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The paper deals with the global Kondaurov double porosity model describing a non-
equilibrium two-phase immiscible flow in fractured-porous reservoirs when non-equilib-
rium phenomena occur in the matrix blocks, only. In a mathematically rigorous way, we 
show that the homogenized model can be represented by usual equations of two-phase 
incompressible immiscible flow, except for the addition of two source terms calculated 
by a solution to a local problem being a boundary value problem for a non-equilibrium 
imbibition equation given in terms of the real saturation and a non-equilibrium parameter.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The homogenized Kondaurov double-porosity-type model (see [1]) describing a non-equilibrium two-phase flow of im-
miscible incompressible fluids in fractured-porous reservoirs is considered. Two-phase flow in porous media is important 
to many practical problems, including those in petroleum reservoir engineering, soil science, etc. The modeling and nu-
merical simulation of two-phase flow in porous media represents an important key in the design of cost-efficient, safe, 
and suitable clean-up tools. It can reduce the number of laboratory and field experiments, help to identify the significant 
mechanisms, optimize existing strategies and give indications about possible risks. In the existing physical and mathematical 
literature, the authors are dealing mainly with the equilibrium models. However, the experimental studies have invalidated 
this kind of models (see, e.g., [2]). The model considered in this paper corresponds physically to a non-equilibrium immis-
cible incompressible two-phase flow through fractured porous media. Notice that the crucial feature of a porous medium, 
saturated with immiscible fluids, is the fact that the process depends on the rate and direction of the change of state. 
The most well-known and often discussed phenomena of this type are the relaxation of capillary pressure, the “capillary 
pressure–saturation” hysteresis curve, and the dependence of the phase permeabilities and the value of the capillary stick-
ing on the rate and direction of a change in the saturation. The generally accepted explanation of these phenomena is the 
non-equilibrium of the joint motion of the fluids (see, e.g., [3]).
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The homogenization of multiphase flow through heterogeneous porous media as well as the numerical simulation of 
this physical process has been a problem of interest for many years, and many methods have been developed. There is 
an extensive literature on this subject. Here we refer to the monographs [4,5] as well as to [6–8]. A recent review of 
the mathematical homogenization methods developed for two-phase flow in porous media can be viewed in [9,10]. It is 
important to notice that the microscopic models of the multiphase flow in porous media considered in all these works are 
equilibrium ones even if the homogenization process for single- and multiphase flows in double porosity media leads to 
the appearing of an additional source term which exhibits the global non-equilibrium behavior of the model (see, e.g., [5,
10–12]). In addition, it is shown in [13,14] that the homogenization procedure leads to the appearing of the non-equilibrium 
capillary pressure in the global model. However, there are few papers dealing with the homogenization of non-equilibrium 
two-phase flows in porous media. Here we refer to [8], where the authors deal with the upscaling of such flows in vertically 
fractured oil reservoirs. The homogenization process is carried out for Barenblatt’s and Hassanizadeh’s flow models (see, e.g., 
[15–17]). Concerning the rigorous mathematical studies in the domain of non-equilibrium two-phase flows, we also observe 
only few papers on the subject, dealing mainly with the existence and uniqueness problems (see, e.g., [18,19]).

In this paper, we study an immiscible non-equilibrium two-phase flow in double porosity media in the framework 
of the thermodynamically consistent Kondaurov model [20,21], which is, in fact, an integro-differential one due to the 
fact that mobility functions and capillary pressure depend on Kondaurov’s non-equilibrium parameter, which satisfies a 
kinetic equation with respect to the real saturation (see Section 2 below). The detailed comparison of the Kondaurov model 
and Barenblatt’s and Hassanizadeh’s non-equilibrium flow models is done in [1,21]. Here we focus our attention on the 
homogenized non-equilibrium double-porosity-type model obtained recently in [1]. This model has a rather complicated 
form in view of numerical simulation. From the other hand, we know that the numerical methods are very sensitive to the 
choice of the form of the governing equations. Then the aim of the present paper is to find a more simple form for the local 
problem involved in the model. Namely, we will show that the homogenized problem can be represented as usual equations 
of two-phase incompressible, immiscible flow, with two source terms calculated by a solution to a local problem which is a 
boundary value problem for a non-equilibrium imbibition equation. The derivation of this equation is essentially based on the 
introduction of a non-equilibrium global pressure, which generalizes the notion of the well-known global pressure function 
(see, e.g., [22–24]) widely used in the mathematical analysis of multi-phase flows in porous media. To our knowledge, it is 
a first attempt to introduce the non-equilibrium imbibition equation in the homogenization process.

The rest of the paper is organized as follows. In Section 2, we present a mathematically rigorous adimensionalized 
non-equilibrium Kondaurov model focusing on the correct definitions of the capillary pressure and mobility functions. In 
Section 3, following the lines of [1], we introduce the global Kondaurov double-porosity model. Finally, in Section 4, we 
study the local problem involved in the homogenized model. Introducing the notion of non-equilibrium global pressure, 
we reduce the local problem formulated in terms of phase pressures to a unique non-equilibrium imbibition equation, 
which is an integro-differential one with respect to the real saturation. As it is shown in Remark 5 at the end of Section 4, 
the last one is a generalization of the well-known imbibition equation appearing in the homogenization of the two-phase 
double-porosity models (see, e.g., [25] and the references herein). The Note is completed by the section Concluding remarks.

2. Adimensionalized non-equilibrium Kondaurov model

In this section, we introduce the adimensionalized non-equilibrium Kondaurov flow model proposed in [20] and then 
developed in [21]. More recently, it was discussed in [1]. The equations of the model read:

�
∂ Sκ

∂t
+ div Wκ = 0, where the fluxes are defined by: Wκ = − K fκ (Sκ , ξ)

μκ
∇pκ (κ = w,n) (1)

Here the subscripts w, n denote the wetting and non-wetting fluids; Sκ is the saturation of the corresponding fluid; 0 <
� < 1 is the porosity function; K is the absolute permeability tensor; pκ is the pressure of the wetting (non-wetting) fluid; 
fκ = fκ (Sκ , ξ) stands for the relative permeability of the wetting (non-wetting) fluid defined by:

f w(S w , ξ ) = f e
w (2 S w + β ξ/α − 1) and fn(Sn, ξ) = f e

n

(
2
[
1 − S w

] − β ξ/α
)

(2)

where the superscript “e” denotes the equilibrium relative phase permeabilities in the Darcy–Muskat law (see, e.g., [23]) 
and α, β > 0 are the constitutive parameters of the model; μκ is the viscosity of the wetting (non-wetting) fluid; finally, 
ξ denotes the non-equilibrium Kondaurov parameter, which satisfies the following kinetic equation:

∂ξ

∂t
= 1

τ
�(S w , ξ) with �(Sn, ξ)

def= α

β
[1 − S w ] − ξ (3)

Here τ > 0 is the relaxation time. The model is completed as follows. By the definition of saturations, one has S w + Sn = 1
with S w , Sn � 0. Then the curvature of the contact surface between the two fluids links the jump of pressure of two phases 
to the saturation by the capillary pressure law: Pc(S w , ξ) = pn − pw , where (see, e.g., [1]) the capillary pressure function 
has the form:

�Pc(S w , ξ)
def= γ + M [1 − S w ] − α ξ (4)
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Here M, γ > 0 are constitutive parameters of the model. Finally, we introduce the mobility functions λκ , which will be 
widely used below. They are defined as: λκ (Sκ , ξ) def= fκ (Sκ , ξ)/μκ (κ = w, n).

Now we discuss in more details the definitions and the properties of the capillary pressure and of the mobility functions. 
We also formulate the conditions on the constitutive parameters of the model. We start the analysis by establishing the 
explicit dependence of the non-equilibrium parameter on the wetting saturation function. Namely, denoting S

def= S w , one 
can easily show that

ξ = ξ init(x)e−t/τ + α

τβ

t∫
0

e(ς−t)/τ (
1 − S(x, ς)

)
dς with ξ init(x)

def= ξ(x,0) > 0 (5)

Consider the capillary pressure function. The initial boundary value problem for the two-phase filtration is well posed if and 
only if the capillary pressure function Pc is a decreasing function of the saturation S . In order to prove this fact, we often 
deal with the derivative of the parameter ξ with respect to S . This derivative involves the function ξ ′

S
def= ∂ξ

∂ S (x, 0). From now 
on, for the sake of definiteness, we assume that ξ ′

S = ξ ′
S (x, 0) � 0 in �, where � is our reservoir of interest. We have the 

following result.

Lemma 2.1. Let the function ξ ′
S � 0 satisfy the bound maxx∈� ξ ′

S (x, 0) < +∞ in � and let M, α, β be such that M > 2 α2/β . Then 
the function Pc is a positive decreasing function of S.

The proof of the lemma is based on the application of the kinetic equation (3).
Now, we turn to the mathematically rigorous definition and the properties of the mobility functions λw , λn in the non-

equilibrium case. Let us recall that for an equilibrium two-phase flow in porous medium (see, e.g., [9,13], and the references 
therein) the standard assumptions on the mobility functions are: 0 � λe

w(S), λe
n(1 − S) � 1 for S ∈ [0, 1] and λe

w(S = 0) = 0, 
λe

w(S = 1) = 1 and λe
n(S = 0) = 1, λe

n(S = 1) = 0. Here S stands for the wetting phase saturation in the equilibrium case. Our 
goal now is to establish similar properties of the mobility functions, which depend, in the non-equilibrium case, both on 
the real saturation S and on the non-equilibrium parameter ξ . To this end, it is natural to introduce a new non-equilibrium 
parameter ϑ given by:

ϑ
def= 2 S + β ξ/α − 1 (6)

and to consider the properties of the mobility functions in terms of this parameter. As functions of ϑ , the mobilities become: 
λw(S, ξ) = λe

w(ϑ) and λn(S, ξ) = λe
n(1 − ϑ). We have:

Lemma 2.2. Let ϑ be the parameter defined in (6). Assume that 0 < max�
β
α ξ init(x) < 1 in �. Then we have: (i) There are the values 

of the saturation S, denoted by Sϑ=0 and Sϑ=1 , such that

ϑ = 0 for Sϑ=0
def= e−t/(2τ )

2

(
1 − β

α
ξ init

)
and ϑ = 1 for Sϑ=1

def= 1 − β

2α
ξ init(x)e−t/(2τ ) (7)

(ii) The values Sϑ=0, Sϑ=1 are such that 0 < Sϑ=0 < Sϑ=1 < 1 and Sϑ=0 → 0, Sϑ=1 → 1 as t → +∞.

In order to prove the lemma, one have to solve a Volterra nonhomogeneous equation coming from the representation 
(5) of the non-equilibrium parameter ξ .

The behavior of the relative phase permeabilities in various processes is depicted in Figs. 1 and 2, where the relative 
phase permeabilities of the wetting and nonwetting fluids are given as the functions of the wetting fluids’ saturation S w and 
the parameter ̂ξ def= βξ/α varying in the interval [0, 1]. In the case of slow quasi-static processes, the variation of the relative 
phase permeabilities occurs along the equilibrium curves shown in Figs. 1 and 2 by the bold line. This case corresponds 
to the Muscat–Leveret model. The non-equilibrium dependencies are determined by the history of the saturation variation. 
In the case of a weak non-equilibrium τ/tref � 1 (tref is the reference time value), they lie in a small neighborhood of the 
equilibrium curves f e

w(S w), f e
n (S w). In these figures, the examples of non-equilibrium dependencies corresponding to the 

drainage with the model saturation S(t) = 0.4 + 0.6 exp (−t) and imbibition with the saturation S(t) = 0.6 (1 − exp (−t)), 
respectively, are depicted for different relaxation times τ = 0.1, 0.2, 0.5, 1.5 (the characteristic time for which the variation 
of the saturation is equal to one) by the curves with arrows, which show the direction of the corresponding process.

Now, let us study the dependance of the parameter ϑ on the saturation S . We have:

Lemma 2.3. Let ϑ be the parameter defined by (6). Then ϑ is an increasing function of S.

The proof of the lemma is based on the positiveness of the function ξ ′
S .
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Fig. 1. Relative permeability of the nonwetting fluid as the function of ξ̂ and S w .

Fig. 2. Relative permeability of the wetting fluid as the function of ξ̂ and S w .

Thus we conclude that, with the following assumptions on the constitutive parameters:

ξ ′
S(x,0) � 0, M > 2α2/β, and 0 < max

�

(
β ξ init(x)/α

)
< 1 in � (8)

we have that: (i) the capillary pressure is a decreasing function of the saturation S; (ii) the parameter ϑ equals 0 and 1 for 
Sϑ=0 and Sϑ=1 given by (7), and (iii) the parameter ϑ is an increasing function of S .

Now let us explain how do we understand the mobility functions λw , λn in our further analysis. We set:

λw(S, ξ) :=
⎧⎨
⎩

1, when S > Sϑ=1;
λe

w(ϑ) when S ∈ Iϑ ;
0, when S < Sϑ=0

and λn(S, ξ ) :=
⎧⎨
⎩

1, when S < Sϑ=0;
λe

n(1 − ϑ) when S ∈ Iϑ ;
0, when S > Sϑ=1

(9)

where Iϑ
def= [Sϑ=0, Sϑ=1] stands for our interval of interest. This definition is depicted in Figs. 1, 2 above.

3. The global Kondaurov double-porosity model

In this section we formulate the mesoscopic flow equations of the Kondaurov model and then introduce the homogenized 
model obtained earlier in [1]. We consider a reservoir � ⊂ Rd (d = 2, 3), which is assumed to be a bounded, connected 
domain with a periodic structure (see Fig. 3). More precisely, we will scale this periodic structure by a parameter ε which 
represents the ratio of the cell size to the whole region � and we assume that ε ↓ 0. Let Y

def=(0, 1)d be a basic cell of a 
fractured porous medium. We assume that Y is made up of two homogeneous porous media Ym and Y f corresponding to 
the parties of the mesoscopic domain occupied by the matrix block and the fracture, respectively. Thus Y = Ym ∪ Y f ∪ �fm , 
where �fm denotes the interface between the two media. Let �ε

� with � = “f” or “m” denotes the open set corresponding to 

the porous medium with index �. Then � = �ε
m ∪ �ε

fm ∪ �ε
f , where �ε

fm
def= ∂�ε

f ∩ ∂�ε
m ∩ � and the subscripts “m”, “f” refer 

to the matrix and fracture, respectively.
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Fig. 3. (a) The domain � with the mesostructure. (b) The reference cell Y .

Before describing the equations of the model (1) for the nonhomogeneous porous medium � with the periodic structure, 
we give the corresponding notation and also define the porosity function and the global permeability tensor adopted to the 
double porosity medium �. We have that �ε(x) = �( x

ε ) is the porosity of the reservoir �. The function �ε is a Y -periodic 

defined by: �ε(x) def= �f1ε
f (x) +�m1ε

m(x), where 1ε
f , 1

ε
m are the characteristic functions of the media �ε

f , �ε
m , respectively, and 

where the constants 0 < �f, �m < 1 do not depend on ε; K ε(x) = K ( x
ε ) is the absolute permeability tensor of � it is defined 

by: K ε(x) def= K f 1ε
f (x) + ě2 Km 1ε

m , where 0 < K f , Km < +∞ are positive constants that do not depend on ε; Sε
�,w = Sε

�,w(x, t), 
Sε

�,n = Sε
�,n(x, t) are the saturations of wetting and nonwetting fluids in �ε

� , respectively; pε
�,w = pε

�,w(x, t), pε
�,n = pε

�,n(x, t)
are the pressures of wetting and nonwetting fluids in �ε

� , respectively; ξε
� = ξε

�(x, t) is the non-equilibrium parameter in 
the medium �ε

� ; λ�,w , λ�,n are the mobilities of wetting and nonwetting fluids in �ε
� , respectively; τ� is the relaxation time 

in �ε
� ; α�, β�, γ�, M� > 0 denote the constitutive parameters in �ε

� which do not depend on ε. Denoting Sε
�

def= Sε
�,w , we 

obtain the following flow equations:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

�ε(x)
∂Sε

∂t
− div

{
K ε(x)λw

( x

ε
,Sε, ξε

)
∇pε

w

}
= 0 in �T ;

−�ε(x)
∂Sε

∂t
− div

{
K ε(x)λn

( x

ε
,Sε, ξε

)
∇pn

}
= 0 in �T ;

P ε
c

( x

ε
,Sε, ξε

)
= pε

n − pε
w with �ε(x)P ε

c

( x

ε
,Sε, ξε

)
def= γ ε(x) + Mε(x) [1 − Sε] − αε(x) ξ ε

(10)

where �T
def= � × (0, T ) (T > 0 is fixed); the mobilities λ�,w , λ�,n are defined (in accordance with (9)) by:

λ�,w(Sε
� , ξ

ε
�) = λ�,w

(
2 Sε

� − 1 + β� ξε
�/α�

)
and λ�,n(Sε

� , ξ
ε
�) = λ�,n

(
2
[
1 − Sε

�

] − β� ξε
�/α�

)
(11)

and each function uε := Sε, pε
w , pε

n, ξε as well as the piece-wise constant functions �ε, K ε, γ ε, Mε, αε are defined as: 
uε def= uε

f 1ε
f (x) + uε

m1ε
m(x). The system (10) is completed by the corresponding interface and initial conditions, which are 

omitted here for the sake of brevity (for more details, see [1]).
Now we introduce the global non-equilibrium Kondaurov flow model obtained by the method of two-scale asymptotic 

expansions (see, e.g., [14,26–28]) in Section 4.2 of [1]. Here we also restrict ourselves to a special case of the homogenized 
model. Namely, as in [8], we consider the non-equilibrium effects for the matrix part only and not for the fracture system, 
which is related to the fact that the non-equilibrium effects for fractures, due to their high permeabilities and, consequently, 
low capillary forces, are negligible. First, we introduce the notation: S , P w , Pn denote the homogenized wetting liquid 
saturation, the wetting and nonwetting liquid pressures, respectively; �� denotes the effective porosity and is given by: 
�� def= �f |Y f|/|Ym|, where |Y�| is the measure of the set Y� (� = f, m); K� is the homogenized tensor with the entries

K
�
i j

def= K f

|Ym|
∫ [∇yζi + ei

] [∇yζ j + e j
]

dy, where ζ j satisfies:

⎧⎨
⎩

−�y ζ j = 0 in Y f;
∇yζ j · ν y = −e j · ν y on �fm

y → ζ j(y) Y -periodic
(12)
Y f
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Then the homogenized system has the form:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�� ∂ S

∂t
− divx

{
K

� λ f,w(S)∇ P w

}
= Qw in �T ;

−�� ∂ S

∂t
− divx

{
K

� λ f,n(1 − S)∇ Pn

}
= Qn in �T ;

Pc(S) = Pn − P w with �f Pc(S)
def= af,1 S + af,3 in �T

(13)

where the constants af, j ( j = 1, 2, 3) in view of condition (8) are defined as:

a�,1
def= −

(
M� − α2

� /β�

)
< 0, a�,2

def= τ�

(
M� − 2α2

� /β�

)
> 0, a�,3

def= γ� + M� − α2
� /β� > 0 (� = f,m) (14)

Remark 1. Notice that the functions S , P w , Pn appearing in (13) are, in fact, zero-order terms in the asymptotic expansions 
for the saturations Sε

f , and phase pressures pε
f,w , pε

f,n in the fracture domain �ε
f (for more details, see formulae (3.3)–(3.4) 

and the beginning of Section 3.2 in [1]). In a similar way, we introduce below the functions s, pw , pn in (15) for the matrix 
block.

For almost all point x ∈ �, the equations for flow in a matrix block are given by:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�m
∂s

∂t
− divy

{
Km λ m,w(ϑm)∇y pw

}
= 0 in Ym × �T ;

−�m
∂s

∂t
− divy

{
Km λ m,n(1 − ϑm)∇y pn

}
= 0 in Ym × �T ;

pc

(
ϑm,

∂ϑm

∂t

)
= pn − pw with �m pc

(
ϑm,

∂ϑm

∂t

)
def= am,1 ϑm + am,2

∂ϑm

∂t
+ am,3;

pw(x, y, t) = P w(x, t) and pn(x, y, t) = Pn(x, t) on �fm × �T

(15)

Here we make use of the following notation: s, pw , pn denote the wetting liquid saturation, the wetting and nonwetting liq-
uid pressures in the matrix block Ym , respectively; ξm denotes the local non-equilibrium parameter in the matrix block Ym , 
it is defined as the solution to the following equation:

∂ξm

∂t
= 1

τm
�(s, ξm) with �(s, ξm)

def= αm

βm

[
1 − s

] − ξm (16)

the parameter ϑm is defined by: ϑm
def= 2 s + βm ξm/αm − 1. For any x ∈ � and t > 0, the matrix-fracture sources are given 

by:

Qw
def= − �m

|Ym|
∫

Ym

∂s

∂t
(x, y, t)dy = −Qn (17)

Remark 2. Notice that in the case of the equilibrium flow, from (16), we have that ξm = αm
βm

[
1 − s

]
for τm = 0. Then 

the macroscopic model (13)–(17) is exactly (evidently, with a specified capillary pressure) the well-known homogenized 
double-porosity model for the immiscible incompressible two-phase flow in porous media considered by many authors 
(see, e.g., [12,14,25] and the references therein).

4. Non-equilibrium matrix imbibition equation

Let us recall that when a porous medium filled with some fluid is brought into contact with another fluid that preferen-
tially wets the medium, there is a spontaneous flow of the wetting fluid into the medium and a counterflow of the resident 
fluid from the medium. This phenomenon is called imbibition and arises in physical situations involving multiphase flow 
systems (see, e.g., [29]).

The goal of this section is to reduce the local problem (15) formulated in terms of the phase pressures to a new problem, 
for a non-equilibrium imbibition equation given in terms of the real saturation s and the parameter ϑm which is, in fact, the 
functional of s. To this end, let us rewrite the capillary pressure function given in (15)3 as follows:

pc

(
ϑm,

∂ϑm
)

= πc(ϑm) + âm,2
∂ϑm with πc(ϑm)

def= âm,1 ϑm + âm,3 and âm, j
def= am, j/�m (18)
∂t ∂t
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Inspired by [9], we introduce the notion of non-equilibrium global pressure P, which is a generalization of the global pressure 
function defined earlier (see, e.g., [22–24]) in the equilibrium case:

pw
def= P + Gw(ϑm) + âm,2 Fw

(
ϑm,

∂ϑm

∂t

)
and pn

def= P + Gn(ϑm) + âm,2 Fn

(
ϑm,

∂ϑm

∂t

)
(19)

where the functions Gw , Gn, Fw , Fn will be specified later using several conditions. Roughly speaking, these conditions are 
a consequence of the definition of capillary pressure function (15)3. First, we define the functions Gw , Gn . Namely, the 
function Gn(ϑm) we choose in the following way:

Gn(ϑm)
def=

ϑm∫
0

λ m,w(ς)

λm(ς)
π′

c(ς)dς with λm(ϑm)
def= λ m,w(ϑm) + λ m,n(ϑm) (20)

From now on, λ m,n(ϑm) := λ m,n(1 − ϑm) and π′
c denotes the derivative of the function π with respect to its argument. 

Notice that the standard assumption on the function λm (see, e.g., [9] and the references herein) is that there exists a 
strictly positive constant L0 such that λm(ς) � L0 > 0 in ς ∈ [0, 1]. Now, taking into account that π′

c(ς) = âm,1, where 
âm,1 < 0 (see (14)), from (20) we get:

Gn(ϑm) = âm,1

ϑm∫
0

λ m,w(ς)

λm(ς)
dς with ∇yGn(ϑm) = âm,1

λ m,w(ϑm)

λm(ϑm)
∇yϑm (21)

The function Gw is then defined by Gw (ϑm) def= Gn(ϑm) − πc(ϑm). This implies the following formula for the gradient of the 
function Gw :

∇yGw(ϑm) = −λ m,n(ϑm)

λm(ϑm)
π′

c(ϑm)∇yϑm = −̂am,1
λ m,n(ϑm)

λm(ϑm)
∇yϑm (22)

We notice that λ m,w(ϑm)∇yGw(ϑm) = a(ϑm)∇yϑm and λ m,n(ϑm)∇yGn(ϑm) = −a(ϑm)∇yϑm , where

a(ϑm)
def= |̂am,1| λ m,n(ϑm)λ m,w(ϑm)

λm(ϑm)
(23)

Let us introduce the following function:

b(ϑm)
def=

ϑm∫
0

a(ς)dς = |̂am,1|
ϑm∫

0

λ m,n(ς)λ m,w(ς)

λm(ς)
dς (24)

Then taking into account the definition of the function b we have:

λ m,w(ϑm)∇y pw = λ m,w(ϑm)∇yP + ∇yb(ϑm) + λ m,w(ϑm) âm,2 ∇yFw

(
ϑm,

∂ϑm

∂t

)
(25)

λ m,n(ϑm)∇y pn = λ m,n(ϑm)∇yP − ∇yb(ϑm) + λ m,n(ϑm) âm,2 ∇yFn

(
ϑm,

∂ϑm

∂t

)
(26)

Now, we turn to the functions Fw , Fn . The relation (15)3 along with the previous assumptions on the functions Gw , Gn

leads to the following condition:

Fn

(
ϑm,

∂ϑm

∂t

)
−Fw

(
ϑm,

∂ϑm

∂t

)
= ∂ϑm

∂t
(27)

Let us rewrite (15) in terms of the non-equilibrium global pressure P, saturation s, and the non-equilibrium parameter ϑm . 
From (25), (26), we get:

�m
∂s

∂t
− Km divy

{
λ m,w(ϑm)∇yP + ∇yb(ϑm) + âm,2 λ m,w(ϑm)∇yFw

(
ϑm,

∂ϑm

∂t

)}
= 0 (28)

−�m
∂s

∂t
− Km divy

{
λ m,n(ϑm)∇yP − ∇yb(ϑm) + âm,2 λ m,n(ϑm)∇yFn

(
ϑm,

∂ϑm

∂t

)}
= 0 (29)

We add the equations (28) and (29), to have:

−divy

{
λm(ϑm)∇yP + âm,2

[
λ m,w(ϑm)∇yFw

(
ϑm,

∂ϑm
)

+ λ m,n(ϑm)∇yFn

(
ϑm,

∂ϑm
)]}

= 0 (30)

∂t ∂t
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Fig. 4. Kondaurov’s capillary pressure as the function of the wetting fluid saturation.

Then we can impose the second condition on the functions Fw , Fn . Namely, we set:

λ m,w(ϑm)∇yFw

(
ϑm,

∂ϑm

∂t

)
+ λ m,n(ϑm)∇yFn

(
ϑm,

∂ϑm

∂t

)
= 0 (31)

Now the simple calculations lead to the following result:

Lemma 4.1. Let the functions Fw, Fn satisfy the conditions (27) and (31). Then

∇yFw

(
ϑm,

∂ϑm

∂t

)
= −λ m,n(ϑm)

λ m(ϑm)
∇y

∂ϑm

∂t
and ∇yFn

(
ϑm,

∂ϑm

∂t

)
= λ m,w(ϑm)

λ m(ϑm)
∇y

∂ϑm

∂t
(32)

Lemma 4.1 implies that (30) becomes: −divy
{
λm(ϑm)∇yP

} = 0. Then it follows from (15)4 that the boundary conditions 
for the real saturation s as well as for the function P on the interface �fm (see the beginning of Section 3 for the definition 
of �fm) do not depend on the variable y. This fact allows us to prove the following result (see Lemma 1 in [25] for similar 
arguments).

Lemma 4.2. The function P does not depend on the variable y, i.e. ∇yP = 0 in Ym × �T .

Now, taking into account the results of Lemma 4.2, from equation (28) and (32), we obtain the following non-equilibrium 
imbibition equation. It reads:

�m
∂s

∂t
− Km divy

{
|̂am,1|�(ϑm)∇yϑm − âm,2 �(ϑm)∇y

∂ϑm

∂t

}
= 0 in Ym × �T (33)

where

�(ϑm)
def= λ m,n(ϑm)λ m,w(ϑm)

λm(ϑm)
(34)

Finally, due to (15)3, equation (33) can be rewritten as:

�m
∂s

∂t
+ Km divy

{
�(ϑm)∇y pc

(
ϑm,

∂ϑm

∂t

)}
= 0 (35)

The dependence of the non-equilibrium Kondaurov capillary pressure on the water saturation is given below in Fig. 4.
Thus the homogenized double porosity Kondaurov model contains the global equations (13) coupled with the boundary 

value problem for the non-equilibrium imbibition equation (35).

Remark 3. We arrive at the imbibition equation due to the fact that the total velocity in the block is zero. The only force, 
which plays the role here, is the capillary pressure and this enables to simplify total formulation (15), taking into account 
the countercurrent character of the imbibition process. In the mathematical literature, the advantages of the imbibition 
formulation for the equilibrium two-phase flow in double-porosity media was discussed for the first time in [30]. The com-
putational time for the imbibition equation is much smaller, because it is a scalar parabolic equation and the calculation 
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Fig. 5. The exchange term for equilibrium τ = 0 and non-equilibrium τ = 1 imbibition processes.

of the non-equilibrium parameter does not take much time (approximately 25% of total computational time in our case). 
In the full-phase formulation (15), in the framework of the widely used IMPES approach, an elliptic equation for the pres-
sure should be solved at each time step of integration of the full system of equations. This elliptic equation is aimed to 
provide zero-flux condition at each time step. Depending on the computational grid and on numerical schemes, the phase 
formulation takes much more computational time (dozens or even more) in comparison with imbibition one. Our numerical 
calculations in the framework of IMPES method agree with this fact.

Remark 4. Notice that in contrast to the classical case (see, e.g., [25] and the references therein) or the case of the 
global Barenblatt model [31], equation (35) is integro-differential. This fact shows explicitly the impact of the capillary 
non-equilibrium on the mass exchange between the fracture system and blocks via the source terms Qw , Qn in (13).

Remark 5. Notice that if τm = 0 (equilibrium state) then, as it was shown in Remark 2, ϑm = s and, in addition, due to (14), 
âm,2 = 0. Thus, equation (35) becomes:

�m
∂s

∂t
− Km �y b(s) = 0 in Ym × �T

where the function b is defined in (24). This is exactly (with evident modifications due to a special form of πc) the classical 
imbibition equation in the equilibrium case (see, e.g., formula (24) in [25]).

The impact of the non-equilibrium phenomena is shown numerically in Figs. 5, 6, 7. In Fig. 5 for the test boundary 
condition s = 1 − exp (−t), the initial condition s = 0, and α/β = 1, α/M = 0.8, γ = 1, we calculate the exchange term, 
i.e. the quantity of the fluid phase which is displaced, as a function of the time variable. In Figs. 6 and 7, we present the 
solution to the imbibition equation for the equilibrium and non-equilibrium processes in the case of the test boundary 
condition given by s(t) = 0.2 + 0.6 

[
1 − exp (−2t)

]
.

5. Concluding remarks

In the framework of Kondaurov’s formalism [20], a non-equilibrium porous medium saturated by two fluids is described 
by a dependence of the thermodynamical potential on a number of constitutive parameters. Using the relations that guar-
antee a thermodynamical model consistency, it is possible to calculate the capillary pressure function and the right-hand 
side of the kinetic equation. The first one determines the capillary-driven fluxes, and the second one describes the capillary 
relaxation processes. This approach has a number of advantages in contrast to Barenblatt’s model (see, e.g., [15]) whose 
application is restricted to weakly non-equilibrium flows. Turning to the model considered in this Note, we observe that, 
in practice, the fractured porous medium is usually modeled by two-superimposed continua, a connected fracture system 
and a system of topologically disconnected matrix blocks (see, e.g., [1] and the reference therein). Therefore, we are facing 
a problem of description of a highly heterogeneous medium, where each block is described by Kondaurov’s model. A dis-
tinctive feature of this model is as follows. It enables to take into account the impact of the capillary non-equilibrium on 
the mass exchange between the fissure system and the blocks. The analysis of the homogenized system carried out in this 
Note shows some new aspects, which are briefly discussed below. We focus our attention on two main points.

(i) Numerical aspects of Kondaurov’s model. From the mathematical point of view, the double-porosity models like 
(13)–(15) are rather complex systems of PDE involving (2d + 1) variables (x, y, t) instead of (d + 1) for the initial meso-
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Fig. 6. The saturation function in the equilibrium case for t = 1/16;1/4;1.

Fig. 7. The saturation function in the non-equilibrium case for t = 1/16;1/4;1.

scopic system. However, we know (see, e.g., Ch. 10 in [4]) that the double-porosity model in contrast to the mesoscopic one 
does not require the length scale of the block to be grid resolved. This enables us to solve macroscopic problems numer-
ically and justifies the importance of the homogenization process in the study of non-equilibrium flows, like Kondaurov’s 
flow model, in double porosity media. Our next step in this Note is to pass from the matrix problem formulated in terms 
of phase pressures to the non-equilibrium imbibition equation (35). Evidently, the new formulation of the homogenized 
problem is much easier for the numerical simulation because the number of the unknown functions and, consequently, the 
standing equations is lower than for problem (13)–(15). Some comments on the subject are given above in Remark 3. Notice 
that for the case of equilibrium two-phase flow in double porosity media (see, e.g., [4,11,12]), the numerical analysis of the 
global model can be done in two main ways. The first one is to deal directly with the global model involving an equilibrium 
imbibition equation, using the numerical resolution of this equation by the approach proposed in [32]. The second one is 
the linearization of the non-linear equilibrium imbibition equation in the sense of [13,30] or like in [25] for the case of 
double-porosity media with thin fissures. In this case, the homogenized system becomes fully homogenized (i.e. does not 
involve any coupling with a matrix problem) and the numerical simulation is much easier without great loss of accuracy. 
Thus, our further work is to generalize these approaches to the analysis of the global Kondaurov model (13)–(35).
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(ii) Mathematical analysis of Kondaurov’s model. As it was underlined in [1], we carry out our work with an eye to a 
rigorous mathematical analysis of Kondaurov’s model. To this end, in Section 2, we define rigorously the capillary pressure 
and mobility functions. The main results of the Note are given in Section 4. The key point here is the definition of non-
equilibrium global pressure. The global pressure function for degenerate (i.e. when the mobility functions vanish for the 
wetting phase saturation taking the values zero or one) equilibrium multiphase flows in porous media plays a crucial role, 
in particular for the proof of compactness results. This is also the case for the non-equilibrium two-phase flows like Kon-
daurov’s flow model or the Hassanizadeh model (see, e.g., [16]). It enables us to apply the ideas of [33] in the proof of the 
existence result, including the proof of the maximum principle for the real saturation. The notion of the non-equilibrium 
global pressure along with the non-equilibrium matrix imbibition equation will play an important role in the rigorous 
justification of the homogenization result obtained by formal asymptotic expansions in [1].

Thus the main novelty of the paper with respect to the existing literature is the introduction of the non-equilibrium 
global pressure and derivation of the non-equilibrium imbibition equation. These results enable us to continue the develop-
ment of the theory of non-equilibrium multiphase flows in porous media.
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