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We study buckling patterns in pantographic sheets, regarded as two-dimensional continua 
consisting of lattices of continuously distributed fibers. The fibers are modeled as beams 
endowed with elastic resistance to stretching, shearing, bending and twist. Included in the 
theory is a non-standard elasticity due to geodesic bending of the fibers relative to the 
lattice surface.
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r é s u m é

Nous étudions le flambage de milieux continus bidimensionnels. Ces milieux, que nous 
appelons « feuilles pantographiques », sont constitués par un réseau formé de deux familles 
orthogonales de fibres parallèles. Ces fibres sont considérées comme des poutres élastiques 
reliées entre elles à chaque intersection par une liaison pivot. Le modèle bidimensionnel 
continu utilisé généralise celui des plaques, puisqu’il prend en compte l’énergie élastique 
liée à la courbure des fibres dans le plan de la structure.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

We have recently developed a two-dimensional continuum theory of elastic surfaces [1] to describe the deformations of 
pantographic lattices. The lattices are composed of intersecting fibers, or rods, that form two orthogonal curvilinear families 
in a reference plane. Every material point of the continuum is a point of intersection of two fibers—one from each family. 
In a general three-dimensional deformation of the sheet, the convected fibers of the pantograph flex to conform to the 
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evolving surface in three-space. This is modeled by assigning strain energy to the normal curvatures and twists of the 
fibers. In contrast to conventional plate theories, the present model also accounts for the geodesic bending of the fibers. 
This mode of deformation occurs when, for example, the lattice is bent while deforming in a fixed plane. In the continuum 
theory, geodesic bending manifests itself as a strain-gradient effect. The lattice substructure thus confers strain-gradient 
elasticity to the continuum [2–10]. Strain gradient models, and in general higher gradient ones, are today a very topical 
research subject, and many relevant results are available in both theoretical [11–13] and applicative [14–21] directions. 
These models naturally arise as homogenized limits of microstructured plates (see, e.g., [22–28]).

A simpler version of the theory was used in [29] to model deformations of a lattice of initially straight rods in which 
the shear strain segregates into coexistent phases separated by narrow transition layers in which geodesic bending predom-
inates. The present study extends and generalizes the results of [29], by using the framework outlined in [1]. Specifically, 
we consider herein fibers which are not straight lines in the reference configuration (sinusoids, and logarithmic spirals). The 
interest in these geometries lies in their peculiar mechanical effects, induced by arch-like response to external stresses and 
other effects already mentioned in the literature (see below, Section 3). Moreover, we performed here a numerical study that 
exhibits interesting and heretofore unknown two- and three-dimensional buckling patterns in presence of both rectilinear 
and curvilinear fibers. In Section 2, we recall the basic kinematics of the model, following [1]. In Section 4, we specify the 
basic constitutive structure in terms of a strain-energy function, measured per unit area of the initial plane. This is applied 
to initially curved lattices conforming to two types of coordinate systems: logarithmic spirals and sinusoidal coordinates. 
The relevant details are outlined in Section 5.

2. Kinematics of pantographic lattices

We adopt the model developed in [1,30], in which the pantographic sheet is regarded as an elastic surface endowed with 
suitable kinematic descriptors and an associated constitutive response in the form of an areal strain-energy density. The lat-
ter is assumed to depend on the stretches of the fibers and on their curvatures and twists. Further, as tangential stretch 
gradients appear in the constitutive equations for one-dimensional models of thin fibers that account for finite-thickness 
effects [31,32], we also include a constitutive sensitivity to the tangential derivatives of the stretches. In addition, we in-
corporate a non-standard constitutive sensitivity to the cross derivatives of the fiber stretches; these record the variation in 
the stretch of a fiber family as the (initially) orthogonal family is traversed. This effect is discussed more fully in [29]. To 
make the paper reasonably self contained, we devote the remainder of the present section to a brief summary of the theory 
proposed in [1].

The deformation of the surface is described by a map r(x): � �→ E3, where � ⊂ E2 is a connected plane region in the 
2D Euclidean space E2 and E3 is Euclidean 3-space. Let L,M ∈ E2 be orthogonal families of unit vectors defining the fiber 
trajectories prior to deformation. The fiber stretches {λ, μ} and fiber trajectories {l, m} induced by the deformation are

λl = (∇r)L and μm = (∇r)M (1)

where ∇(·) is the (two-dimensional) gradient with respect to x. Here l and m are unit vectors spanning the deformed 
tangent plane at the material point x ∈ �. We use them to define the fiber shear angle γ by

sinγ = l · m (2)

Because {L, M} is an orthonormal basis at any point of �, we may use (1) to derive the representation

∇r = λl ⊗ L + μm ⊗ M (3)

and thus obtain the Cauchy–Green deformation tensor, C = (∇r)t∇r, in the form

C = λ2L ⊗ L + μ2M ⊗ M + λμ sinγ (L ⊗ M + M ⊗ L) (4)

Further, Eqs. (1) provide

Jn = (∇r)L × (∇r)M (5)

where n is the unit normal to the deformed surface, and

J = λμ
∣
∣cosγ

∣
∣ (6)

is the local areal dilation induced by the deformation. Accordingly,

l × m = ∣
∣cosγ

∣
∣n (7)

To describe the fiber curvatures and twist we require the second gradient ∇∇r of the deformation. This may be repre-
sented in the form [1]

∇∇r = r|αβ ⊗ eα ⊗ eβ (8)

where
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r|αβ = Sλ
αβr,λ + bαβn (9)

Here (·)|αβ is the second covariant derivative with respect to an arbitrary convected curvilinear coordinate system on the 
reference plane �, the bαβ are the coefficients of the second fundamental form (the covariant curvature tensor) of the 
deformed surface, and the Sλ

αβ are terms involving the strain and strain gradient. The rather complicated explicit expressions 
are [1]

Sλ
αβr,λ = (λLα)|β l + (λ2ηlLα Lβ + λμφlLα Mβ)p

+ (μMα)|βm + (μ2ηmMα Mβ + λμφmMα Lβ)q (10)

and

bαβ = KLLα Lβ + KMMα Mβ + T (Lα Mβ + Mα Lβ) (11)

where ηl and ηm are the geodesic curvatures of the deformed fibers; φl and φm are the so-called Tchebychev curvatures;

p = n × l and q = n × m (12)

define the orthogonal trajectories of the fibers on the deformed surface; and,

KL = λ2κl, KM = μ2κm and T = λμτ (13)

where κl and κm are the normal curvatures of the deformed fibers and τ measures the twist of the deformed surface. These 
are non-zero if the deformation is such as to generate a curvature of the surface in three-space. Accordingly, they describe 
those parts of the fiber curvatures that can be attributed to surface flexure, whereas the geodesic curvatures represent the 
components of fiber curvatures in the tangent planes of the deformed surface. The latter arise from the surface strain and 
the strain gradient; the explicit expressions are [33]

Jηl = div[(μ sinγ )L − λM] and Jηm = div[μL − (λ sinγ )M] (14)

where div is the divergence on �, whereas the Tchebychev curvatures are given by [33]

Jφl = Jηm + λM · ∇(sinγ ) and Jφm = Jηl − μL · ∇(sinγ ) (15)

Later, we will have occasion to exploit the fiber decomposition [1]

∇∇r = (Lα Lβr|αβ) ⊗ L ⊗ L + (Mα Mβr|αβ) ⊗ M ⊗ M + (Lα Mβr|αβ) ⊗ (L ⊗ M + M ⊗ L) (16)

which follows from (8), with

eα = LαL + MαM (17)

and from the symmetry of r|αβ with respect to interchange of the subscripts.
In the reference configuration, i.e. in the absence of deformation, we have ∇r = 1, the two-dimensional identity on �. It 

follows that ∇∇r vanishes in this configuration and hence that Sλ
αβ and bαβ also vanish. Moreover, ηl and ηm reduce to

ηL = −divM and ηM = divL (18)

respectively. These are the geodesic curvatures of the fibers on the reference plane. They account for the initial curvatures 
of the fibers, which are assumed to be initially untwisted. The Tchebychev curvatures φl and φm reduce, respectively, to 
ηM and ηL in the reference configuration. Because the Sλ

αβ and bαβ are Galilean invariant [1] and vanish in the reference 
configuration, they furnish natural strain measures in the present theory. The vanishing of bαβ in the reference configuration 
follows trivially from the fact that the latter is a region on a plane. We have proved that the Sλ

αβ also vanish there, but 
nevertheless pause to verify this directly—as a check on (10)—before proceeding.

In the reference configuration (10) reduces to

Sλ
αβeλ = (Lα|β − ηMMα Mβ − ηLMα Lβ)L + (Mα|β + ηLLα Lβ + ηMLα Mβ)M (19)

Using 1 = L ⊗ L + M ⊗ M we can write

∇L = (∇L)L ⊗ L + (∇L)M ⊗ M (20)

and then conclude that

divL = tr(∇L) = L · (∇L)L + M · (∇L)M (21)

The first term on the right is (∇L)t L · L, in which (∇L)t L = 0 because L(x) is a unit-vector field. It then follows from (18)2
that ηM = M · (∇L)M. In the same way, we use (18)2 to prove that ηL = −L · (∇M)L = M · (∇L)L, where the second equality 
is a consequence of (∇L)t M = −(∇M)t L, which in turn follows by computing the gradient of L · M(= 0). These results yield

(∇L)L = [L · (∇L)L]L + [M · (∇L)L]M = ηLM (22)
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and

(∇L)M = [L · (∇L)M]L + [M · (∇L)M]M = ηMM (23)

yielding

∇L = ηLM ⊗ L + ηMM ⊗ M (24)

and implying that the first parenthesis in (19) vanishes identically. The second parenthetical term is disposed of similarly, 
and our claim is proved. The present model differs from that presented in [29] in that {L, M} are allowed here to be 
functions on �.

3. Lattice arrangement

To specify the distribution of curvilinear lattice fibers on the reference plane, we identify any particular fiber, with 
unit-tangent field M, say, as the locus of points on which a scalar field ϕ(x) assumes a constant value. The family of all 
such fibers is then obtain by varying the value of the constant. The unit-tangent fields of the fibers are given by

L(x) = ∇ϕ/ |∇ϕ| and M(x) = k × L(x) (25)

where k is the unit normal to the reference plane (i.e. the value of the surface-normal field n in the reference configuration).

3.1. Technological applications for different geometries of the fibers

In the opinion of the authors, it has been proven by countless examples that byproducts of what looked like pure 
‘amusement’ paid off extremely well in applications. More often than not, pursuing the aim of Jean Dieudonné, i.e. studying 
a subject only pour l’honneur de l’esprit humain, has been the best policy in order to concretely improve our lives. This mere 
consideration could serve as a justification for studying a certain scientific subject, as long as its theoretical foundation 
is clear and sound enough. However, in our specific case, direct reference to existing or conceivable application can be 
mentioned concerning particular geometries for the fibers.

In recent years, spiral woven fabrics are increasingly employed and examples of these artifacts can be found in many 
fields concerning, e.g., biomedical, aerospace and automotive applications, including spinning components like flywheels or 
turbine bliscs [34]; the reason behind the interest for spiral geometry lies in the possibility of combining circumferential 
fiber orientation for strength and radial fiber to manage interlaminar stresses [34]. However, theoretical coverage of this type 
of geometry for the fibers is still not very developed. This seems indeed one of the cases in which technological potential is 
being exploited even before a fully comprehensive understanding is reached.

Sinusoidal fibers furnish continuous-curvature approximations to the curved lattices adopted in the design of flexible 
electronics for health-monitoring purposes [35,36]. Such devices are applied to skin tissue and are conceived to stick 
perfectly on it, possibly exhibiting complex large-deformation behavior, including out-of-plane buckling. The aim of the 
following sections is to provide some insight in the possible behavior of the two relatively complex geometries before 
mentioned.

3.1.1. Logarithmic spirals
These woven fabrics are associated with the orthogonal curvilinear coordinates

ϕ = log(r/r0) − kθ and ψ = k log(r/r0) + θ (26)

where r0 and k are fixed parameters and {r, θ} are plane polar coordinates. We compute

∇ϕ = 1

r
(er − keθ ) (27)

where {er, eθ } is the standard orthonormal basis associated with the polar coordinates. Thus,

L(x) = 1√
1 + k2

(er − keθ ) and M(x) = 1√
1 + k2

(eθ + ker) (28)

This is expressed directly in terms of x(= xα iα) by substituting

r = |x| , er = r−1x and eθ = k × er (29)

3.1.2. Oscillatory lattice
The fiber net which we consider here is described by

x2 = A sin(ωx1) + ϕ (30)

in which the amplitude and frequency parameters A and ω are taken to be fixed. This immediately determines ϕ(x), and 
hence L(x) and M(x) via Eq. (25). We omit the details of the trivial calculation.
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4. Strain-energy function

All constitutive information is contained in an areal strain-energy density W that depends on the first and second gradi-
ents of the deformation. To non-dimensionalize the variables appearing in this function it is necessary to introduce a local 
length scale. This could be the thickness of the actual sheet, the characteristic spacing of the internal points of intersection 
of rods of the actual pantographic lattice, or the widths of the constituent fibers. If any of these is used as the length 
scale, and if the couple stresses and bending/twisting moments vanish when the lattice is undeformed, then in practice 
the non-dimensionalized second gradient of the deformation is sufficiently small as to justify a quadratic dependence in 
the strain-energy function. A simple strain-energy function of this type, incorporating the curvilinear orthotropic symmetry 
associated with the initial fiber geometry, is [29]

W = w(εL, εM, J ) + 1

2
AL

∣
∣Lα Lβr|αβ

∣
∣
2 + 1

2
AM

∣
∣MαMβr|αβ

∣
∣
2 + 1

2
A�

∣
∣Lα Mβr|αβ

∣
∣
2

(31)

where the coefficients AL,M,� are constants; this form is assumed for the sake of definiteness and tractability. Other forms 
are, of course, possible. We take AL,M,� and to be strictly positive and observe, from the fiber decomposition (16), that the 
part of the energy depending on the second gradient ∇∇r is then non-negative, vanishing if and only if all r|αβ vanish 
simultaneously. It is thus a convex function of ∇∇r, ensuring the existence of energy-minimizing deformations in conser-
vative boundary-value problems [37]. Further, the existence of a solution to the weak form of the equilibrium equations for 
similar problems in second-gradient elasticity has been proved in [38], albeit under hypotheses slightly more stringent than 
those satisfied here.

The constitutive sensitivities to geodesic and normal curvatures may be understood in terms of the mechanics of the 
lattice substructure. Thus, fibers offer resistance to bending in three-space, which may be resolved into geodesic bending 
and surface flexure. Fiber twist is determined by the twist of the surface because of the presumed connectivity of the lattice; 
that is, both families of intersecting fibers are assumed to pivot about the normal to the deformed surface at their points 
of intersection. This constraint implies that fiber twist is controlled entirely by surface geometry and is therefore not an 
independent kinematic variable [1].

For the strain-dependent function w , we adopt

w(εL, εM, J ) = 1

2
(ELε

2
L + EMε2

M) − G(ln J + 1 − J ) (32)

where

εL = 1

2
(λ2 − 1), εM = 1

2
(μ2 − 1) (33)

are the extensional fiber strains and E L,M and G are positive constants. This energy does not include a term proportional to 
εLεM and therefore does not exhibit a Poisson effect with respect to the fiber axes. Poisson effects are typically negligible in 
pantographic lattices. Finally, the term involving J penalizes fiber collapse ( J → 0) by imposing unbounded growth of the 
attendant energy, whereas the remaining terms are appropriate for small-to-moderate fiber strains.

Our solution procedure, discussed in Section 5, is a finite-element scheme based on the weak form of the equilibrium 
equations derived from the proposed strain-energy function. This is not presented here, but reference may be made to [1], 
where the weak and strong formulations are given explicitly. Recent applications of the finite element method and related 
methods to second-gradient elasticity are discussed in [39–47].

We observe that in Eq. (31) the contravariant components Lα and Mα , and the covariant derivatives r|αβ , pertain to any 
convected coordinate system. Moreover, the symmetry r|αβ = r|βα implies that the ordering in the final term of Eq. (31) is 
irrelevant; i.e. Lα Mβr|αβ = Mα Lβr|αβ .

It would be natural to identify the coordinates with the fiber parameters ϕ and ψ of Section 3, but here, for the sake 
of tractability, we exploit the underlying coordinate invariance and instead choose them to be Cartesian on �. In this case 
the distinction between co- and contra-variance disappears, covariant derivatives reduce to partial derivatives, and Eq. (31)
becomes

W = w(εL, εM, J ) + 1

2
AL

∣
∣Lα Lβr,αβ

∣
∣2 + 1

2
AM

∣
∣Mα Mβr,αβ

∣
∣2 + 1

2
A�

∣
∣Lα Mβr,αβ

∣
∣2 (34)

with

J = ∣
∣Lα Mβr,α × r,β

∣
∣ , εL = Eαβ Lα Lβ and εM = Eαβ Mα Mβ (35)

where

Eαβ = 1

2
(r,α · r,β − δαβ) (36)

with δαβ the Kronecker delta, is the strain. Here, r,α = ri,α ii , with i3 = i1 × i2; {ik} a fixed orthonormal basis associated with 
the Cartesian coordinates, and r,αβ = ri,αβ ii . In the examples considered, the Cartesian components Lα(x) and Mα(x) are 
easily read off from the formulas provided in Section 3.
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5. Examples

Numerical simulations here shown are based on Finite Element Analysis and performed with COMSOL Multiphysics® in 
the framework of a weak formulation. Because of the nature of the energy (31), we employed triangular Argyris elements 
having C1 continuity [29]. The number of mesh elements is ≈104, which considering the 21 degrees of freedom of each 
element, provide a total of ≈105 degrees of freedom.

In the performed simulations, we adopt the representation [1]:

Lα Lβr,αβ = gl + KLn, Mα Mβr,αβ = gm + KMn, Lα Mβr,αβ = � + T n (37)

where gl,m and � account for geodesic bending in the tangent plane of the deformed surfaces and n is the (varying) unit 
normal to the surface. The variables KL,M and T are the normal curvatures of the embedded fibers and the twist induced by 
the bending of the surface in three-space. With this notation, in Eq. (31), the part of the energy depending on the second 
gradient ∇∇r can be decomposed into the three following contributions which allow us to emphasize the role of each term: 
i) the strain-gradient energy,

WSGE = 1

2
AL |gl|2 + 1

2
AM |gm|2 + 1

2
A� |�|2 (38)

ii) the normal bending energy,

WNBE = 1

2
AL K 2

L + 1

2
AM K 2

M (39)

and iii) the twisting energy,

WTE = 1

2
A� T 2 (40)

Because the normal derivative of position is not assigned, implicitly we are assigning zero double force on edges where 
position is assigned. Elsewhere we assign zero double force and zero traction unless otherwise specified.

In the considered examples, a non-dimensional form of the problem is achieved by normalizing the strain energy with 
respect to a reference stiffness E0, i.e.:

W̃ = W

E0
(41)

As a consequence of this normalization, the material parameters associated with Eq. (34) become:

ẼL = EL

E0
, ẼM = EM

E0
, G̃ = G

E0
, ÃL = AL

E0
, ÃM = AM

E0
, Ã� = A�

E0
(42)

The lengths are normalized with respect to a reference length L0, whose value will be specified case by case. In what 
follows, quantities in non-dimensional form are denoted with a superimposed tilde.

Herein we study the buckling mode shapes of the considered pantographic fibered structures. These two-dimensional 
continua are highly sensitive to geometrical and mechanical imperfections. Specifically, defects that may be encountered are: 
some differences in the directions of fiber pattern, delaminations or initial transverse deformations, variations in thickness, 
inclusions, eccentricity of loading and so forth. For numerical purposes, rather than perturbing the geometry, it is often 
easier to obtain the perturbation using an additional load or a further constraint on the displacement. This latter approach 
is the one followed in this paper. The heuristic method employed here for fibered pantographic sheets is sufficient for the 
immediate goal of determining some equilibrium shapes, but of course a rigorous analysis is needed in order to successfully 
predict buckling modes (see, e.g., [48–52] for specific analytical tools concerning buckling and postbuckling).

5.1. Geodesic and out-of plane buckling of a lattice with initially straight fibers

In this section, we consider a rectangular plane region � whose sides are in the ratio 1:3, with the longest of them being 
parallel to the bisector of the first quadrant of the reference plane. The two orthogonal families of fibers are arranged so as 
to form an angle of 45 degrees with the sides of this region; thus, L,M are constant unit vectors and coincide with the basis 
elements e1, e2 associated with a Cartesian system. The shorter edge is used as the length scale for non-dimensionalization.

A first simulation is performed by imposing a shear displacement (ũ0 = 0.1
√

2) on one of the long sides and by fixing 
the opposite one, while the short sides are left free. The non-dimensional material parameters employed in this case are: 
ẼL = ẼM = 100; G̃ = 0.03; Ã� = 0.1; ÃL = ÃM = 0.001. In this case to take imperfections into account, we impose on the 
displaced long side the additional constraint on the derivatives of the displacement lying on the plane of the pantographic 
sheet and, in particular we impose:

ũα,βnβ = ε with α,β = {1,2}
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Fig. 1. Geodesic buckling for the case of plane shear: fiber pattern (left) and the strain-gradient energy (right).

Fig. 2. Case of initially straight fibers with compression (ṽ0 = 0.007
√

2) and shear (ũ0 = 0.05
√

2) displacement imposed.

ε being a positive quantity equal to 2.22 × 10−16.
In Fig. 1 is shown an example of buckling occurred in the plane of the two-dimensional continuum considered, that 

we call “geodesic buckling” because it is related to the strain-gradient energy of Eq. (38) and therefore to the geodesic 
curvatures which appear in this term of the energy. In particular, on the left side of the figure the fiber pattern of the 2D 
continuous sheet is shown, while on the right side is plotted the strain-gradient energy (38) which, in this case, represents 
the only term in the second gradient energy, the contributions related to the normal bending and twisting being zero.

The curves which are visible in the deformed shape of the body are simply selected mono-dimensional sets of material 
points which, in the reference configuration, are parallel to the field lines relative to the fields L and M.

Fig. 2 shows an example of out-of-plane buckling. In Fig. 2a the equilibrium shape is exhibited (colors indicate the 
out-of-plane component of displacement). In this case, in addition to a shear displacement (ũ0 = 0.05

√
2) we have also 

imposed a displacement of compression (ṽ0 = 0.007
√

2) on the same long side and the constraint: ũα,βnβ = 0, with α, β =
{1, 2}; the other sides are subject to the same constraints of the case previously considered. The non-dimensional material 
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Fig. 3. Case I ( ÃL = ÃM = 0.1): compressive displacement imposed (ũ0 = 0.07
√

2).

parameters used in this case are: ẼL = ẼM = 100; G̃ = 0.02; Ã� = 0.1; ÃL = ÃM = 0.01. To simulate imperfections, we set 
the condition for the derivatives of the displacement out-of-plane as:

ũ3,βnβ = 1 × 10−4 with β = {1,2}
In this simulation, we can see how the strain-gradient energy (Fig. 2b) is localized mainly near the corners of the 

rectangular fibered sheet, while the normal bending energy (Fig. 2c) and the twisting energy (Fig. 2d) have greater relevance.
In the next simulations, we consider two examples with different material parameters to investigate how they affect the 

solution. The simulations are performed by imposing a compressive displacement (ũ0 = 0.07
√

2) on one of the long sides, 
by fixing the opposite one and leaving the short sides free. In addition, on the moving long side we assign the constraint: 
ũα,βnβ = 0, with α, β = {1, 2}. The non-dimensional material parameters employed in these cases are:

Case I. ẼL = ẼM = 100; G̃ = 0.02; Ã� = 0.1; ÃL = ÃM = 0.1;
Case II. ẼL = ẼM = 100; G̃ = 0.02; Ã� = 0.1; ÃL = ÃM = 0.01.

To take imperfections into account, we impose on the moved long side the additional constrain on the derivatives of the 
displacement lying on the plane of the pantographic sheet and, in particular, we impose:

ũα,βnβ = 1 × 10−4 with α,β = {1,2}
Figs. 3 and 4 show the out-of-plane buckling modes in the cases examined. Specifically, these figures give details of the 

particular fiber pattern assumed in the current configuration (Figs. 3a and 4a), and of the terms of the second gradient 
energy above mentioned (i.e. Eqs. (38), (39) and (40)). Also in these simulations, we can see how the strain-gradient energy 
(Figs. 3b and 4b) is localized mostly near the corners of the rectangular fibered sheet and is of the same level in both 
cases; in the second case, when ÃL = ÃM = 0.01 are smaller than Ã� = 0.1 the twisting energy attains a maximum in the 
center very high if compared with the first case (Figs. 3d and 4d); on the contrary, the normal bending energy achieves its 
maximum level in the first case (Figs. 3c and 4c). As a result, the two buckling modes obtained are enough different given 
that the relative rigidities of the terms of the second gradient energy promote a type of deformation rather than the other 
one.
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Fig. 4. Case II ( ÃL = ÃM = 0.01): compressive displacement imposed (ũ0 = 0.07
√

2).

Fig. 5. Convergence plots: case I (left); case II (right).

Fig. 5 shows the plot of convergence of the total energy stored versus mesh refinement, i.e. the inverse of the mesh size 
h in the two cases before examined. Of course, the convergence analysis here shown is not to be intended in the sense of 
a convergence toward a known limit solution, as there is no chance of getting a close form solution as a benchmark even 
with the simplest possible boundary conditions and constitutive assumptions. However, the analysis just shown strongly 
supports the claim that the set of numerical solutions one has decreasing the mesh size is a subset of a Cauchy sequence, 
i.e. the difference between any two solutions can be made arbitrarily small if the largest mesh size between the two is 
small enough.
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Fig. 6. Buckling example with logarithmic spirals arrangement of fibers in the case of radial displacement (ũ0 = 0.06) and rotation (30 degrees) of the inner 
circle: fiber pattern in the reference configuration (left); the shear strain relative to the initial fiber directions (right).

Fig. 7. Buckling example with logarithmic spirals arrangement of fibers: simulation with opening displacement (ũ0 = 0.06) and rotation (30 degrees) of the 
inner circle.
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Fig. 8. Bias extension test—displacement ũ0 = 0.2.

5.2. Buckling of logarithmic spirals

In this section, we consider an annular two-dimensional sheet with fibers forming logarithmic spirals (Fig. 6). This fibered 
sheet is deformed by fixing it at the outer boundary and imposing a displacement at the inner boundary corresponding to 
a counterclockwise rotation of 30 degrees and a radial opening of amplitude ũ0 = 0.06. The radius of the inner circle is 0.05 
and that of the outer boundary is 0.2. The logarithmic spirals in the initial configuration (see Fig. 6-left) are characterized 
by the parameter k = tan(π/4) and r̃0 = 0.1 (see Eq. (26)). The non-dimensional material parameters utilized in this case 
are: ẼL = ẼM = 500; G̃ = 0.1; Ã� = 0.1; ÃL = ÃM = 0.01. Further, to simulate imperfections, we impose:

ũ3,β x̃β |x̃|−1 = 1 × 10−3 with β = {1,2} on the outer boundary

ũ3,β x̃β |x̃|−1 = −1 × 10−3 with β = {1,2} on the inner boundary

Fig. 7 shows the deformation shape of the annular fibered sheet, and in particular the pattern of fibers (Fig. 7a)—colors 
indicate the out-of-plane component of the displacement. Fig. 7 shows also the three terms of the second gradient energy 
which in this case are significant.
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Fig. 9. Case a: Compressive (ũ0 = 0.2) and shear (ṽ0 = 0.2) displacement imposed ( ÃM = 0.01).

5.3. Oscillatory lattice

In this case, we consider a rectangle plane region � whose sides are in the ratio 0.75:1. The longer edge is used as the 
length scale for non-dimensionalization. The parameters characterizing the oscillatory fibers which appear in Eq. (30) are 
assumed to be Ã = A/L0 = 0.25, ω̃ = ωL0 = 4π.

In a first case, we examine the standard bias extension test in which one of the longer side is fixed and on the other 
edge a displacement ũ0 = 0.2 is imposed in the direction orthogonal to the same side. On the remaining edges, we assign 
zero double force and zero traction.

Fig. 8 displays the arrangement of the fibers in the reference configuration (Fig. 8a), the equilibrium shape of the sample 
after the deformation and the new disposition of the net (Fig. 8b), the second gradient energy (Fig. 8c) and the measure of 
the shear strain relative to the initial fiber axes (Fig. 8d). The more easily detectable feature in the plot of the shear strain 
(Fig. 8d) is the presence of three distinct bands in which the shear strain presents a distribution almost uniform.

In the next examples, we impose a shear displacement (ṽ0 = 0.2) and a displacement of compression (ũ0 = 0.2) on 
one of the longer side being fixed the opposite one. We study two cases of buckling by assuming the following material 
parameters:

Case a. ẼL = ẼM = 100; G̃ = 0.2; Ã� = 0.1; ÃL = ÃM = 0.01;
Case b. ẼL = ẼM = 100; G̃ = 0.2; Ã� = 0.1; ÃL = ÃM = 0.001.

To simulate imperfections, we impose on the moved long side the constraint:

ũ3,βnβ = 1 × 10−4 with α,β = {1,2}
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Fig. 10. Case b: compressive (ũ0 = 0.2) and shear (ṽ0 = 0.2) displacement imposed ( ÃM = 0.001).

With this kind of application at hand, it is very interesting to investigate how changes in the constitutive parameters 
can affect the out-of-plane displacement of sinusoidal lattices. Indeed, epidermal electronics strongly requires a close to 
perfect adherence of the lattice to the skin surface, which means that a set of constitutive assumptions that robustly resist 
to buckling is to be preferred over a generic one. The simulations shown in Fig. 9 and 10 compare the case with ÃM = 0.01
and the one with ÃM = 0.001. As one can see, in the latter case the average out-of-plain displacement is one order of 
magnitude smaller (0.0467 vs 0.00339), which means that a smaller second gradient stiffness ÃM of the fibers may ensure 
a better adherence of the lattice to the skin surface. Specifically, these figures give details of the particular fiber pattern 
assumed in the current configuration—colors indicate the out-of-plane component of displacement—(Figs. 9a and 10a), and 
of the terms of the second gradient energy already considered, i.e. Eqs. (38), (39) and (40). Analogous considerations apply 
in these last cases as for the straight fibers regarding the second gradient terms of the energy considered.

6. Conclusion

The numerical simulations performed on the basis of the theoretical model briefly described in Sections 2 and 4 provided 
some examples of mechanical instability. Specifically, out-of-plane buckling was observed with straight and curved fibers 
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geometries. Moreover a more exotic in-plane buckling was also obtained in Fig. 1 concerning the simple case of straight 
orthogonal fibers. This buckling is linked to the fact that our continuum model is able to store energy in connection with 
the geodesic bending of the fibers, which in turn is modeled by means of a strain gradient theory. The amount of energy 
stored in this way, when compared to the standard out-of-plane flexural and torsional energies, can be non-negligible, as 
demonstrated in simulations shown in Figs. 2, 7, 9 and 10.
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