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The objective of this paper is to show, in a specific case, the importance of modeling 
adhesive forces when simulating the bouncing of very small particles impacting a substrate 
at high speed. The implementation of this model into a fast-dynamics SPH code is 
described. Taking the example of an impacted elastic cylinder, we show that the adhesive 
forces, which are surface forces, play a significant role only if the particles are sufficiently 
small. The effect of the choice of the type of interaction law in the cohesive zone is 
studied and some conclusions on the relevance of the modeling of the adhesive forces for 
fast-dynamics impacts are drawn. Then, the adhesion model is used to simulate the Cold 
Spray process. An aluminum particle is projected against a substrate made of the same 
material at a velocity ranging from 200 to 1000 m·s−1. We study the effects of the various 
modeling assumptions on the final result: bouncing or sticking. Increasingly complex 
models are considered. At a 200 m·s−1 impact velocity, elastic behavior is assumed, the 
substrate being simply supported at its base and supplied with absorbing boundaries. The 
same absorbing boundaries are also used for all the other simulations. Then, plasticity is 
introduced and the impact velocity is increased up to 1000 m·s−1. At the highest velocities, 
the resulting strains are very significant. The calculations show that if the adhesion model 
is appropriately chosen, it is possible to reproduce the experimental observations: the 
particles stick to the substrate in a range of impact velocities surrounded by two velocity 
ranges in which the particles bounce.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

We are going to study the modeling of the Cold Spray process, which consists in coating an object with a thin layer of a 
metallic or amorphous material by projecting very small particles at high speed. Historically, the process was first developed 
only experimentally [1]. These experiments showed that these coatings adhere only for certain pairs of materials and within 
a specific velocity range [2]. Furthermore, if the particles are too large, sticking no longer occurs. Many hypotheses, such 
as the presence of a shear strip at the interface upon impact, have been formulated to explain these experimental obser-
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vations [3]. They were based on the subsequent observation of the microstructures and their association with numerical 
results giving the histories of temperatures and other parameters at the interface [4]. These numerical results relied mainly 
on explicit dynamic finite element calculations [5]. However, most finite element calculations are unable to simulate the 
very significant crushing of soft particles against a rigid substrate or the deep penetration of hard particles into a softer 
substrate, so they often resort to a remeshing method [4]. Some calculations are based on coupled Euler/Lagrange formu-
lations: these lead to better results when one of the two objects is subjected to very high strains [6]. Solid SPH methods 
also appear to lead to good predictions in the case of highly distorted meshes. They also enable local material tearing to 
be easily simulated [7–10]. Adhesive forces become significant when the size of the objects in contact becomes very small. 
Today, only very few finite element or SPH fast dynamics numerical simulation tools take into account adhesive forces dur-
ing impact [11]. One thesis [7] implemented them within an SPH model, but the method is relatively crude. The purpose of 
this paper is to show what types of models can be chosen for adhesion and how they can be implemented within a solid 
SPH framework.

Thus, the first section describes how these adhesive forces can be represented in a solid SPH model and presents the 
various adhesion models available.

The second section deals with a very simple example which consists in predicting the elastic rebound of a cylinder 
projected at 20 m s−1 against another cylinder of twice its diameter which is built-in at its base. Before that, the effects of 
taking into account the adhesion phenomenon and the specimen’s size on the rebound are evaluated.

The third section studies the case of the impact of a sphere onto a plane. First, the effects of the parameters of the adhe-
sion law and of the presence of absorbing boundaries are presented for a purely elastic impact case. Then, an elastic–plastic 
material model of the Johnson–Cook type taking into account adiabatic heating is introduced. The effects of the impact 
velocity and of the adhesion model and parameters are presented.

2. Modeling

All the numerical simulations developed in this work are based on an explicit dynamic approach. The integration scheme 
is a Newmark scheme (β = 0, α = 0.5). After a review of the SPH method applied to solids and of the constitutive relations 
used in this application, we will undertake to develop more specifically the contact approach chosen in this publication. The 
pinball technique and Lagrange multipliers are used respectively to detect contacts and to calculate the contact load. Finally, 
we will show how the adhesion models can be easily implemented in this context.

2.1. Review of the SPH method

The SPH method has been known for many years and used for the development of many physical models with very 
different topologies. This type of method is a meshless approach which involves only nodes (the SPH points). The strains 
at each point are calculated from the displacement field of all the points located in a sphere B of radius h centered on the 
point (h being, of course, greater than the standard distance between two points). Any function f (x) of the coordinate x is 
represented by the following integral:

f (x) �
∫
B

f (x′)W ((x − x′),h)dx′ (1)

in which W (x, h) is the kernel function which imitates the Dirac function (δ). In order to guarantee a consistent solution, 
W must possess the following properties:

• normalization∫
B

W ((x − x′),h)dx′ = 1 (2)

• symmetry

W ((x − x′),h) = W ((x′ − x),h)∇[W ((x − x′),h)] = ∇[W ((x′ − x),h)] (3)

• Dirac limit

lim
h→0

W ((x − x′),h) = δ(x − x′) (4)

• Compact support

W ((x),h) = 1 h > κh (5)
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Fig. 1. The kernel function W.

A typical kernel function is shown in Fig. 1. The equation chosen to represent this function is:
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with ri j = ‖xi − xj‖ and C = 1/πh3 in 3D. Let us consider SPH node i and approximate the integral in Eq. (1) numerically 
using the quadrature formula of Eq. (7):

f (xi) = � j∈Bi f (xj)W (xi − xj)ω j (7)

In Eq. (7), Bi is the sphere of radius h = κh centered on i, whereas j is a node belonging to this sphere. Point j is associated 
with an elementary volume ω j . The gradients of a function are approximated in a similar way:

∇ f (xi) = � j∈Bi f (xj)∇W (xi − xj)ω j (8)

This type of formulation was first developed for the simulation of large displacements of fluids and gases [12]. The material 
models, in general, had no memory effects and all the physical models studied were highly dissipative. The first applications 
to solids showed that the previous formalism led to artificial fracture mechanisms, even in the case of a linear elastic 
material with no damage model. This defect, known as tensile instability, was corrected [13] by introducing an appropriate 
renormalization of the kernel functions, a total Lagrangian formulation of the solid mechanics equations and some artificial 
viscosity. In addition, a series of auxiliary points (stress points, positioned like Gauss points) helps eliminate the hourglass 
modes which can appear in some cases. When one chooses this type of implementation, the SPH nodes are associated 
with the kinematic variables while the stress points are associated with the static variables (along with the associated 
history variables). We will not give any further details on the formulation, which can be found, e.g., in [14,15] for volume 
formulations and in [16,17] for shell formulations. In this paper, we chose the initial normalized 3D formulation (without 
stress points). This choice is justified by the existence of very large plastic strains which occur in the simulations, which 
dissipate enough energy to prevent hourglass modes from developing.

2.2. Modeling of the material’s behavior: the Johnson–Cook model

The material model used in all the simulations is Johnson–Cook’s generic model. The material deforms plastically with 
the stress deviator associated with the flow. The integration of the constitutive relation is carried out using the radial 
recovery technique. The strain hardening of the material is a function of the logarithm of the equivalent plastic strain rate 
and of a certain power of the temperature:

σY = (A + BpN)(1 + C Log

[
ṗ

ṗ0

]
)

[
1. − (

T − T0

Tmelt − T0
)M

]
(9)

where p denotes the accumulated plastic strain and T the temperature. This model has eight material parameters: A, B, C, N, 
M, ṗ0 (the reference strain rate), T0 (the reference temperature) and Tmelt (the melting point in K). Adiabatic heating was 
assumed because the impact phenomena being considered are very fast and there is not enough time for heat conduction to 
take place during the simulation. We chose to convert 90% of the variation in plastic work into an increase in temperature. 
This ratio is commonly chosen because a portion of the plastic work is consumed in mechanisms other than temperature 
increase, but other ratios can be used. Thus, this model enables thermal softening to occur in the case of large plastic 
strains. Moreover, the choice of the high thermal conversion rate lowers the minimal “gluing” velocity.
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2.3. Modeling of frictionless contact using Lagrange multipliers

Contact is taken into account by means of the Lagrange multiplier technique. When two surfaces come in contact, a 
contact energy term is added to the energy of the system. Let Scontact be the contact surface and λcontact be the associated 
surface loads over the contact interface, and let Vn1 and Vn2 be the normal velocities of the two colliding objects. The 
expression of the contact energy is:

Wcontact =
∫

Scontact

λcontact
T(Vn1 − Vn2)dS (10)

This equation is to be discretized based on the SPH points located on the external surfaces of the objects, which consist 
simply of series of SPH points. With this very simple approach, contact between surfaces boil down to contact between 
points. The approach simplifies into the detection of contacts among lists of points. When the distance between two SPH 
nodes belonging to the external surfaces becomes very small, then contact is said to occur between the surfaces, and a 
Lagrange multiplier is added to prevent them from getting closer in the direction defined by the positions of the points 
being considered.

2.4. Detection of contact using the pinball technique

The implementation of this very simple approach relies on the “pinball” method [18], which consists in surrounding 
each material point at which contact is likely to occur by a small sphere whose radius is chosen automatically so that the 
external surfaces of the two objects are completely covered, leaving no “holes”. Contact is detected simply based on the 
interpenetration of the candidate spheres.

2.5. The adhesion model

The model which is proposed here was inspired by the “cohesive zone models” used in the static modeling of adhesion 
or in the modeling of crack behavior. These models are based on the use of a stress-gap curve relating the interaction force 
between the parts in contact to the opening of that same contact, as presented in [19,20]. Thus, one uses an adhesion energy 
(as in the Griffith model) along with a cohesive stress (as in the Barenblatt model [21]). In this section, we describe the 
chosen adhesion model and its implementation in the case of SPH methods associated with pinballs. This model produces 
forces that prevent the opening of the gap until a certain adhesion energy has been consumed. These forces are activated 
only if the gap between the two points considered tends to increase, and their magnitudes can be bounded if desired.

2.5.1. The mechanical models
As in fracture mechanics, the adhesion energy is characterized by a surface adhesion energy denoted GC. The Griffith 

model consists in keeping the link active as long as the energy which is dissipated in opening the contact remains less than 
GC Sadhes (where Sadhes is the adhesion surface between the two points in contact). For a pair of SPH points in contact with 
radii R1 and R2 respectively, this adhesion surface is determined by Eq. (11):

Sadhes = π

2
(R2

1 + R2
2) (11)

The Barenblatt model introduces a cohesive stress σc , which is active only during opening. In this case, there is an associated 
critical opening gapc beyond which the cohesive forces cease to be active. These three quantities are related according to 
the following equation:

GC = σc gapc (12)

2.5.2. Modeling of the cohesive forces
The cohesive forces are determined in the same manner as in the case of contacts: one defines an additional load which 

prevents both of the points considered from moving.
These two points are associated with a Lagrange multiplier � which opposes the opening movement. The magnitude of 

the Lagrange multiplier is calculated as in the contact case: let us note that it is not bounded. Then, one calculates the work 
of this multiplier while the gap opens.

At each time step, the variation of the gap �gap is known because, in explicit dynamics, the positions at the end of the 
time step are known at the onset. Thus, the work increment of the multiplier due to the opening of the gap between steps 
n and n + 1 is:

�Wadhes = 1

2
(�n + �n+1)�jeu (13)

Thus, the contact remains active until the energy consumed in opening the gap at the time step (n) being considered 
(W n = ∑n

1 �Wadhes) reaches the available cohesive energy (GC Sadhes).
adhes
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Fig. 2. The interaction law used in this study.

2.5.3. Limitation of the cohesive stress
One introduces the cohesive stress σC of magnitude �/Sadhes. Thus, the Dugdale–Barenblatt type of model used enables 

one to limit the maximum value of the cohesive stress in the contact zone. For each pair of interacting nodes, this leads to 
the definition of a stress-gap curve with a plateau which is similar to that of the Dugdale interaction model [19]. The use of 
Lagrange multipliers defined as in the previous section corresponds more to a Dirac model of the JKR type [20]. Thus, the 
cohesive stress model introduces a form of contact “softening” in dynamics.

2.5.4. Discussion of the adhesion model
Thus, the model can include a limit on the cohesive stress, which is a switch from a single-parameter model to a 

two-parameter model. If one does not limit the magnitude of the surface cohesive stress, that stress can become so high 
that it causes the materials on both sides of the interface to plastify. This drawback can be eliminated by setting a maximum 
cohesive stress. In any case, the model requires a knowledge of the surface over which the cohesion is in effect. In the case 
of an SPH calculation, this surface Sadhes is difficult to estimate accurately if the interfaces are highly distorted, which may 
be a problem for very-high-velocity impacts. An illustration of the model implemented for each pair of interacting nodes is 
given in Fig. 2, which shows the three stages of the behavior: a repulsion part for a negative gap, which is handled by the 
usual contact algorithm using Lagrange multipliers, an attraction part for a positive gap, in which Lagrange multipliers are 
first used as in the repulsion case, and an attraction part with a plateau when the stress associated with these Lagrange 
multipliers becomes greater than the maximum cohesive stress of the model.

The work of the adhesive stresses is accumulated for each pair of nodes which stick during the impact, leading to 
separation when the energy consumed in gap opening becomes greater than GC.

3. Validation of the developments in the case of the elastic rebound of a cylinder impacting another cylinder

Here, we undertake to validate the cohesive model for simple cases and to compare the various possible parameter 
choices.

3.1. The elementary problem and its quasi-analytic solution

First, let us consider the very simple case of the impact of a rigid sphere of mass M projected vertically downward with 
a negative velocity V 0 onto another rigid sphere of mass m, initially at rest, supported by a spring of stiffness k (Fig. 3).

In the case of a spring with zero stiffness, one has simply two masses in contact. We shall show that in this case, and 
in this case alone, the final velocities of the spheres depend only on the cohesive energy GC, and not on the magnitude 
of the cohesive load Fc that exists during the adhesion phase. The velocities after the rebound can be easily calculated by 
expressing the conservation of the momentum and kinetic energy through the impact. The velocities of masses M and m
immediately after the impact are:

V 1 = M − m

M + m
V 0

v1 = 2M

M + m
V 0 (14)

Immediately after the impact, the gap opens with the opening velocity −V 0. One can calculate the movement of the two 
masses by solving the momentum conservation equation for each mass. Let (A, V, U) and (a, v, u) be the acceleration, 
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Fig. 3. The basic impact model.

velocity and displacement of masses M and m, respectively, and let Fc be the cohesive force that resists the movement. If 
V 1 > 0, one has:

M A = −Fc

m a = Fc (15)

which leads to the equations of the velocities and displacements of the two masses as functions of time:

V (t) = V 0
M − m

M + m
− Fc

M
t

v(t) = V 0
2M

M + m
+ Fc

m
t (16)

U (t) = V 0
M − m

M + m
t − Fc

M

t2

2

u(t) = V 0
2M

M + m
t + Fc

m

t2

2
(17)

Then, one can calculate the evolution of the gap over time. The cohesive forces cease to be active when the gap reaches the 
value gapc. Thus, one can calculate the time at which the gap opens, which is the solution of the second-degree equation:

0.5
F 2

c

2

m + M

m M
t2 + V 0 Fct + GC = 0 (18)

The initial velocity must be sufficient for the mass to separate (V 0 >

√
2·GC

m + M

m M
). This separation occurs at time:

tc =
−V 0 +

√
V 2

0 − 2·GC
m + M

m M

Fc
m + M

m M

(19)

One can immediately see, by substituting tc for t in Eq. (16), that the final velocities of the masses depend only on GC. Now, 
if one considers that mass m is supported by a spring of stiffness k, Eq. (15) becomes:

M A = −Fc

m a + ku = Fc (20)

The evolution of the gap as a function of time in the absence of cohesive forces is given by the following equation:

gap(t) = V 1 t − v1

ω
sin(ω t) − Fc(

1

M
+ 1 − cos(ω t)

k
)

t2

2
(21)

with ω =
√

k
m . There is no simple solution giving the time of separation, but one can solve the equation numerically (e.g., 

using Mathematica) for specific values of the constants. Table 1 compares, for a particular case, the separation velocities of 
mass M obtained with several values of Fc for the same cohesive energy GC. Here, we chose a mass M equal to 1, a mass 
m equal to 2 and a stiffness k equal to 0 or 0.5. The initial velocity was −1. We chose GC = 0.2. One can observe that the 
separation velocity of mass M is independent of the choice of Fc if k = 0, but not if k = 0.5.



P. Profizi et al. / C. R. Mecanique 344 (2016) 211–224 217
Table 1
The effect of the choice of the cohesive stress 
on the particle’s rebound velocity: elastic rebound 
GC = 0.2.

Fc k = 0.0 k = 0.5

0.05 0.0898 0.000
0.5 0.0898 0.086
5 0.0898 0.091

Fig. 4. The adhesion energy dissipation for the 12.5 μm, 125 μm and 1250 μm cylinders.

Thus, contrary to the quasi-static case, the choice of the magnitude of the cohesive stress has an essential influence on 
the rebound velocity when the elasticity of the bodies in contact is taken into account.

If ω tc is small, one can carry out an expansion of the sine function in gap(tc), which leads to the same solution as when 
there is no elastic support. In this case, the magnitude of the cohesive force has no influence on the separation velocity of 
mass M .

3.2. The SPH model

In this section, our goal is to show that taking adhesion into account induces a size effect. This effect is predictable. 
The strain and kinetic energies are proportional to the volume, whereas the adhesion energy is proportional to the area. 
Consequently, if one does not take the adhesion effects into account, the cylinder’s rebound effects are the same regardless 
of the size of the particle impacting the substrate. Conversely, if these forces are taken into account, the smaller the particles, 
the lower the rebound velocities.

3.3. Calculation results and comparison with the model

In this section, we first address the elastic impact of an aluminum cylinder of radius 12.5 μm and height 16.67 μm (so 
its initial kinetic energy is the same as that of a sphere of similar radius) which is projected at 20 m·s−1 onto a cylindrical 
target of radius 25 μm with the same height (16.67 μm). The cylindrical target is built-in at its base. The Young’s modulus 
is 70 000 MPa, the Poisson’s coefficient is 0.3 and the density is 2.7. We assumed a surface density of adhesion energy 
GC = 0.02 J·m−2. The SPH mesh was compact hexagonal with 618 SPH in the impactor and 2526 SPH in the support. 
The radius of each SPH was 1.25 μm. Therefore, there were 20 SPH along a diameter. We chose not to set a maximum 
cohesive stress. The calculations were carried out with 7·10−12 s time steps. Then, the same calculations were repeated 
after multiplying the time steps and the dimensions by 10, and then by 100, keeping the same material constants and the 
same adhesion surface energy. The calculations without and with adhesive forces were compared. The calculations without 
adhesive forces, which are dimensionless with respect to time, all lead to the same time history of the velocity of the 
impactor: in all cases, the particle rebounds with a velocity of 12 m·s−1. Fig. 4 shows the evolution of the total adhesion 
energy available in the contact for the three calculations. One can observe that the impact of the largest specimen quickly 
consumed all the available adhesion energy and the impactor bounced back. The two other cases show that only 5.5% (for 
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Fig. 5. Evolution of the gap for the 12.5 μm, 125 μm and 1250 μm cylinders.

the smallest particle) and 55% (for the medium-size particle) of the adhesion energy were consumed after 20 000 calculation 
steps. The two smallest particles remained stuck to the substrate. The observation of the time history of the average gap 
(Fig. 5) shows that after a first major rebound the gap oscillates and regresses progressively for the smallest two particles. 
These small oscillations about the motionless “stuck” state actually dissipate very little energy, which enables us to conclude 
that the sticking would continue even over longer calculations. For the largest specimen, the gap does not follow the same 
trend and tends toward infinity upon complete separation near t = 3.5 m s. The rebound velocity is much lower than in the 
free case (1.64 m·s−1 vs. 12 m·s−1). As anticipated, there is, indeed, a size effect.

3.4. Discussion

We clearly showed the importance of scale effects in this problem. With the SPH model, we arrive at the same conclu-
sions as with the quasi-analytic model: in the absence of adhesion, there is no scale effect. If there is adhesion, the smaller 
the particle, the better it adheres. It might seem surprising that the particle would stick even though the adhesion energy is 
very small compared to the initial kinetic energy. The observation of the time history of the energies of the various subsets 
shows that the two objects start vibrating at very high frequency during the contact. The activation of the cohesive forces 
leaves enough time for these high-frequency energy exchanges to take place and, thus, to borrow from the initial kinetic 
energy.

Fig. 6 shows the evolution of the various energies involved during the impact, with and without adhesion, for the 
largest-diameter cylinder and for the intermediate-diameter cylinder. One can see that the main difference between the 
larger cylinder which separates and the smaller cylinder which sticks lies in the distribution of the strain energy (internal 
energy) between the substrate and the particle. The longer sticking time in the case of the medium-sized cylinder allows 
more strain energy to move from the particle to the substrate, which hampers the separation of the particle.

4. Impact of a spherical projectile onto a substrate

Now, let us consider the impact of a spherical particle of radius 12.5 μm onto a parallelepipedic substrate of length 
75 μm and height 33.4 μm. The particle and the substrate were meshed using respectively 737 and 15 776 SPH. First, we 
will study an elastic impact and focus on the effect of the choice of the adhesion model’s maximum cohesive stress on the 
rebound velocity. Then, we will study how the boundary condition chosen at the base of the substrate affects the rebound. 
Finally, we will address the elastic–plastic case, which gives a more realistic representation of the behavior of the particle’s 
and substrate’s material, using the Johnson–Cook elastic–plastic model with adiabatic thermal softening.
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Fig. 6. Energy distribution during the cylinder impacts.

4.1. Impact in elasticity: effect of the adhesion model

Here, we compare the results of the rebound velocities with various adhesion parameters for a −20 m·s−1 velocity of 
the spherical impactor. The adhesion surface energy is still GC = 0.02 J·m−2. First, let the parallelepiped be built-in at its 
base. The Griffith adhesion model uses the Lagrange coefficient given by the contact algorithm directly. The Dugdale model 
requires a maximum cohesive stress σc, whose magnitude was incremented from 100 to 1600 MPa. Because of this choice, 
the largest allowable gap prior to the rupture of a cohesive link was 0.2 nm, which remains very small compared to the 
size of the objects being considered and the radius of the SPH spheres. Fig. 7 shows the variation of the particle’s velocity 
during impact as a function of the maximum adhesive stress. One can see that the choice of the maximum adhesive stress 
has a significant influence on the time history of the velocities, and that the final rebound velocity is highly dependent on 
the adhesive stress level chosen (Fig. 8).

When the maximum cohesive stress increases, the rebound velocity decreases to reach a stable value of 30% of the initial 
velocity. The irregularities between 800 and 1300 MPa are due to the occurrence of additional rebounds in the impact 
history due to an increase in the cohesive recovery load on the particle. The calculation was carried out in elastoplasticity 
by multiplying the initial yield stress of the material by 1000. This result is important because it proves that for a dynamic 
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Fig. 7. Evolution of the velocity norm during impact for several values of the maximum cohesive stress.

Fig. 8. Evolution of the rebound velocity norm during impact for several values of the maximum cohesive stress.

impact, contrary to the static case, the choice of the plateau stress of the cohesive model is significant. This influence will 
be even greater in the plastic case.

4.2. Impact in elasticity: effect of the modeling of the substrate’s absorbing boundaries

Next, absorbing boundaries were added to the model in order to simulate a semi-infinite substrate. An elastic impedance 
was applied over the bottom and the vertical sides of the parallelepipedic substrate. At each SPH node of the boundary, the 
impedance condition can be expressed as:

FSPH = −V
√

ρ E SSPH (22)

This is a force which is directed opposite to the point’s velocity and is proportional to that velocity and to the square root 
of the product E ρ .

Fig. 8 shows the influence of these absorbing boundaries on the rebound velocity as a function of the maximum adhesive 
stress σc. One can observe a decrease in the rebound velocity compared to the case without absorbing boundaries. This 
difference increases as the value of σc increases until, again, it reaches a plateau.
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Table 2
The Johnson–Cook material parameters for alu-
minum.

Parameter Value Unit

A 148.4 MPa
B 345.5 MPa
N 0.183
C 0.001
ṗ0 1 s−1

M 0.9
T0 300 K
Tmelt 916 K

Table 3
The effect of GC on the percentage of stuck SPH in the absence of a maximum cohesive stress.

Impact velocity (m·s−1) GC

0.002 0.01 0.015 0.017 0.018 0.019 0.020 0.05

100 0% 0% 0% 0% 0% 0% 0% 5%
200 0% 0% 0% 0% 0% 0% 0% 19%
300 0% 0% 0% 0% 0% 0% 0% 19%
400 0% 0% 0% 4% 1% 7% 12% 47%
500 0% 0% 1% 1% 3% 3% 6% 37%
600 0% 1% 6% 14% 19% 20% 24% 51%
700 0% 0% 0% 0% 0% 0% 0% 48%
800 0% 0% 0% 0% 0% 9% 9% 40%
900 0% 11% 21% 21% 21% 22% 22% 36%

1000 18% 23% 31% 31% 31% 31% 31% 38%

Thus, as anticipated, the presence of these boundaries results in an energy loss in the system leading to a slight decrease 
in the rebound velocity and a change in impact behavior (in terms of the number of rebounds prior to separation), which 
should facilitate the adhesion of the particles.

The two cases presented here (built-in substrate and semi-infinite substrate) are the bounds of the actual case of a 
substrate whose size is finite, but usually much greater than the size of the particle.

4.3. Impact in the case of material nonlinearities

Here, we address a more realistic impact model which takes into account the elastic–plastic behavior of the material, 
which is represented by a Johnson–Cook law (Eq. (9)). The parameters chosen to represent the behavior of aluminum were 
taken from the literature and are given in Table 2. The specific heat was set at 904 J·kg−1·K−1.

Experiments have shown that for particles of a given diameter adhesion occurs only in a specific velocity range (typically 
400 to 700 m·s−1 for an Al–Al impact). Therefore, our objective is to reproduce this observation numerically. The cohesion 
energy is unknown. Let us try, through calculations, to identify a value of the adhesion energy which matches the experi-
mental observation, and then to study the influence of the associated cohesive stress. Here, we present, for several values 
of the impact velocity between 100 and 1000 m·s−1, the results of a series of calculations of the cohesive energy GC and of 
the cohesive stress σc. The calculations were carried out with a fixed maximum time step equal to 7·10−12 s.

4.4. Effect of the impact velocity in the elastic–plastic case

First, let us consider the calculations in which no limit was set on the cohesive stress and we allowed the adhesion 
energy GC to vary. It is relatively difficult to tell what really happened in the calculations because they always stopped 
after a certain simulation time (typically, 5000 time steps). In general, the transfers of energy among the particle, the 
substrate and the infinite medium had not been completed, although the adhesion energy was practically stable. Besides, 
this consumed adhesion energy represented only a very small portion of the initial kinetic energy. Therefore, it is very 
difficult to distinguish between rebound or sticking based on energy balances and a comparison between the particle’s 
kinetic energy and the unused adhesion energy. We chose to decide about adhesion based on the percentage of the nodes 
that stuck. Thus, we counted the number of nodes in the particle which were stuck at the end of the calculation and 
compared that number with the maximum number of nodes which were stuck during the calculation. This was used as 
the sticking criterion: we decided that if more than 1% of the nodes remained stuck at the end of the calculation that 
meant that the particle had stuck. Of course, this value is completely arbitrary and can be debated. The duration of the 
calculations was chosen in order to allow this number to become stable over a period equivalent to or double the transition 
period. Table 3 summarizes these results for a range of values of GC between 0.002 and 0.05. The conclusion from this table 
is that if GC is too high sticking occurs regardless of the impact velocity. Once GC becomes equal to or less than 0.02, there 
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Fig. 9. The deformed bodies along with the accumulated plastic strains.

is no sticking if the impact velocity is small and sticking if the velocity is in a range which depends on the value of GC. The 
minimum velocity is between 300 and 500 m·s−1. The particle bounces when the impact velocity exceeds 600 m·s−1. This 
result comes close to the experimental results for this type of aluminum/aluminum impact. The maximum plastic strains 
are in the order of 1.5. There is a second sticking range, associated with impact velocities greater than 900 m·s−1, which 
does not correspond to experimental observations. The accumulated plastic strains given by the calculations exceed 5 in 
the vicinity of the interfaces. At this strain level, damage most certainly occurs in the material and generates a third body, 
which prevents sticking. Therefore, these calculation results are not very realistic. Fig. 9 shows, for GC = 0.02, the deformed 
shapes of the particle and the substrate along with the isovalues of the accumulated plastic strains for the three impact 
velocities (300, 600 and 700 m·s−1) at final simulated time (0.35 μs in every case). The faster the impact, the more the 
particle flattens out and penetrates the substrate. One can observe an accumulated plastic strain which culminates at 1.47 
for a relatively coarse mesh. These strains are concentrated near the interfaces, which is a sign of significant shearing in 
these regions.

Fig. 10 shows, for the same cases, the isocurves of Von Mises’ stresses. These stresses are quasi-uniform in the sphere 
and localized beneath the impact in the substrate. Fig. 11 shows the final temperatures for the case which corresponds to 
the highest velocity. The maximum temperature is almost 500 K. The particle does not melt.
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Fig. 10. The deformed bodies along with the Von Mises stresses.

Fig. 11. The deformed bodies at 700 m·s−1 along with the temperatures in K.

Finally, we studied the model with the addition of a maximum cohesive stress σc . The same calculations were carried 
out with stress values equal to 100, 200, 300 and 500 MPa. The results did not change significantly. The sticking velocity 
range is relatively unaffected by the value of σc.

4.5. Discussion

The adhesion energy alone is insufficient to assess what happens in dynamics when the material behavior is elastic. If 
one simulates plastic behavior, there is not much difference between the models with a maximum cohesive stress and those 
without if one is interested only in whether the particle sticks to its substrate or not. This is an interesting result because 
it makes setting the parameters of the problem easier. The proposed model is unrealistic when the impact velocities are 
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too high because it predicts sticking at very high impact velocities, which is not observed experimentally. This is due to 
an excessive flattening of the particle which leads to huge plastic strains. In such conditions, damage probably occurs in 
the material and generates a third body in the contact, which hampers sticking. This cannot be reproduced by the model 
proposed in this work. A Johnson–Cook damage model that will be able to describe the material fragmentation is being 
implemented to simulate the third body apparition. For very large strains, the error in the calculations of the sticking area 
for each point should also be taken into account and the method improved in order to achieve more physically realistic 
results at high speed.

5. Conclusions

In this paper, we presented a method for simulating the effect of adhesive forces on the rebound of particles projected 
onto a substrate at high speed. The models were implemented in a fast dynamics SPH code. We showed that size effects 
have an essential influence on sticking when the size of the particles is relatively small. In addition, the proposed model is 
capable of reproducing the experimental observation that sticking occurs only in a certain range of impact velocities. The 
simulation also predicts sticking at very high impact velocities (> 1000 m·s−1). This prediction is not very realistic because 
the plastic strains can then exceed 500% near the interfaces, even with the relatively coarse mesh chosen. The introduction 
of a maximum cohesive stress plays an important role when the rebound is elastic. The effect of this limit on the adhesive 
stress is less obvious in elastoplasticity. The type of model developed here will be used systematically to simulate sticking 
with all sorts of material pairs used for Cold Spray. The effect of alternative local sticking activation criteria (e.g., Shear 
Stress Instability/Adiabatic Shear Band) will also be studied. For that purpose the mesh will have to be refined to be able to 
represent the shear bands with enough details. This type of approach can also be used for fluid/structure adhesive forces in 
the case of very small sized problems.
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