ψi(ξ), x, ξ

]
,ψL(ξ)

〉
; L = 0, . . . , P (17)

c. Use an appropriate algorithm to determine the vector of the stochastic modes ūL(x, t).

In this study, the input torque (equation (7)) of the gearbox transmission system is considered with uncertainty according 
to the inflow angle.

According to the literature, both uniform and normal (Gaussian) law distributions are treated to describe uncertainty 
in both lift coefficient and natural frequencies for the blade, which are considered as random parameters in the model 
developed by Pourazarm et al. [35]. Desai et al. [36] studied the aeroelastic instability system using the Polynomial Chaos 
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method to describe random parameters normally distributed. Duck Kwon [37] demonstrate that the variation of normalised 
wind velocity at wind tunnel may be described by a normal distribution. Liu et al. [38] studied the performance evaluation 
of an horizontal-axis wind turbine with consideration of the angle of attack and the wind speed as uncertain parameters in 
a Gaussian distribution.

The steps presented previously will be applied to study the propagation of this uncertainty. The decomposing of the 
random in the polynomial basis allows generating a differential equation system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

¨̄θ11,l = −kθ1

Im
(θ̄11,l − θ̄12,l) + ρnpc

2Im〈ψ2
l (ξ)〉 ·V 0(1 − a)(1 + a′)·

(2CL max − CD max)·
R3 − r3

moy

3
·

p∑
j=0

˙̄θ11, j〈sinφ(ξ) ψ j(ξ) ψl(ξ)〉

¨̄θ12,l = kθ1

I1
(θ̄11,l − θ̄12,l) − rb1

I1
·k1(t)·δ1,l

¨̄θ21,l = kθ2

I2
(−θ̄21,l + θ̄22,l) − rb2

I2
·k1(t)·δ1,l

¨̄θ22,l = kθ2

I3
(θ̄21,l − θ̄22,l) + rb3

I3
·k2(t)·δ2,l

¨̄θ31,l = kθ3

I4
(−θ̄31,l + θ̄32,l) + rb4

I4
·k2(t)·δ2,l

¨̄θ32,l = kθ3

Ir
(θ̄31,l − θ̄32,l) − C g(t)

¨̄x1 = − kx1

M1
x̄1,l + sinα1

M1
·k1(t)·δ1,l

¨̄x2 = − kx2

M2
x̄2,l − sinα1

M2
·k1(t)·δ1,l − k2(t)

sinα2

M2
·δ2,l

¨̄x3 = − kx3

M3
x̄3,l + k2(t)

sinα2

M3
·δ2,l

¨̄y1 = −ky1

M1
ȳ1,l − cosα1

M1
·k1(t)·δ1,l

¨̄y2 = −ky2

M2
ȳ2,l + cosα1

M2
·k1(t)·δ1,l + cosα2

M2
·k2(t)·δ2,l

¨̄y3 = −ky3

M3
ȳ3,l − cosα2

M3
·k2(t)·δ2,l

(18)

6. Numerical results

In this section, the dynamic behaviour of a two-stage gearbox system is investigated using the Polynomial Chaos (PC) 
method. The PC results are compared with those obtained with the Monte Carlo (MC) method (100,000 simulations). The 
PC results are calculated using the ODE45 solver of software MATLAB.

The dimensional parameters of the two-stage gearbox system studied are summarised in Table 2 [5].
The fluctuation of the aerodynamic torque is given in Fig. 4, with consideration of the inflow angle of the blade as an 

uncertain input parameter.
Both uniform and normal probability distributions are treated to describe the random parameter. The objective is to 

determine the most appropriate distribution of probability for this application. Indeed, to our knowledge, there is not a 
study that confirms the validity of a clearly defined probability distribution for our case study. Our judgement will be based 
on the results of the Monte Carlo method taken as a reference.

6.1. Uniform distribution of the uncertainty

In this section, a uniform probability law is supposed to describe the dispersion of the inflow angle φ:

φ(ξ) = l1 + l2
2

+ l2 − l1
2

ξ (19)

The inflow angle varies in the interval [l1 l2] = [0◦ 30◦] and ξ is distributed uniformly within the orthogonally interval 
[−1 1].



382 M. Beyaoui et al. / C. R. Mecanique 344 (2016) 375–387
Table 2
System parameters.

Description Symbol Value

Air density (kg·m−3) ρair 1.225
Turbine rated speed (rad·s−1) Ω 13
Rotor diameter m D 12
Stiffness to bending (N·m−1) kxj 7 · 108

Stiffness to traction–compression (N·m−1) kyj 6 · 108

Average mesh stiffness (N·m−1) km 2 · 108

Torsional stiffness of the shaft (N·m−1·rad−1) kθ j 5 · 106

Number of teeth Z(12) 72
Z(21) 18
Z(22) 54
Z(31) 18

Pressure angle α 20
Contact ratio εα1 1.67

εα2 1.64

Fig. 4. Fluctuation of the aerodynamic torque.

According to the state of the art, the Legendre polynomials are the best suited to deal with uniform uncertainties. The 
Legendre polynomials are calculated using the recurrence relation as follows:{

(n + 1)Ln+1(x) = (2n + 1)xLn(x) − nLn−1(x)

L0(x) = 1, L1(x) = x
(20)

The validity of the method and the influence of the order p of the Polynomial Chaos on the response will be studied. To 
achieve this objective, the relative displacements of the three bearings of the system in the two directions x and y will be 
determined by varying the value of p. A correct analysis requires a comparison of the results with those obtained by the 
Monte Carlo method (100,000 simulations).

Figs. 5–7 show a remarkable difference between the curves obtained by the PC method and those obtained by Monte 
Carlo simulations for low values of the order p. This seems obvious. Indeed, in this case, there are not enough terms of 
chaos to correctly represent the random response of the system.

By increasing the value of p, the curves are similar to reference ones (Monte Carlo). For p = 5, the error is almost null, 
the curves are superposed almost perfectly with those of Monte Carlo. With this value of the order of Polynomial Chaos, the 
dynamic response of the various bearings is correctly modelled, taking into account the uncertainty of the inflow angle φ.

The same conclusion is also confirmed in the case of the angular displacements (Fig. 8).

6.2. Normal distribution of the uncertainty

In this part, a normal (Gaussian) probability law is supposed to describe the dispersion of the inflow angle φ

φ = φ0 + σφξ (21)
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Fig. 5. Mean value and standard deviation of the linear displacements of the first bearing.

where ξ is a zero mean value Gaussian random variable, φ0 is the mean value of the inflow angle and σφ is the standard 
deviation of this parameter.

In this case, the Hermite polynomials are the best suited to deal with normal uncertainties. The Hermite polynomials are 
calculated using the recurrence relation as follows:⎧⎨

⎩
H0(x) = 1

Hn(x) = xHn−1(x) − dHn−1(x)

dx

(22)

The order of the Polynomial Chaos being fixed (p = 5: the optimal value allowing one to have a sufficient number of terms 
to correctly represent the solution). In this section, the sensibility of the solution to the standard deviation of the normal 
distribution of the uncertain parameter will be studied.

To achieve this objective, the mean value and the standard deviation of the linear displacement of the first bearing in 
the x direction will be determined by varying the value of the standard deviation σφ = 2% and σφ = 5%. The mean value 
being fixed φ0 = 15◦ , the results are compared with Monte Carlo simulation (100,000 simulations).

As shown in Fig. 9, the mean value and the standard deviation of the displacement x1(t) have a good accuracy compared 
to Monte Carlo simulations for the value of the standard deviation (σφ = 2%) by increasing the value of the standard 
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Fig. 6. Mean value and standard deviation of the linear displacements of the second bearing.

deviation (σφ = 2%), the solutions obtained oscillate in a more remarkable way around the solutions obtained by the Monte 
Carlo method. Consequently, the error increases when the standard deviation increases.

It should be noted that the same conclusion is also confirmed in the case of the other linear and angular displacements 
corresponding to different bearings of the system.

6.3. Optimal probability distribution

The efficient modelling of the propagation of uncertainty in the model requires the choice of the optimal probability 
distribution. Indeed generally, if the mean and the standard deviation of the uncertain parameter are known and its variation 
range is unbounded, a normal distribution must be chosen. In the case where the variation of the uncertain parameter is 
bounded, the uniform law will be more effective.

In this work, the problem has been studied by using both types of distribution. For each case, a hypothesis is proposed, 
according to which the parameters of the distribution will be defined. By taking the example of the linear displacement of 
the first and third bearings in the direction x, the order of the Polynomial Chaos being fixed (p = 5), Fig. 10 shows that 
the results obtained with normal distribution are much closer to those obtained by Monte Carlo simulations. The normal 
distribution is thus more effective for the modelling of the propagation of the uncertainty related to the inflow angle φ
through the studied model.

7. Conclusion

In order to ensure the robustness of the dynamic response of a gear transmission in a wind turbine, it is very important 
to take into account uncertainties in the phase of design modelling. In the present work, we have performed the Polynomial 
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Fig. 7. Mean value and standard deviation of the linear displacements of the third bearing.

Fig. 8. Mean value of the angular displacement: (a) θ11, (b) θ32.
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Fig. 9. Mean value and standard deviation of the linear displacements of the first bearing.

Fig. 10. Mean value of the linear displacements (a) of the first and (b) of the third bearings.

Chaos method to study the dynamic behaviour of the gearbox transmission system of a horizontal-axis wind turbine with 
12 degrees of freedom. Dynamic responses of the studied system describing a two-stage spur gear model with an uncertain 
input parameter are presented. The Polynomial Chaos (PC) method has been developed to deal with uncertainty according 
to the inflow angle of the blade when the wind attacks the blade. Three main results were deduced from this work. By 
referring to Monte Carlo simulations, the effectiveness of the polynomial chaos method for a modelling of the dynamic 
behaviour in the presence of uncertainty has been demonstrated. The results of this modelling strongly depend on the 
order of the Polynomial Chaos. An increase in this order is accompanied by a better projection of the solution. Finally, it has 
been found that a normal distribution is more appropriate for modelling the propagation of the uncertainty of the inflow 
angle φ through the model.
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