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In this paper, we study the full three-dimensional Ericksen–Leslie system of equations 
for the nematodynamics of liquid crystals. We announce the short-time existence and 
uniqueness of strong solutions for the initial value problem in the periodic case and in 
a bounded domain with Dirichlet- and Neumann-type boundary conditions.
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Dans cet article, nous étudions le système tridimensionnel complet des équations
d’Ericksen–Leslie decrivant la nématodynamique des cristaux liquides. Nous donnons la 
formulation des théorèmes d’existence en temps court et d’unicité des solutions fortes 
pour le problème de valeur initiale dans le cas périodique et dans un domaine borné avec 
conditions au bord de types Dirichlet et Neumann.
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Fig. 1. The structure of horizontal flow of smectic (left), nematic calamitic and nematic discotic (center), cholesteric (right) liquid crystals.

1. Introduction

Mathematical models of the behavior of liquid crystals (see Fig. 1), attract much attention of scientists. The mathematical 
models of the hydrodynamics of incompressible, homogeneous nematic liquid crystals were firstly developed in the 1960s 
by J. Ericksen and F. Leslie (see, for instance, [1,2]).

In this paper, we consider the full Ericksen–Leslie system of equations (see, for instance, [3]). In our previous papers, we 
investigated plane periodic model [4,5] and plane problem in a bounded domain [6,5], homogenization of micro inhomo-
geneous nematic liquid crystals ([7] for periodic, [8] for random) in the case of a zero molecular moment of inertia, and 
two-dimensional nematodynamics in the case of a non-zero molecular moment of inertia [6]. We study the existence and 
uniqueness of solutions to the following Ericksen–Leslie system⎧⎨

⎩ u̇ − μ�u = −∇p − ∂
∂x j

(
∂F
∂nx j

· ∇n
)

+ F div u = 0

J n̈ − 2 q n + h = G, ‖n‖ = 1
(1)

where summation on repeated indices is understood and nx j := ∂
∂x j

n. Here, u is the Eulerian, or spatial velocity vector field, 
n is the director field, the constant μ > 0 is the viscosity coefficient, the constant J > 0 is the moment of inertia of the molecule, 
F(x, t) and G(x, t) are given external forces, and the overdot ˙ := ∂

∂t + u · ∇ is the material derivative. The function F(n, ∇n)

is the Oseen–Zöcher–Frank free energy and is defined by

F(n,∇n) := 1

2

(
K1(div n)2 + K

(
(n · curl n)2 + ‖n × curl n‖2))

where K , K1 are real positive constants. The molecular field h is defined by

h := ∂F
∂n

− ∂

∂x j

(
∂F
∂nx j

)

The pressure p and the Lagrange multiplier 2 q are determined, respectively, by the conditions div u = 0 and ‖n‖ = 1. In this 
case, the ith component of the molecular field has the expression

hi = (K − K1)n
k
xkxi

− Kni
xkxk

+ q′ni

where q′ is a scalar function depending on n and its derivatives. Define the linear differential operator L by

Lv := (K − K1)∇(div v) − K�v (2)

Given the Ericksen–Leslie system (1), define the new vector field (first introduced in [9])

ν := n × ṅ ∈ F(D,R3)

With all these hypotheses and notations, system (1) becomes

u̇ − μ�u = −∇p + (Ln · ∇n) + F, div u = 0 (3)

J ν̇ =Ln × n + n × G (4)

ṅ = ν × n (5)

with unknowns u, ν , n. Thus, the Ericksen–Leslie system (1) implies the new first-order system (3)–(5).
Conversely, if the initial conditions of the first order system (3)–(5) satisfy the identities

‖n(x,0)‖ = 1, n(x,0) ⊥ ν(x,0)
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at time t = 0, then for any t > 0 we have

‖n‖ ≡ 1, ν = n × ṅ, 2q = n · h − J‖ν‖2

and (3)–(5) turns into (1). Thus, under these hypotheses on the initial conditions, the first-order system (3), (4), (5) is 
equivalent to the original Ericksen–Leslie system (1) (as was first noticed in [9]).

The preceding papers (see [10–18] and [19]) are mostly concerned with the case J = 0.
In this article, we focus on the system (3)–(5) with J 	= 0 and announce the existence and uniqueness of solutions for 

3-dimensional periodic media (Theorem 2.2) as well as for the problem in a bounded domain with Dirichlet (Theorem 3.2) 
and Neumann-type (Theorem 4.2) boundary conditions, in appropriate natural spaces. The uniqueness theorem holds under 
weaker conditions than the existence theorem, i.e. the spaces in the uniqueness theorem are bigger. We also give a result 
on the finite speed of propagation of the director field disturbance in such media (Theorem 3.3, Corollary 3.4).

2. Solutions in a periodic domain

Let Q T := (0, T ) × T, where T = R
3/Z3 is the 3-dimensional flat torus. We study the system (3)–(5) in Q T with initial 

conditions

u(0, x) = u0, ν(0, x) = ν0, n(0, x) = n0 (6)

Here u, ν , n are unknown vector fields, p is an unknown scalar function, and J > 0, Ki > 0, μ > 0 are given constants.
Throughout the paper we use the following notations:

– ḟ := ∂ f
∂t + u · ∇ f = ft + u j fx j is the material time derivative of f ;

– a bold letter b denotes a 3-dimensional vector b = (b1, b2, b3), or a vector field with values in R3;
– a standard summation convention is used on repeated indices, independent of their position, e.g., aibi := ∑

i aibi ;
– L2(T) := {

v : T → R
3 | ‖v‖2

2 := ∫
T

‖v‖2dx < ∞}
;

– (u, v) := ∫
T

u · v dx is the inner product in L2(T);
– W m

2 (T) is the Sobolev space of functions on T having m distributional derivatives in L2(T);
– for any v ∈ W m

2 (T), m ∈N, define

‖Dmv‖2
2 :=

∑
i1+i2+i3=m

∥∥∥∥∥ ∂mv

∂xi1
1 ∂xi2

2 ∂xi3
3

∥∥∥∥∥
2

2

– Sol(T) := {v : T →R
3 | v ∈ C∞(T), div v = 0};

– Sol(Q T ) := {v ∈ C∞(Q T ) | v(t, ·) ∈ Sol(T), ∀t ∈ (0, T )};
– Sol2(T) is the closure of Sol(T) in the norm L2(T);
– Solm2 (T) is the closure of Sol(T) in the norm W m

2 (T).

Definition 2.1. A quadruple (u, ν, n, ∇p) is a strong solution to problem (3)–(6) in the domain Q T if

(i) u is a time-dependent vector field in L2((0, T ); Sol32(T)), ut ∈ L2(Q T );
(ii) ν is a vector field in L∞((0, T ); W 2

2 (T)), νt ∈ L∞((0, T ); L2(T));
(iii) n is a vector field in L∞((0, T ); W 3

2 (T)), nt ∈ L∞((0, T ); W 1
2 (T));

(iv) ∇p ∈ L2(Q T );
(v) u, n, ν satisfy the initial conditions (6), i.e. (u, n, ν) ⇀ (u0, n0, ν0) in L2(T) as t → 0;

(vi) Eqs. (3)–(5) hold almost everywhere.

The following assertion is valid.

Theorem 2.2. Suppose u0 ∈ Sol22(T), ν0 ∈ W 2
2 (T), n0 ∈ W 3

2 (T), and F ∈ L2((0, T ); W 1
2 (T)), G ∈ L1((0, T ); W 2

2 (T)). Then there is a 
T > 0 such that the solution to problem (3)–(5), (6) (as given in Definition 2.1) does exist.

Let (u1, ν1, n1, p1) and (u2, ν2, n2, p2) be solutions to problem (3)–(6) in the domain Q T . Then, for some 0 < T0 ≤ T

(u2,ν2,n2,∇p2) = (u1,ν1,n1,∇p1)

almost everywhere in Q T0 .

The proof is based on Galerkin-type approximations.
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3. Solutions with Dirichlet-type boundary conditions

Let � be a bounded domain in R3 and consider nematic liquid crystal flow in the cylinder � ×R.
We study Eqs. (3)–(5) in the domain (0, T ) × � with initial conditions (6) and additional boundary conditions

u
∣∣
∂�

= 0, n − n1
∣∣
∂�

= 0, ν|∂� = 0 for any t > 0 (7)

where n1 is a given vector field on �.
Condition u

∣∣
∂�

= 0 means that the domain has impenetrable boundary and that the fluid moves without slipping; 
n − n1

∣∣
∂�

= 0 describes the director position at the boundary. The third condition comes from the original Ericksen–Leslie 
system and means that ṅ = 0 at the boundary.

In this section, we let Q T := (0, T ) × � and introduce the function spaces

◦
Sol (�) := {v : � →R

3 | v has compact support, div v = 0}
◦

Sol (Q T ) := {v ∈ C∞(Q T ) | v(t, ·) ∈
◦

Sol (�),∀t}
◦

Solm2 (�) is the closure of
◦

Sol (�) in the norm W m
2 (�)

The definition of a solution to the Ericksen–Leslie equations is the natural modification for the case of a bounded domain 
with boundary of the one given in Definition 2.1.

Definition 3.1. The quadruple (u, ν, n, ∇p) is a strong solution to problem (3)–(6), (7) in the domain Q T if

– u is a vector field in L2((0, T ); 
◦

Sol12(�)) ∩ L2((0, T ); W 3
2 (�)), ut ∈ L2(Q T );

– ν is a vector field in L∞((0, T ); 
◦

W 1
2(�)) ∩ L∞((0, T ); W 2

2 (�)), νt ∈ L∞((0, T ); L2(�));

– n − n1 is a vector field in L∞((0, T ); 
◦

W 1
2 (�)) ∩ L∞((0, T ); W 3

2 (�)), where n1 is a given constant vector field, and 
nt ∈ L∞((0, T ); W 1

2 (�));
– ∇p ∈ L2(Q T );
– u, n, ν satisfy initial conditions (6), i.e. (u, n, ν) ⇀ (u0, n0, ν0) in L2(�);
– Eqs. (3)–(5) hold almost everywhere.

The following result is proved in the same way as Theorem 2.2, with natural modifications.

Theorem 3.2. Assume that for all x ∈ ∂� the boundary is the graph of a C2-function in some neighborhood of x. Let n1 = const, 

n0 ∈
◦

W 3
2 (�), ν0 ∈ W 2

2 (�), u0 ∈
◦

Sol12 (�) ∩ W 2
2 (�), �u0

∣∣
∂�

= 0, and assume that, for some d > 0, we have

n0(x) = const, ν0(x) = 0 if dist(x, ∂�) < d

Assume also that F ∈ L2((0, T ); W 1
2 (�)), G ∈ L1((0, T ); W 2

2 (�)), G equal to zero in a neighborhood of ∂�. Then problem (3)–(6), (7)
has a unique solution in Q T for some T > 0.

Instead of (3)–(5), we consider the system

u̇ − μ�u = −∇p + (Ln · ∇n)�, div u = 0 (8)

J (νt + �uiνxi ) = (Ln × n)� (9)

nt + �uinxi = (ν × n)� (10)

where �(x) ∈ C∞(�) is a given smooth non-negative function with compact support.

Theorem 3.3. Fix u ∈ L2((0, T ); 
◦

Sol12(�)) ∩ L2((0, T ); W 2
2 (�)) and � ∈ C∞(�) with compact support, 0 ≤ � ≤ 1. Consider Eqs. (9), 

(10) for this given vector field u.
Suppose, in addition, that for some 1 < α ≤ ∞ and for all i, j, there are constants m > 0, M > 0 such that the vector field u satisfies

‖esssup
x

|ui
x j

(x, t)| ‖Lα(0,T ) ≤ M and ‖u(x, t)‖ ≤ m, ∀(x, t) ∈ Q T

Assume also that the initial conditions n0 and ν0 of (9), (10), with this given vector field u, are such that ∇n0 and ν0 vanish for 
‖x − x0‖ < r. Then there exist constants m′, t0 > 0 such that ∇n and ν are equal to zero for all (x, t) satisfying

‖x − x0‖ < r − m′t, t < t0
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Remark 1. A similar result, with identical proof, holds in a periodic domain. In this case, we assume u ∈ L2((0, T ); Sol12(T)) ∩
L2((0, T ); W 2

2 (T)) and take � ≡ 1.

Corollary 3.4. Consider a solution (u, ν, n, p) of the problem (3)–(5), (6) in the periodic domain, as given in Definition 2.1.
Assume also that the initial conditions n0 and ν0 are such that ∇n0 and ν0 vanish for ‖x − x0‖ < r. Then there exist constants 

m′, t0 > 0 such that ∇n and ν are equal to zero for all (x, t) satisfying

‖x − x0‖ < r − m′t, t < t0

If (u, ν, n, p) is the solution to problem (3)–(6), (7) in a bounded domain, we need to assume, in addition, that ν, ∇n vanish in some 
neighborhood of the boundary ∂�.

4. Solutions with Neumann-type boundary conditions

The problem considered in Section 3 has an important drawback: the director vector field is assumed to be constant 
near the boundary. As shown below, this condition can be neglected if we change the boundary conditions.

Suppose that K1 = K = K and consider the domain � as being a cuboid, i.e. � = �3
i=1(ai, bi), where −∞ < ai < bi < ∞.

The equations of motion are (3)–(5) with initial conditions (6), but instead of the boundary conditions (7), we require

u · N
∣∣∣
(0,T )×∂�

= 0 and ui
x j
τ i N j

∣∣∣
(0,T )×∂�

= 0 ∀τ ⊥ N = 0 (11)

The boundary condition on the director field n and the variable ν are

nxi Ni
∣∣∣
(0,T )×∂�

= 0 and νxi Ni
∣∣
�

= 0 (12)

Definition 4.1. The quadruple (u, ν, n, ∇p) is a strong solution to problem (3)–(6), (11), (12) in the domain Q T if

• u is a vector field in L2((0, T ); Sol12(�)) ∩ L2((0, T ); W 3
2 (�)), ut ∈ L2(Q T );

• ν is a vector field in L∞((0, T ); W 2
2 (�)), νt ∈ L∞((0, T ); L2(�));

• n is a vector field in L∞((0, T ); W 3
2 (�)), where n1 is a given constant vector field, and nt ∈ L∞((0, T ); W 1

2 (�));
• ∇p ∈ L2(Q T );
• u, n, ν satisfy the initial conditions (6), i.e. (u, n, ν) ⇀ (u0, n0, ν0) in L2(�);
• Eqs. (3)–(5) and boundary conditions (11), (12) hold almost everywhere.

Theorem 4.2. Assume that � is the cuboid �3
i=1(ai, bi) with −∞ < ai < bi < ∞. Let n0 ∈ W 3

2(�), ∂n
∂N

∣∣
∂�

= 0, ν0 ∈ W 2
2 (�), u0 ∈

Sol12(�) ∩ W 2
2 (�), u3

0|∂� = 0. Suppose also that F ∈ L2((0, T ); W 1
2 (�)), G ∈ L1((0, T ); W 2

2 (�)), and Gi Ni |∂� = 0.
Then problem (3)–(6), (11), (12) has a unique solution in Q T for some T > 0.
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