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In this work, two adaptations of the particle method allowing one to reduce the numerical 
errors induced by the non-zero divergence of flow fields in the numerical simulations 
of particle transport are presented. The first adaptation is based on the renormalization 
method allowing one to use an irregular distribution of particles induced by the non-zero 
divergence of flow fields. The second adaptation consists in applying a correction on the 
weight of the particles by using the relation between the divergence of flow fields and the 
particles’ volume evolution. This adaptation may be considered as a relaxation method. The 
accuracy of both methods is evaluated by simulating the transport of an inert tracer by the 
flow of a jet in crossflow whose concentration fields were measured experimentally. The 
comparison between the numerical and experimental results shows clearly that the two 
adaptations of the particle method correct efficiently the effect of a non-zero divergence 
velocity field on the computed concentration.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The numerical simulations of particle transport involves several difficulties, which have been widely addressed, partic-
ularly that of the numerical stability. Among the numerous discretization methods proposed to solve this problem, those 
using Lagrangian coordinates have a particular place since they usually yield new difficulties while naturally solving the sta-
bility issue. Using particles requires the computation of their trajectories, which can be readily achieved with a Runge–Kutta 
high-order scheme. However, the results have been found to be very sensitive to the quality of the velocity field approxima-
tion, particularly regarding the satisfaction of the divergence-free condition. Such errors result in the existence within the 
flow field of sources and sinks which in some cases yield non-physical crossing trajectories [1,2]. Another consequence is 
the non-uniformity of the particle distribution, which implicitly yields particles with non-constant volume or surface [3,4]. 
The solution to these problems requires the design of specific solutions, particularly when the Lagrangian coordinates are 
used to solve the flow equations. There are basically two families of particle methods used for the flow simulation: the 
SPH method [5,6], and the vortex method [7,8]. In both cases, some methods have been proposed to overcome the non-
divergence-free problem. In the last case, the difficulty is even greater for three-dimensional flows because not only the 
velocity field, but also the vorticity field as well, must be divergence free. In this paper, we consider the rather different and 
somewhat simpler problem of the transport of inert tracer particles by a given flow field. This flow can result either from 
a numerical CFD calculation or of an experimental PIV velocity field. In both cases, the divergence is only approximately 
zero and techniques derived from the previously mentioned works can be applied. These two different ways to solve this 
problem are described hereafter and tested on a measured 3D velocity field [9,10].
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2. Particle method

2.1. Approximated concentration field

As usual in the particle method, the concentration field c(x, t) is discretized in a set of numerical particles. Each particle 
Pi is defined by its location Xi(t) and its weight Ci(t):

Xi(t) =
∫

σi

x(t)dv/

∫

σi

dv and Ci(t) =
∫

σi

c(x, t)dv (1)

where σi denotes the support surface or volume of the particle Pi . σi is usually constant for an incompressible flow. Thanks 
to the particle discretization, the concentration field c(x, t) can be estimated by means of a sum of products of weight Ci(t)
and Dirac measure δ(x):

c(x, t) =
∫

Rd

c(x′, t) δ(x′ − x) =
∑

i

Ci(t) δ(Xi(t) − x) (2)

where d is the space dimension. In order to obtain a continuous approximation of the concentration field ch(x, t), the Dirac 
measure δ(x) is approximated by a smooth function ζε(x) in the previous equation:

ch(x, t) =
∑

i

Ci(t) ζε(Xi(t) − x) with ζε(x) = (1/εd)ζ(x/ε) (3)

where ε is the smoothing parameter proportional to the diameter of the numerical particles. In order to check the consis-
tency of Eq. (3), the smoothing function ζε(x) has to satisfy momentum conditions:∫

Rd

ζε(x)dx = 1 and
∫

Rd

xζε(x)dx = 1 (4)

As the approximated concentration field ch(x, t) is a sum of products of Ci(t) and ζε(Xi(t) − x), an irregular particle distri-
bution will lead to a shaky approximation of the concentration field ch(x, t).

2.2. Lagrangian transport equations

In the case of pure advection, the transport equation of an inert tracer can be written as follows:

∂c(x, t)

∂t
+ ∇(u(x, t)c(x, t)) = 0 (5)

where u(x, t) is the velocity field. In the particle method, this transport equation is written in a Lagrangian framework 
yielding the discrete approximation:

dXi(t)

dt
= u(Xi, t) and

dCi(t)

dt
= 0 (6)

The first equation can be numerically solved by using a 4th-order accurate Runge–Kutta scheme. As the transport equation 
is an advection equation (Eq. (5)), the weight Ci(t) of a numerical particle Pi is constant (Eq. (6), right). Thus the particle 
method is a conservative method in this case.

2.3. Renormalized smoothing function

The discrete form of the first moment condition (Eq. (4), left) reads:

1(x, t) =
∑

i

ζε(Xi(t) − x) (7)

The previous equation is equal to 1 as long as the particle volumes remain constant. This is not the case of flow fields with 
a non-zero divergence where an irregular particle distribution can appear. This problem has been addressed by Gingold 
and Monaghan [5,6], who proposed the renormalization method. This method consists in dividing Eq. (3) (left) by the 
renormalization coefficient 1(x, t) defined by Eq. (7). As a result, the approximated concentration field ch(x, t) reads:

ch(x, t)

1(x, t)
=

∑
i Ci(t)ζε(Xi(t) − x)∑

i ζε(Xi(t) − x)
(8)

The renormalization coefficient 1(x, t) accounts for the actual volume variations of numerical particles. In the paper, the 
renormalization method will be denoted RSF (Renormalized Smoothing Function).
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Fig. 1. Numerical algorithm of the particle method with or without the two corrections, DMF (Divergence Mass Flux) and RSF (Renormalization Smoothing 
Function), used to perform the numerical simulations.

2.4. Divergence mass flux

In the case of flow fields with a non-zero divergence, the transport equation of an inert tracer is no longer equivalent to 
the advection equation (Eq. (5)), and an additional source term has to be taken into account:

∂c(x, t)

∂t
+ ∇(u(x, t)c(x, t)) = c(x, t)∇u(x, t) (9)

Thus the previous set of differential equations (Eq. (6)) becomes:

dXi(t)

dt
= u(Xi, t) and

dCi(t)

dt
= Ci(t)∇u(Xi, t) (10)

The source term of the transport equation (9) can be interpreted as an anti-diffusion one, which corrects the weight Ci(t)
of the numerical particle Pi . The simplest scheme for solving Eq. (10) (right) is the first-order Euler scheme:

Ci(t + δt) = Ci(t) + δtCi(t)∇u(Xi, t) (11)

where δt is the time step. This method is somewhat similar to the relaxation method initially proposed by Beale for the 
vortex methods [7,8]. In this paper, the relaxation method will be denoted DMF (Divergence Mass Flux).

2.5. Correction methods implementation

The numerical algorithm used to perform the numerical simulations is given in Fig. 1. The main loop consists of the two 
steps of the particle method without any correction. The first step is the time evolution of the numerical particle Pi defined 
by its location Xi(t) and its weight Ci(t) at time t . This step is performed by solving the set of differential equations (6). At 
the end of this step, only the location Xi(t) �= Xi(t + δt) has changed. The weight Ci(t) = Ci(t + δt) is kept constant so far. 
The second step is the approximation of the concentration field ch(x, t + δt), which is performed by using Eq. (3) (left).

The RSF correction is then implemented in the numerical algorithm by substituting Eq. (8) for Eq. (3) (left). The RSF 
correction corrects the effect of the non-zero divergence without modifying the location Xi(t + δt) and the weight Ci(t + δt)
of the numerical particle Pi . The RSF correction is based on the first-moment condition (Eq. (4), left) that the smoothing 
function ζε(x), used in Eq. (3) for the estimation of the concentration field ch(x, t + δt), has to satisfy. In Eq. (8), the renor-
malization coefficient 1(x, t + δt), defined in Eq. (7) from the first moment condition (Eq. (4), left), corrects the impact of 
the distortion induced by the non-zero divergence of flow fields on the set of numerical particles, thus on the approximated 
concentration.
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Fig. 2. Experimental setup (left) and measurement techniques (right).

The DMF correction is then implemented to the numerical algorithm by substituting Eqs. (10) by Eqs. (6). In the DMF 
correction, the weight of the numerical particle Pi is not constant, Ci(t) �= Ci(t + δt). The numerical solution to the differ-
ential equation (10) (right) is obtained by means of a first-order Euler scheme. Eq. (10) (right) discretization yields Eq. (11). 
Therefore, the accuracy of the DMF correction is sensitive to the time step chosen, δt . There is no cumulative error effect 
for the RSF method, although it can be expected that the performance of the method can be severely altered for long-time 
calculations if the particle distribution’s regularity is badly deteriorated.

3. Measured velocity field

The transport of inert tracer particles through a jet in crossflow has been experimentally investigated [10,9]. The experi-
mental setup (Fig. 2 (left)) was composed of a horizontal channel with a square section of 160 × 160 mm, two tanks filled 
with particle suspensions for the LIF/PIV measurements and two pumps producing the jet and the crossflow. The square jet 
of 30 mm width flows from bottom to top. In the channel, the mean flow velocity is fixed to 1.7 cm/s in order to have the 
Reynolds number Re = 500. The measurement techniques are represented in Fig. 2 (right). The velocity and concentration 
fields are respectively measured by a PIV (Particles Image Velocimetry) 3D technique and a LIF (Laser Induced Fluorescence) 
3D technique. The PIV3D technique uses 0.001-mm diameter silver-coated hollow glass spheres. The LIF3D technique uses 
Rhodamine 6G (10−7 mol/L). The velocity and concentration fields are estimated by analyzing the pictures which are taken 
by means of two Lavision high-speed cameras.

4. Results

4.1. Non-zero divergence

The measured 3D experimental velocity field has been used in the numerical simulations. The problem of the non-zero 
divergence (i.e. ∇u �= 0) is clearly identified in Fig. 3, where the approximated 3D concentration field of inert tracer particles 
ch(x, t) obtained by means of the particle method is plotted in the median plan. Corresponding to a coarse repartition of 
numerical particles, zones of higher and lower concentrations appear. Fig. 4 presents in the median plan the divergence 
div(u(x, t)), computed from the measured 3D experimental velocity field. Zones of positive and negative divergences are ob-
served. As it could have been expected, the experimental setup does not provide flow fields with a zero divergence because 
of the experimental errors. The deviations of computed particle trajectories give a direct representation of the non-zero 
divergence. Actually, the experimental errors on the fields of concentration and velocity do not have any straightforward 
correlation. Moreover, the concentration field is a direct result of the LIF, whereas the PIV measurement requires a numer-
ical treatment. Therefore, it is expected that the numerical error can be pointed out by comparisons of the computed and 
measured concentrations.

4.2. Efficiency analysis

The initial condition of the 3D numerical concentration field of inert tracer particles ch (x, t = 0) has been imposed with 
the 3D experimental concentration field measured at time t = 0 s. The initial number of numerical particles Np and the 
regridding frequency N f are respectively equal to 316,835 and 1 [11]. For all the numerical results, a time step δt = 0.001 s
was selected. Figs. 5 and 6 present the 3D concentration field and its projection in the median plane together with the 
isosurface 0.2 mg/l obtained from the experimental data at time t = 7.5 s. The particle method and the two variants of the 
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Fig. 3. 3D numerical concentration field of inert tracer particles ch(x, t) represented in the median plan and obtained by means of the particle method by 
using the 3D experimental velocity field at time t = 0.06 s.

Fig. 4. Overlapping of the 3D experimental divergence field div(u(x, t)) (color map) and the 3D numerical concentration field of inert tracer particles ch(x, t)
(contour lines) at time t = 0.06 s.

corrected particle method were used: the DMF (Divergence Mass Flux) and the RSF (Renormalized Smoothing Function). 
The efficiency of both correction methods can be pointed out. The particle method fails to reproduce the measured results, 
whereas DMF and RSF yield almost the same results and they are very close to the experimental data. The zones of higher 
and lower concentrations are no longer apparent for both corrections, DMF and RSF. In order to further investigate the 
methods, an error estimate Er2 was computed:

Er2(t) =
∑M

i (ch(xi, t) − ce(xi, t))∑M
i (ce(xi, t))

(12)

where M is the number of numerical particles with Ci ≥ 10−6, ce(xi, t) the experimental concentration field and ch(xi, t)
the numerical concentration field. In Fig. 7, the logarithm of the error Er2 has been plotted as a function of time t for the 
two corrections, DMF and RSF. The error Er2 grows constantly up to 4 s, where it seems to reach a plateau. The error Er2
is then about 0.75. The two corrections have the same behavior. The influence of the time step δt was also investigated. 
Two time step values were used, δt = 0.001 and 0.01 s. Fig. 8 presents the 3D numerical concentration field ch(x, t) in the 
median plane at time t = 7.5 s obtained with the correction DMF for these two values. We can observe that the best results 
were obtained with the smaller time step for the correction DMF. On the other hand, the results were almost unchanged 
for the correction RSF.
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Fig. 5. 3D concentration field of inert tracer particles, represented in the median plan at time t = 7.5 s, obtained from the experimental data (left top), the 
particle method (right top), the DMF correction (left bottom) and the RSF correction (right bottom).

Fig. 6. 3D concentration field of inert tracer particles, represented by the isosurface 0.2 mg/l at time t = 7.5 s, obtained from the experimental data (left 
top), the particle method (right top), the DMF correction (left bottom) and the RSF correction (right bottom).
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Fig. 7. Error Er2 with respect to time t , obtained with the DMF correction (dashed line) and the RSF correction (solid line).

Fig. 8. 3D numerical concentration field of inert tracer particles ch(x, t), represented in the median plan at time t = 7.5 seconds, obtained for two values of 
the time step, δt = 0.001 s (left) and 0.01 s (right) with the DMF correction.

5. Conclusion

In this paper, the relation between the non-zero divergence of flow fields and the approximated concentration error 
was established. Two corrections of the particle method, DMF (Divergence Mass Flux) and RSF (Renormalization Smoothing 
Function), were designed to correct this effect. The DMF correction results in a modification of the particle weight through 
a differential equation. As a result, it was found to be sensitive to the time step. The RSF correction was found to provide 
better results although it could be questionable whether this property can be conserved for long time calculations or not, 
because of the distortion of the grid distribution.
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