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A bifluid–solid contact model involving surface tension and wetting effects is developed 
within a finite element framework, in order to provide an accurate characterization of the 
fluids and fibrous behaviours during Liquid Composite Molding processes. This model is 
based on a Eulerian approach of two immiscible fluid (resin/air) domains with boundary 
conditions which prescribe wetting phenomena at fluid/fiber interfaces. The fluid interface 
is described by the Level Set method, on which capillary force is considered. Numerical 
simulations of a drop evolution with wetting effects are used to illustrate this challenging 
physical problem.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

r é s u m é

Un modèle de contact bifluide–solide, impliquant les effets de tension de surface et de 
mouillage, a été développé dans un code éléments finis, afin de fournir une caractérisation 
précise des fluides (résine/air) et des fibres imperméables à l’échelle microscopique au 
cours des procédés d’élaboration des matériaux composites par infusion de résine. Ce 
modèle est basé sur une description eulérienne des deux fluides non miscibles et sur 
des conditions aux limites qui décrivent les phénomènes de mouillage aux interfaces 
fluides/fibres. Le front fluide est décrit par une méthode Level set, sur laquelle les forces 
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capillaires sont considérées. Les évolutions des gouttes sous l’effet du mouillage ont été 
simulées pour illustrer ce problème complexe.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Dynamic wetting flows play an important role in various domains of engineering applications, such as petroleum, mi-
crofluidic device, lubrication and polymer processing. It involves two immiscible fluids separated by a moving interface. The 
dynamics of the interfaces is largely influenced by capillary forces, and the interaction of these fluids with a solid surface 
gives rise to wetting phenomena. This paper describes the first steps required to investigate numerically the capillary and 
wetting phenomena that can be met in Liquid Composite Molding processes (LCM), in order to predict voids formation and 
to allow a better measurement of permeabilities.

Developed in recent years, LCM processes are particularly interesting for the manufacture of large or complex composite 
parts. These processes consist in infusing a liquid resin into a stacking of fibrous preforms, on which a mechanical pressure 
field is applied. The simulation of LCM processes may involve multiple physical phenomena: fluid mechanics, solid mechan-
ics, thermal and resin cross-linking [1]. Moreover, even if one considers only the fluid–solid mechanics, these phenomena 
can be described at various scales (Fig. 1): the microscopic one, which describes the flow of resin between the fibers, the 
mesoscopic one, where the flow of resin between the tows can be simulated, and the macroscopic scale, which corresponds 
to the scale of the piece.

A finite element framework based on coupling of flows in a purely fluid region, ruled by Stokes’ equations, and in a 
porous region governed by Darcy’s equations has been proposed recently, and successfully investigated for 3D industrial 
applications [2–4]. However, the multi-scale nature of the porous media is not included in these works, which makes it 
difficult to predict some phenomena such as the micro/macro-void (Fig. 2) creation, which can significantly affect the quality 
of composite parts. Indeed, this porosity creation is mainly due to the inhomogeneous micro-structure of the preform. The 
aim of the present work is to provide an accurate characterization of phenomena at the microscopic scale within a finite 
element framework. It involves modelling the two-phase capillary flows (air/resin) and the wetting effect between the fluids 
and the fibrous solid, which are determinant for the creation of micro/macro-voids and their subsequent evolution (Fig. 3).

In the past decades, various CFD techniques have been developed for modelling two-phase flows with moving interfaces. 
They can be either Eulerian, Lagrangian or more generally Arbitrary Lagrangian–Eulerian (ALE) methods, combined with 
interface capturing techniques such as the front tracking methods (maker and cell (MAC), [5]) or the front capturing methods 
(Level Set [6,7], Volume of fluid [8] and Phase-field method [9,10]). Every approach has its advantages and drawbacks, more 
descriptions of the existing various methods can be found in the literature [11,12]. As for the LCM applications, we choose 
the Eulerian description for the fluid domain, and the Level Set method for the interface description allowing accurate 
description of curved interfaces with strong topological evolutions.

However, the accurate simulation of capillary driven flows, using the finite element method, remains a challenge. It 
is well known that the capillary-driven flow simulation is especially difficult mainly due to the singular surface tension 
force, and the associated discontinuities of pressure and viscosity, etc. Moreover, spurious velocities can be observed in 
the vicinity of the interface when considering a standard finite element approximation in Eulerian approach, which may 
significantly affect precision and robustness of numerical simulations. Most recent researches focus on the improvement 
of existing methods [13–16]. In the present work, a robust Eulerian finite element method is proposed for the simulation 
of both capillary-driven flow and wetting phenomena observed in the LCM processes simulation. A Surface Local Recon-
struction (SLR) method [17], which consists in reconstructing locally the fluid interface is developed for the surface tension 
computation, and compared with the Continuum Surface Force (CSF) method [18]. An alternative tensorial method [19,17]
has also been implemented to avoid the explicit computation of the curvature (second derivative of Level Set function), 
which is tricky when the Level Set function is approximated with piecewise linear functions.

The physics of the wetting phenomenon is a very vast and active field of research. It has been studied by various 
researchers, such as in earlier studies of [20,21], and in the works of [22–26] for the computational aspects. However, the 
phenomenon remains partially understood and only very recent work [27–29] try to simulate capillarity using the finite 
element method, some of which [28,29] are based on ALE methods. Before including rather complex dynamic wetting 
model, only numerical methods that allow us to take into account contact angle and contact line movements are considered 
in the present work.

The outline of this article is as follows. In Section 2, the governing equations of fluids and moving interfaces are briefly 
described. In Section 3, stabilized finite element methods for the bifluid Stokes equations are recapitulated. Special attention 
is paid on the surface tension term computation and on taking into account the contact angle. Finally, numerical verifications 
and validations are presented in Section 4. An droplet in equilibrium with wall adhesion effects test case is simulated. 
Concluding remarks and future research perspectives are discussed in Section 5.

http://creativecommons.org/licenses/by-nc-nd/4.0/
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Fig. 1. The different modelling scales of (LCM) resin-infusion-based processes.

Fig. 2. Macro/micro-porosities [30].

Fig. 3. Description of the moving interfaces at the microscopic scale.

2. Governing equations

Consider here a fluid domain � ⊂ R
d (d = 2 or d = 3) occupied by two immiscible incompressible Newtonian fluids: air 

and resin, denoted by �1 and �2 respectively. Its outer boundary ∂� can be divided into several parts, where both Neumann 
(∂�N) and Dirichlet (∂�D) boundary conditions can be applied, respectively. A set of impervious fibers �S, assumed to be 
non-deformable, is embedded into a surrounding fluid. In this article, only the outer boundary of fibers ∂�S is considered 
so as to take into account wetting phenomena. The domain of fibers is only represented by boundaries for simplicity. The 
moving interface between the two fluids, denoted by �, can be either closed or interact with the fluid/fibers interface ∂�S
(Fig. 4). In the latter case, � has a boundary ∂�, which is the so called contact point (blue dots in Fig. 4) in 2D case. θ is 
the associated contact angle.

2.1. Two-phase Stokes equations

Assuming that the modelling scale is small enough so that the inertial effects can be neglected. The flow of both fluids 
is described by one single Stokes system, expressing momentum conservation and incompressibility condition. Each fluid is 
distinguished by using a Heaviside function. The surface tension force is considered at the fluid interface � and the contact 
line problems are considered as boundary conditions and presented thereafter. Moreover, the volume force of gravity is also 
included. The Stokes equations are then expressed as: find the velocity (v) and the pressure (p) fields defined on � such 
as:
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Fig. 4. 2D geometrical setting.

⎧⎪⎪⎨
⎪⎪⎩

−∇ · (2ηε̇(v)) + ∇p = γ κnδ(�) + ρg in �

∇ · v = 0 in �

v = vb on ∂�D
σN = −penb on ∂�N

(1)

where η is the dynamic viscosity, ε̇(v) = (∇v + t∇v)/2 is the strain rate tensor, ρ is the density, g is the gravity. The surface 
tension force F� = γ κnδ(�) acts only at the interface �. δ(�) is the Dirac function defined on the interface only, γ is the 
surface tension coefficient, κ the curvature of the interface and n its normal vector. vb is the velocity prescribed on ∂�D. 
σN is the normal stress prescribed on boundary ∂�N equal to −penb, where pe is a pressure to be prescribed on ∂�N, nb is 
the unit vector normal to ∂�N. Introducing the signed distance function ϕ defined as:

ϕ(x)

{ = −d(x,�) if x ∈ �1
= d(x,�) if x ∈ �2

(2)

where d(x, �) is the distance from any point x to the interface �, so � can be described by the iso-value of ϕ: � =
{x|ϕ(x) = 0}. The viscosity η and density ρ can be defined in terms of ρi , ηi , i = 1, 2 (the viscosity and the density of each 
fluid) using the Heaviside functions H1 and H2:

η = H1(ϕ)η1 + H2(ϕ)η2 (3)

ρ = H1(ϕ)ρ1 + H2(ϕ)ρ2 (4)

with:

H1(ϕ) =
{

1, if ϕ ≥ 0
0, if ϕ < 0

H2 = 1 − H1 (5)

2.2. Level Set equations

The moving interface is described by the Level Set method [6,7], consisting in convecting the signed distance function ϕ
(Eq. (2)) with the flow velocity v:⎧⎪⎪⎨

⎪⎪⎩

∂ϕ

∂t
+ v · ∇ϕ = 0, ∀(t,x) ∈R

+ × �

ϕ(x, t = 0) = ϕ0(x) ∀x ∈ �

ϕ(x, t) = g(x, t) ∀x ∈ ∂�−, ∀t ∈R
+

(6)

This equation sets the value of the Level Set function ϕ over the inflow boundary ∂�− to be equal to g(x, t). The inflow 
boundary is defined as: ∂�− = {x ∈ ∂�|v · n < 0}. One advantage of the Level Set method is that the normal vector (n) and 
curvature (κ ) of interface can be easily calculated:

n = ∇ϕ

||∇ϕ|| , κ = ∇ · n (7)

These geometric quantities are involved in the calculation of the surface tension term calculation, which will be detailed 
in section 3.2. Furthermore, since Eq. (6) does not preserve the distance function property (||∇ϕ|| = 1), an additional step, 
the so-called reinitialization step [31], is also considered in order to recover the unit gradient property. From a numerical 
point of view and in a finite element frame work, the Level Set function ϕ is approximated by a continuous piecewise 
linear function. The transport equation is then solved by using a stabilization technique SUPG (Streamline-Upwind/Petrov–
Galerkin [32]).
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Fig. 5. Geometrical definition at contact line.

Fig. 6. Representation of the Navier boundary condition for different values of the slip coefficient β .

2.3. Boundary conditions for wetting phenomena

The contact line is line of intersection between two fluids and a fiber surface ∂�S , it is represented by the two blue 
dots in the 2D situation (Fig. 5). The boundary conditions for wetting phenomena allow us to take into account contact line 
dynamic. It consists in the description of the contact angle and the slip of the contact line on the fiber surface. In this work, 
we used an iterative method to take into account the contact angle at the fluid/fiber interfaces ∂�S. This method will be 
detailed directly in the numerical method section.

A major challenge in the simulation of the contact line dynamic is that the classical hydrodynamic equations, such as 
the Stokes equations, coupled with the conventional no-slip boundary condition, leads to a stress singularity at the contact 
line [20,25]. Various methods have been proposed recently to remove the stress singularity, such as the diffuse interface 
method or methods replacing the no-slip boundary condition by some slip model in the vicinity of the contact line. The 
Navier condition used in this work is maybe the most documented method for moving contact line simulation [33,34,22,35]. 
It consists of imposing a tangential force (στ ) at ∂�S proportional to the velocity (vτ ) at the interface, that is:

στ · n∂�S = −βvτ (8)

where β = 1/λ is the slip coefficient, λ is the so called slip length, which is usually estimated to be the nanometre scale. 
Thus, β is in general very large except in the vicinity of the contact point ∂�. However, a constant value of β is considered 
for simplicity. Flow states for different value of β are sketched in Fig. 6.

2.4. Variational formulation

Introducing the following spaces for a bounded fluid domain � ⊂ R
d:

Q (�) = L2(�) =
⎧⎨
⎩q : � →R|

∫
�

q2d� < +∞
⎫⎬
⎭

W (�) = (H1(�))d =
{

w ∈ L2(�)d|∇w ∈ L2(�)d×d
}

W0(�) =
{

w ∈ H1(�)d|w|∂�D = 0
}

WD(�) =
{

w ∈ H1(�)d|w|∂�D = vb

}

the variational formulation of the Stokes problem reads: find (v, p) ∈ WD × Q such that
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
�

2ηε̇(v) : ε̇(w) dV −
∫
�

p ∇ · w dV

=
∫
�

ρg · w dV +
∫
�

γ κn · w dS +
∫

∂�N

(−penb) · w dS

+
∫

∂�S

α[(v · n)]n · w dS −
∫

∂�S

β(v − [(v · n)]n) · w dS

∫
�

q ∇ · v dV = 0

(9)

for all (w, q) ∈ W0 × Q . Let us note that, the penalty method is used to ensure that the velocity in the normal direction is 
null on the fiber boundaries, α is the penalty parameter.

3. Numerical strategy

The Stokes equations are approximated by mixed velocity–pressure finite elements with continuous piecewise linear 
functions. This mixed velocity–pressure formulation is stabilized by a Variational Multi-Scale method (VMS): Algebraic Sub-
Grid Scale (ASGS) defined on one single mesh. In this section, the Stokes ASGS stabilization formulation is briefly recalled. 
A special attention will be paid to the surface tension term and the static angle computation.

3.1. ASGS stabilization formulation for the Stokes problem

Since it is well known that the P1/P1 approximation for the Stokes’ problem does not satisfy the Ladyzhenskaya–
Babuška–Brezzi (LBB) condition, an ASGS (Algebraic Sub-Grid Scale) method is used to stabilize the formulation. More 
details can be found for this method in [36,37] for the Stokes/Darcy stabilization. Let (WD)h ⊂ WD, Q h ⊂ Q be the 
standard P1-element space for velocity and pressure, the stabilized discrete variational formulation of (9) reads: Find 
(vh, ph) ∈ (WD)h × Q h such that:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
�

2ηε̇(vh) : ε̇(wh) dV −
∫
�

ph ∇ · wh dV

=
∫
�

ρg · wh dV +
∫
�

γ κn · wh dS +
∫

∂�N

(−penb) · wh dS

+
∫

∂�S

α[(vh · n)]n · wh dS −
∫

∂�S

β(vh − [(vh · n)]n) · wh dS

∫
�

qh ∇ · vh dV +
∫
�

τh(∇ph − ρg) · ∇qh dV = 0

(10)

for all (wh, qh) ∈ (W0)h × Q h , where (W0)h is the finite dimensional subspace of W0. The stabilization parameter τK is 
defined as:

τK = h2
k

c1ηK

with c1 an algorithmic constant and hK the size of the element. It was established that the numerical approximation is 
more precise when c1 is larger, given that the system is stabilized, since the larger c1 is, the smaller diffusion is added 
to stabilize the system. However, it is difficult to give a common value of c1. And we note that the value of c1 varies for 
different applications in the literature, for example c1 = 2, 4 or 40 have been taken in [15,27,38,17].

3.2. Surface tension term computation

Since the interface is not explicitly represented on the mesh within a Eulerian context, the implementation of surface 
tension force (Eq. (9)):∫

γ κn · w dS (11)

�
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Fig. 7. Continuum Surface Force (CSF) method.

Fig. 8. Surface Local Reconstruction (SLR) method [17].

is not straightforward. Two surface integral methods are thus studied: the Continuum Surface Force (CSF) method [18], 
where the surface integral is approximated by a volume integral, and the Surface Local Reconstruction (SLR) method [39,15,
17,40], where the surface tension term is explicitly computed over a locally reconstructed interface.

The CSF method is widely used in literature [18,11,28,41]. It consists in approximating the surface integral by the volume 
integral of the transition region as shown in Fig. 7, and can be expressed as:

∫
�

γ κn · w dS =
∫
�

δ(ϕ)γ κn · w dV (12)

The discretization of δ(ϕ) is given by:

δh(ϕ) =
⎧⎨
⎩

0, if |ϕ| > εh

1

2εh

(
1 + cos

(
πϕ

εh

))
, if |ϕ| ≤ εh

(13)

We note here that the parameter εh has to be changed with respect to the mesh size. The numerical results are strongly 
influenced by this parameter. In this article, the value of 0.75hK is adopted for εh , with hK the size of the element.

The SLR method consists in reconstructing locally the interface by the iso-surface of the Level Set function � = {x|ϕ(x) =
0}, when an element is cut by the latter. The interface is thus approximated by a segment in 2D cases, or a plane in 3D 
cases. Then the surface integral can be calculated directly at the interface by Gaussian integration. Fig. 8 shows one of the 
interface–element intersection cases in 2D. In this case, the surface tension term is integrated directly on the reconstructed 
interface: segment PQ, more details can be found in [17].

The curvature, defined as κ = ∇ · n, cannot be computed directly, because the Level Set function is piecewise linear, and 
the normals are piecewise constant. The first method for the curvature computation consists in re-projecting the normal 
vectors on each nodes and then computing the divergence of the P1 normal field. However, the interpolation of normal 
in this method can be a source of numerical errors. Thus, an alternative tensorial method (Eq. (18)) [19,17] has been 
implemented for the weak form. Since the mean curvature can be defined as the surface divergence of the unit normal 
∇s · n, it equals to the trace of the surface gradient operator:

κ = ∇s · n = [1 − n ⊗ n] : ∇n (14)

then the surface tension term can be written as:
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Algorithm 1 Static angle computation algorithm.
1: while θ �= α do
2: compute the normal vector field (n� = ∇ϕ

||∇ϕ|| ), ϕ function Level Set
3: compute the normal vector of fiber outer boundary (nS)
4: compute the normal vector nθ = Rθ · nS

5: replace n� at the fluid/solid interface by nθ

6: compute curvature field (κ )
7: compute the surface tension force using Eq. (11)
8: solve Stokes’ equations
9: move the interface

Fig. 9. Static angle computation sketch.

∫
�

γ κ n · w dS

=
∫
�

γ ∇s · n (n · w) dS

=
∫
�

γ ([1 − n ⊗ n] : ∇n) (n · w) dS

=
∫
�

γ [1 − n ⊗ n] : ∇(n ⊗ n · w) dS (15)

Moreover, since 1 − n ⊗ n is the operator of projection onto the tangent space of �, the vector (1 − n ⊗ n) · w is tangent 
to �. Thus when the surface � is closed, the following relation holds:∫

�

γ ∇s · ([1 − n ⊗ n] · w) dS = 0 (16)

then the right-hand term in Eq. (15) can be written as:∫
�

γ [1 − n ⊗ n] : ∇(n ⊗ n · w) dS
���� closed=

∫
�

γ [1 − n ⊗ n] : ∇w dS (17)

Therefore, the surface tension term can be computed using the following relation:∫
�

γ κn · w dS =
∫
�

γ [1 − n ⊗ n] : ∇w dS (18)

We note that the relation (18), called the tensorial method, is valid only when the surface � is closed. Thereafter, the 
tensorial method is only applied for flow dynamics cases, the first method is considered for contact line problems.

3.3. Static angle computation

Here is presented an iterative method to take into account the static angle. This method is proposed in [42] for an 
ALE computation, and used in [43] with a P1+/P1 stabilization method within an Eulerian representation. The computation 
algorithm is shown in Algorithm 1, it aims at prescribing the contact angle by normal nθ (Fig. 9). We replace firstly the 
normal vector n� , computed from the gradient of the Level Set function, by nθ at the fluid/solid interface (Fig. 9 2©). nθ is 
calculated from the desired angle θ and from the normal vector nS of the solid surface. In fact, nθ = Rθ · nS, where Rθ is 
the rotation matrix which perform a rotation of nS through an angle θ . This modification introduces a local modification 
of the curvature. Since the surface tension has effects to smooth the curvature, a force is generated naturally to move the 
interface till it matches the desired angle (Fig. 9 3©, 4©).
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Fig. 10. Pressure and velocity fields for a static bubble under surface tension effect. γ = 0.2 N · m−1, viscosity of the fluid inner the bubble: 0.1 Pa · s, and 
the outer fluid 0.001 Pa · s.

Fig. 11. Convergence curves of velocity and pressure for the static bubble case.

4. Results and discussion

In this section, capillary-driven flow test cases are first investigated. Convergence studies have been carried out on a 2D 
static case. Then, fluid dynamic cases are simulated and compared to analytical solutions. The fluid volume conservation 
has been verified. Thereafter, wetting phenomena are illustrated on test case of static droplet on a plane wall considering 
different contact angles.

4.1. Static bubble

We consider here a 2D test case to check the convergence and the performance of the different methods developed 
so far. The test consists in computing the equilibrium of a static bubble placed inside another fluid. The bubble interface 
is a circle of radius 0.2 m, the fluid domain is a (1 m × 1 m) square. The surface tension is considered at the interface, 
γ is 0.2 N · m−1. The viscosity is 0.1 Pa · s for the fluid inside the bubble and is 0.001 Pa · s for the fluid surrounding. 
The analytical solution to this problem is a zero velocity field and a discontinuous pressure field due to the surface tension 
effect. The pressure jump at interface is �p = γ κ = 1 Pa according to the Laplace law. Due to numerical approximations, 
spurious velocities could be observed at the vicinity of the interface (Fig. 10). Following various authors [17,11,15], viscosity 
discontinuities and γ /κ ratio are the key parameters to control the stability of this kind of simulations: the larger these 
parameters are, the more pronounced parasitic currents are. Here we compare the two methods for the surface integration: 
CSF and SLR. The errors in the L2-norm for the pressure and H1-norm for the velocity show a convergence rate of 1/2 for 
both methods (Fig. 11), which is the expected value, since the discontinuous pressure field is approximated by continuous 
P1 space across the interface [14]. The convergence curves are obtained using four regular triangle meshes, with respectively 
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Fig. 12. An ellipse shape bubble evolution under the surface tension effect, γ = 0.03 N · m−1, viscosity of fluid inner the ellipse: 0.3 mPa · s, viscosity 
of surrounding fluid: 30 mPa · s. (a) The radius evolution of the X- and Y -axes of the ellipse; (b) pressure of two slices of fluid domain at t = 0.7 ms; 
(c) volume loss for different calculations.

32, 64, 128 and 256 nodes on each domain side. Both methods have nearly the same precisions for pressure fields, the SLR 
method is more precise than the CSF one for the velocity approximation.

4.2. Ellipse evolution

The evolution of an ellipse under the surface tension effect is simulated. As shown in Fig. 12, the ellipse turns to a 
circle under the surface tension force effect. We consider here an ellipse of radius 0.5 mm × 1.5 mm, enclosed in a squared 
domain of 5 mm × 5 mm. The surface tension coefficient is 0.03 N · m−1. The viscosity is 0.0003 Pa · s for the fluid inner the 
ellipse and 0.03 Pa · s for the surrounding fluid. The numerical values of the viscosities and the surface tension coefficient 
are realistic values for thermoset resin such as RTM6 at 120 °C and air [30]. Since the volume of the ellipse is conserved, 
the analytic solution is that the bubble becomes a circle of radius R = 0.86 mm and the pressure jump at the interface is 

�p = γ κ = 34.8 Pa, with κ = 1
according to the Laplace law. The numerical simulations have been carried out using both 
R
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Fig. 13. An ellipsoid evolution (3D) under the surface tension effect, γ = 0.03 N · m−1, viscosity of both fluids: 30 mPa · s and 0.3 mPa · s. The plan is a slice 
of the pressure field.

Fig. 14. Discontinuous pressure fields (2D) for the simulation of a droplet on a substrate with a contact angle of 60°, γ = 0.07 N · m−1, viscosity of both 
fluids: 0.03 Pa · s, �t = 0.2 ms.

surface tension integration methods (CSF and SLR), combined with two regular triangle meshes with respectively 32 nodes 
or 64 nodes on each domain side, denoted mesh 32–32 and mesh 64–64. The ASGS stabilization parameter c1 is set at 100. 
The CSF approximation gives results very similar to the SLR method. The results obtained with the SLR method and mesh 
64–64 are presented in Fig. 12: the radius of the ellipse converges to a value of 0.85 mm (Fig. 12), the pressure jump is 
35 Pa at the interface (Fig. 12). These results are in very good agreement with the analytical solutions in terms of pressure 
jump (error < 1%) and final radius of the circle shape (error < 1.5%). Fig. 12 shows that the SLR method conserves slightly 
better the bubble volume than the CSF method. However, the bubble volume is well conserved for both methods during this 
process (less than 4% difference from the beginning to the end of calculation). A 3D simulation is also performed (Fig. 13). 
We consider here an ellipse of 1 mm × 1 mm × 1.5 mm enclosed in a cube of 5 mm × 5 mm × 5 mm. The fluid parameters 
are the same as that of the 2D case. The analytical solution is that the ellipsoid turns to a sphere of radius 1.1447 mm, with 
a pressure jump of 52.4 Pa at the interface. An unstructured mesh with tetrahedron elements, which has nearly 40 elements 
on every edge and 240,831 elements in total is considered. The value of c1 = 100 is adopted. The numerical pressure jump 
is 54.3 Pa for the CSF method and 55.8 Pa for the SLR method, which is of respectively 3.6% and 6.4% difference compared 
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Fig. 15. Contact angle change vs. time of the droplet on a substrate test case (2D, Fig. 14) for 32 × 32, 64 × 64, 128 × 128 regular meshes, �t = 0.2 ms.

Table 1
Analytical values of H , R and �p for different contact angles of droplet on a substrate test case (3D).

θ H (height) R (radius) �p (pressure jump)

60° 1.47 mm 2.94 mm 20.35 Pa
75° 1.73 mm 2.33 mm 25.75 Pa

120° 2.52 mm 1.68 mm 35.72 Pa
150° 2.97 mm 1.59 mm 37.74 Pa

Fig. 16. Drop evolution with a contact angle of 60° (top) and 120° (bottom) over a plane substrate, γ = 0.03 N · m−1, viscosity of fluids: 30 mPa · s (drop) 
and 0.3 mPa · s (surrounding fluid).

to the analytical solution. The initial and final state of the ellipsoid shape for the CSF method are shown in Fig. 13, only a 
quarter of the iso-value surface is drawn for clarity.

4.3. Static drop on a plane wall

The evolution of a liquid drop, initially a quarter of sphere, in contact with a plane wall is modelled. Starting from an 
initial contact angle of 90°, the liquid flow is computed until the drop shape stabilizes. The liquid is submitted to surface 
tension, and the wetting boundary conditions (section 2.3) are applied to the fluids/solid interface. In this case, we are 
interested in the equilibrium of the droplet; β = 0 is adopted here to avoid the contact line dissipation [27], the contact 
with the wall is thus frictionless.
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Fig. 17. Contact angles (average over the contact line), height evolution and volume loss of droplet on a substrate test case (3D) with a contact angle of 60°, 
75°, 120° and 150°, �t = 0.4 ms.

A 2D case is first verified with a target contact angle of 60°. It is applied only to the bottom of the domain and a 
symmetry condition (v · ns = 0, ns normal of outer boundary) is applied to the left boundary of the domain (Fig. 14). The 
square domain is of 5 mm × 5 mm, the radius of the droplet is 2 mm. The dynamic viscosity of both fluids is η = 0.03 Pa · s. 
The surface tension coefficient is γ = 0.07 N · m−1. The simulation is performed on three regular triangle meshes, with 
respectively 32, 64 and 128 nodes on each domain boundary, and denoted mesh 32–32, mesh 64–64 and mesh 128–128. 
The numerical results of mesh 128–128 are presented in Fig. 14. One can see that the fluid domain configuration converges 
towards a stable shape, which is reached after about 50 Stokes’ equation-solving increments (10 ms approximately, with a 
time step of �t = 0.2 ms). The contact angle’s evolution according to different mesh element size is plotted in Fig. 15.

Four contact angles, 60°, 75°, 120° and 150° have been considered for the 3D simulations. The dynamic viscosity of 
the inner fluid is η = 0.03 Pa · s and η = 0.0003 Pa · s for the surrounding fluid. The surface tension coefficient is γ =
0.03 N · m−1. The height H and the radius R of the equilibrium drop, which should be a truncated sphere shape, can be 
calculated thanks to the volume conservation property. The pressure jump at interface can also be calculated as �p = γ κ , 
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with κ = 2

R
according to the Laplace’s law. The analytical values of H , R and �p for different contact angles are shown in 

Table 1.
Here, only a quarter domain is computed, as shown in Fig. 16. The other part is represented thanks to the symmetry 

condition. In fact, the symmetry condition reads: v · n = 0, θ (contact angle) = 90◦ applied to the two lateral surfaces of the 
computation domain for symmetry purpose. Since the iso-surface is prescribed by a plane in an element, we refined the 
mesh at the vicinity of the drop plane interface so as to have a correct geometry representation. The element size varies 
from 0.08 mm to 0.5 mm regarding the distance to the interface. The mesh is made up of 24,458 nodes and 138,688 tetra-
hedral linear elements. The initial and final drop shapes for the contact angle of 60° and 120° are presented in Fig. 16, the 
pressure jump at the interface is in good agreement with the analytical solution (error < 1%). The contact angle evolutions 
are shown in Fig. 17. This value is the average of contact angles along the contact line between the drop and the plane 
wall. The mean value of the contact angle converges towards the prescribed value in about 13 Stokes’ equation-solving 
increments (5 ms approximately with a time step of �t = 0.4 ms, Fig. 17). The drops height agrees well with the analytical 
results, the numerical errors can be observed less than 5% for the stable state. The volume of the drop is also well conserved 
during this simulation, less than 5% volume loss for both test cases. Moreover, the numerical errors increase with the value 
of the prescribed contact angle, since for the same drop volume, when the contact angle increases, the associated radius 
decreases and the interface curvature increases, and so does the numerical errors associated with the surface tension term.

5. Conclusions

The aim of this work was to study some problems involving capillarity and wetting, as those typically met in the 
manufacturing processes by resin infusion, within a framework of finite element methods. A local fluid–solid contact model 
has been established to take into account those effects. This model is based on a Eulerian description of two immiscible fluid 
domains with boundary conditions describing wetting phenomena at fluid/fiber interfaces. The fluid interface is described 
by the Level Set method, on which capillary force are considered. One of the bottle necks of this method is the spurious 
velocity related to the singular surface tension force at the interface. Two surface tension computation methods have thus 
been developed and compared on different test cases. Numerical methods allowing one to take into account the static 
contact angle and the contact line motion have been implemented and verified thereafter. Several outlooks can be drawn 
from this work. First, even if the numerical precision of capillary interface simulation is satisfying in 2D, more effort is 
still necessary for 3D simulations. Second, the dynamic of the contact line motion requires some consideration and will be 
investigated in future works.
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