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An analytical solution based on the neutral surface concept is developed to study the 
free vibration behavior of a simply supported functionally graded plate reposing on the 
elastic foundation by taking into account the effect of transverse shear deformations. No 
transversal shear correction factors are needed because a correct representation of the 
transversal shearing strain obtained by using a new refined shear deformation theory. 
The foundation is described by the Winkler–Pasternak model. The Young’s modulus of 
the plate is assumed to vary continuously through the thickness according to a power 
law formulation, and the Poisson ratio is held constant. The equation of motion for FG 
rectangular plates resting on an elastic foundation is obtained through Hamilton’s principle. 
Numerical examples are provided to show the effect of foundation stiffness parameters 
presented for thick to thin plates and for various values of the gradient index, aspect, and 
the side-to-thickness ratio. It was found that the proposed theory predicts the fundamental 
frequencies very well, consistently with those available in the literature.

© 2016 Published by Elsevier Masson SAS on behalf of Académie des sciences.

1. Introduction

The technique of grading ceramics along with metals initiated by Japanese material scientists in Sendai has marked 
the beginning of the exploration of the possibility of using FGMs for various structural applications [1]. Since then, an 
effort has been devoted to the development of high-performance heat-resistant functionally graded materials. FGMs are 
therefore composite materials with a microscopically inhomogeneous character. Continuous changes in their microstructure 
make FGMs distinguish from conventional composite materials. Functionally graded materials (FGM) structures are those in 
which the volume fractions of two or more materials are varied continuously as a function of their position along certain 
dimension(s) of the structure to achieve a required function. Typically, FGMs are made from a mixture of ceramic and 
metal. It is difficult to obtain an exact enough solution to the nonlinear equations to develop efficient mathematical models 
to predict the static and dynamic response of a plate. Thus far, only a few exact solutions have been investigated. However, 
with progress in science and technology, a need arises in engineering practice to accurately predict the nonlinear static and 
dynamic responses of a plate.
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Fig. 1. Geometry and dimensions of the FGM plate resting on an elastic foundation.

Plates supported by elastic foundations have been widely adopted by many researchers to model various engineering 
problems during the past decades. To describe the interactions of the plate and its foundation as appropriately as possible, 
scientists have proposed various kinds of foundation models [2]. The simplest model for the elastic foundation is the Winkler 
model, which regards the foundation as a series of separated springs without coupling effects between each other, resulting 
in the disadvantage of discontinuous deflection on the interacted surface of the plate. This was later improved by Pasternak 
[3], who exploited the interactions between the separated springs in the Winkler model by introducing a new dependent 
parameter. From then on, the Pasternak model was widely used to describe the mechanical behavior of structure–foundation 
interactions [4,5].

Several investigations have been presented for the analysis of FG plates. Reddy [6] thermomechanical loads, theoretical 
formulation, Navier’s solution and finite element model for the FG plate were presented. Vel et al. [7] provided an exact 
solution for three-dimensional deformations of a simply supported functionally graded rectangular plate subjected to me-
chanical and thermal loads on its top and/or bottom surfaces. Talha et al. [8] established free vibration and static analysis 
of functionally graded material (FGM) plates using higher-order shear deformation theory with a special modification in the 
transverse displacement in conjunction with finite element models. Ferreira et al. [9] analyzed the static deformations of a 
simply supported functionally graded plate modeled by a third-order shear deformation theory using the collocation multi-
quadric radial basis functions. Ramirez et al. [10] gave an approximate solution for the static analysis of three-dimensional, 
anisotropic, elastic plates composed of functionally graded materials by using a discrete layer theory in combination with 
the Ritz method in which the plate is divided into an arbitrary number of homogeneous and/or FGM layers. Park et al. [11]
presented thermal postbuckling and vibration behaviors of the functionally graded (FG) plate, the nonlinear finite element 
equations being based on the first-order shear deformation plate theory and the von Karman nonlinear strain–displacement 
relationship being used to account for the large deflection of the plate.

The objective of this investigation is to present a new refined shear deformation theory to study the free vibration 
behavior of a simply supported functionally graded plate reposing on the elastic foundation using an analytical solution 
procedure based on the neutral surface concept. This theory does not require shear correction factors and just four unknown 
displacement functions are used against five or more unknown displacement functions used in the corresponding ones. The 
obtained results have been compared with the ones available in the literature and were found to be in good agreement 
with them.

2. Geometric configuration and material properties

The FGM plate is regarded to be a single layer plate of uniform thickness. Here the FGM is a plate of length a, width b, 
and total thickness h made from anisotropic material of metal and ceramics, in which the composition varies from the top 
to the bottom surface. To specify the position of the neutral surface of FG plates, two different planes are considered for the 
measurement of z, namely zms and zns measured from the middle surface and the neutral surface of the plate, respectively, 
as shown in Fig. 1.

The volume fraction of ceramic (V c) can be written in terms of zms and zns coordinates as [12]:

V c(z) =
(

zms

h
+ 1

2

)k

=
(

zns + c

h
+ 1

2

)k

(1)

where h is the thickness of the plate and k denotes the power of the FGM, which takes values greater than or equal to 
zero. Also, the parameter C is the distance from the neutral surface to the middle surface. The volume fraction of metal is 
expressed as:

V m(z) = 1 − V c(z) (2)

The effective Young’s modulus E is expressed as [13]:

E(z) = Em V m(z) + Ec V c(z) (3)

where Em and Ec are Young’s moduli of the metal and of the ceramic, respectively. The position of the neutral surface of 
the FG plate is determined to satisfy the first moment with respect to Young’s modulus, being zero as follows [13]:
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h/2∫
−h/2

E(zms)(zms − C)dzms = 0 (4)

Consequently, the position of neutral surface can be obtained as

C =
∫ h/2
−h/2 E(zms)zmsdzms∫ h/2

−h/2 E(zms)dzms

(5)

It can be seen that the physical neutral surface and the geometric middle surface are the same in a homogeneous 
isotropic plate.

3. Displacement field and strains

In the present study, the system of governing equations for FGM plate is derived by using the variational approach. The 
origin of the material coordinates is at the neutral surface of the plate as shown in Fig. 1. The in-plane displacements and 
the transverse displacement for the plate are assumed to be:

u(x, y, zns) = u0(x, y) − zns
∂ wb

∂x
− f (zns)

∂ ws

∂x

v(x, y, zns) = v0(x, y) − zns
∂ wb

∂ y
− f (zns)

∂ ws

∂ y
w(x, y, zns) = wb(x, y) + ws(x, y)

(6)

where f (zns) represents shape functions determining the distribution of the transverse shear strains and stresses along the 
thickness and is given as

f (zns) = zns + C − sin

(
π(zns + C)

h

)
(7)

It should be noted that unlike the first-order shear deformation theory, this theory does not require shear correction 
factors. The kinematic relations can be obtained as follows:

εx = ε0
x + znskb

x + f (zns)ks
x

εy = ε0
y + znskb

y + f (zns)ks
y

γxy = γ 0
xy + znskb

xy + f (zns)ks
xy

γyz = g(zns)γ
s
yz

γxz = g(zns)γ
s

xz

εz = 0

(8)

where

ε0
x = ∂u0

∂x
, kb

x = −∂2 wb

∂x2
, ks

x = −∂2 ws

∂x2
, ε0

y = ∂v0

∂ y
, kb

y = −∂2 wb

∂ y2
, ks

y = −∂2 ws

∂ y2

γ 0
xy = ∂u0

∂ y
+ ∂v0

∂x
, kb

xy = −2
∂2 wb

∂x∂ y
, ks

xy = −2
∂2 ws

∂x∂ y
, γ s

yz = ∂ ws

∂ y
, γ s

xz = ∂ ws

∂x

g(zns) = 1 − f ′(zns) and f ′(zns) = d f (zns)

dzns

(9)

The constitutive relation describes how the stresses and strains are related within the plate and is expressed as⎧⎨
⎩

σx

σy

τxy

⎫⎬
⎭ =

⎡
⎣ Q 11 Q 12 0

Q 12 Q 22 0
0 0 Q 66

⎤
⎦

⎧⎨
⎩

εx

εy

γxy

⎫⎬
⎭

{
τyz

τzx

}
=

[
Q 44 0

0 Q 55

]{
γyz

γzx

} (10)

where (σx, σy, τxy, τxz, τyz) are the stress components; (εx, εy, γxy, γxz, γyz) are the strain components; Q ij are the plane 
stress-reduced stiffness values, which can be calculated by

Q 11 = Q 22 = E(zns)

1 − ν2
, Q 12 = νE(zns)

1 − ν2
, Q 44 = Q 55 = Q 66 = E(zns)

2(1 + ν)
(11)
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3.1. Governing equations and boundary conditions

Hamilton’s principle is used herein to derive the equations of motion appropriate to the displacement field and the 
constitutive equations. The principle can be stated in analytical form as:

0 = δ

t2∫
t1

(U + UF − K − W )dt (12)

where U is the strain energy and K is the kinetic energy of the FG plate, UF is the strain energy of foundation and W is 
the work of external forces. Employing the minimum of the total energy principle leads to a general equation of motion and 
boundary conditions. Taking the variation of the above equation and integrating by parts:

t2∫
t1

[∫
V

[σxδεx + σyδεy + τxyδγxy + τyzδγyz + τzxδγzx − ρ(üδu + v̈δv + ẅδw)dv +
∫
A

[ feδw]dA

]
dt = 0 (13)

where (13) represents the second derivative with respect to time and fe is the density of reaction force of foundation. For 
the Pasternak foundation model:

fe = k0 w − k1∇2 w (14)

If the foundation is modeled as the linear Winkler foundation, the coefficient k1 in Eq. (14) is zero. Using Eq. (8), Eq. (13)
takes the following form:

t2∫
t1

[∫
A

{
δuNx,x + δvN y,y + δuNxy,y + δvNxy,x − δwM y,yy − 2δwMxy,xy + δθx P x,x + δθy P y,y + δθx P xy,y

+ δθy P xy,x + δθy(−R) + δθx(−R)
}

dA +
∫
A

feδwdA −
∫
A

{
δu(I1ü − I2 ẅ,x + I4θ̈x) + δv(I1 v̈ − I2 ẅ,y + I4θ̈y)

+ δw(I1 ẅ + I2ü,x − I3 ẅ,xx + I5θ̈x,x + I2 v̈,y − I3 ẅ,yy − I5θ̈y,y) + δθx(I4ü − I5 ẅ,x + I6θ̈x)

+ δθy(I4 v̈ − I5 ẅ,y + I6θ̈y)dA
}]

dt = 0 (15)

where stress and moment resultants are defined as:⎧⎨
⎩

N
M
P

⎫⎬
⎭ =

⎡
⎣ Aij Bi j Ci j

Bi j Dij Ei j
Ci j Ei j Ci j

⎤
⎦

⎧⎨
⎩

ε
k
k0

⎫⎬
⎭ (i, j = 1,2,6)

{R} = [Fij]{θ} (i, j = 4,5)

(16)

in which:

ε =
⎧⎨
⎩

u0,x

v0,y

u0,y + v0,x

⎫⎬
⎭ , k = −

⎧⎨
⎩

w,xx

w,xx

2w,xy

⎫⎬
⎭

k0 =
⎧⎨
⎩

θx,x

θy,y

θx,y + θy,x

⎫⎬
⎭ , θ =

{
θx

θy

} (17)

and stiffness components and inertias are given as:

{Aij, Bij, Cij, Dij, Eij, Gij} =
h/2−c∫

−h/2−c

{
1, zns, f (zns), z2

ns, zns f (zns),
[

f (zns)
]2}

Q ijdzns (i, j = 1,2,6) (18)

{Fij} =
h/2−c∫ [

f ′(zns)
]2

Q ijdzns (i, j = 1,2,6) (19)
−h/2−c
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I1, I2, I3, I4, I5, I6 =
h/2−c∫

−h/2−c

ρ
(
1, zns, z2

ns, f (zns), zns f (zns),
[

f (zns)
]2)

dzns (20)

Using the generalized displacement–strain relations and stress–strain relations, and the fundamentals of calculus of vari-
ations and collecting the coefficients of δu, δv , δw , δθx and δθy in Eq. (13), the equations of motion are obtained as:

Nx,x + Nxy,y = I1ü − I2 ẅ,x + I4θ̈x

Nxy,x + N y,y = I1 v̈ − I2 ẅ,y + I4θ̈y

Mx,xx + 2Mxy,xy + M y,yy + k0 w − k1∇2 w = I1 ẅ − I2(ü,x + v̈,y) − I3(ẅ,xx + ẅ,yy) + I5(θ̈x,x + θ̈y,y)

P x,x + P xy,y − Rx = I4ü − I5 ẅ,x + I6θ̈x

P xy,x + P y,y − R y = I4 v̈ − I5 ẅ,y + I6θ̈y

(21)

For the analytical solution to Eq. (21), the Navier method, based on double Fourier series, is used under the specified 
boundary conditions. Using Navier’s procedure, the displacement variables satisfying the above boundary conditions can be 
expressed in the following Fourier series:

u(x, y) =
∞∑

m=1

∞∑
n=1

Amn cos
mπx

a
sin

nπy

b
eiωt

v(x, y) =
∞∑

m=1

∞∑
n=1

Bmn sin
mπx

a
cos

nπy

b
eiωt

w(x, y) =
∞∑

m=1

∞∑
n=1

Cmn sin
mπx

a
cos

nπy

b
eiωt

θx =
∞∑

m=1

∞∑
n=1

Txmn cos
mπx

a
sin

nπy

b
eiωt

θy =
∞∑

m=1

∞∑
n=1

T ymn sin
mπx

a
cos

nπy

b
eiωt

(22)

where Amn , Bmn , Cmn , Txmn , Tymn are arbitrary parameters to be determined, and ω is the eigenfrequency associated with 
the (m, n)th eigenmode.

The displacement functions given in Eq. (21) satisfy the kinematic boundary conditions of the simply supported plate, 
which are given below:

Nx = v = w = Mx = P x = θy = 0 at x = 0,a
N y = u = w = M y = P y = θx = 0 at y = 0,b

(23)

Substituting Eqs. (18), (19), (20), and (22) into equations of motion (21), we get the below eigenvalue equations for any 
fixed value of m and n, for the free vibration problem:

([K ] − ω2[M]{�} = {0} (24)

where [K ] and [M] are stiffness and mass matrices, respectively, and represented as:

[K ] =

⎡
⎢⎢⎢⎣

a11 a12 a13 a14 a15
a12 a22 a23 a24 a25
a13 a23 a33 a34 a35
a14 a24 a34 a44 a45
a15 a25 a35 a45 a55

⎤
⎥⎥⎥⎦ (25)

[M] =

⎡
⎢⎢⎢⎢⎣

I1 0 −α I2 I4 0
0 I1 −β I2 0 I4

−α I2 −β I2 I3(α
2 + β2) + I1 −α I5 −β I5

I4 0 −α I5 I6 0
0 I4 −β I5 0 I6

⎤
⎥⎥⎥⎥⎦ (26)

in which:
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a11 = A11α
2 + A66β

2

a12 = αβ(A12 + A66)

a13 = −B11a3

a14 = C11a2 + C66β
2

a15 = αβ(C12 + C66)

a22 = A66α
2 + A22β

2

a23 = −B22β
3

a24 = αβ(C12 + C66)

a25 = C66α
2 + C22β

2

a33 = D11α
4 + 2D12α

2β2 + 4D66α
2β2 + D22β

4 + k0 + k1(α
2 + β2)

a34 = −E11α
3 − E12αβ2 − 2E66αβ2

a35 = −E12α
2β − 2E66α

2β − E22β
3

a44 = F55 + G11α
2 + G66β

2

a45 = αβ(G12 + G66)

a55 = F44 + G66α
2 + G22β

2

(27)

and α = mπ/a, β = nπ/b.
The natural frequencies of FG plate can be found from the nontrivial solution to Eq. (24).

4. Numerical results and discussion

In this section, various numerical examples are presented and discussed to verify the accuracy of the present theory 
in predicting the frequency of simply supported FG plates based on the neutral surface concept. For numerical results, an 
Al/Al2O3 or Al/ZrO2 plate composed of aluminum (as metal) and alumina or zirconia (as ceramic) is considered. The material 
properties assumed in the present analysis are as follows:

ceramic (PC: alumina, Al2O3): Ec = 380 GPa, ρc = 3800 kg/m3

(PC: zirconia, ZrO2): Ec = 200 GPa, ρc = 5700 kg/m3

metal (PM: aluminum, Al): Em = 70 GPa, ρm = 2700 kg/m3

Poisson’s ratio is 0.3 for both alumina and aluminum. And their properties change through the thickness of the plate 
according to a power law. The bottom surfaces of the FG plate are aluminum rich, whereas the top surfaces of the FG plate 
are alumina or zirconia rich.

For verification purposes, the obtained results are compared with those of Hosseini-Hashemi et al. [14] based on an 
exact closed-form Levy-type solution. Those of Zhou et al. [15] were based on a three-dimensional Ritz method, those of 
Matsunaga [16] were based on the higher-order shear deformation theories, whereas the three-dimensional exact solutions 
of Leissa [17], Liu and Liew [18] were based on a differential quadrature element method and others available in the 
literature.

In all examples, no transversal shear correction factors are used because a correct representation of the transversal 
shearing strain is given. For the sake of convenience, the following results are presented in graphical and tabular forms. To 
illustrate the accuracy of the present theory for FG SSSS square plates made of Al/Al2O3 and Al/ZrO2 for a wide range of 
power-law indices k and thickness ratios h/a, the variations of non-dimensional natural frequencies and of the fundamental 
frequency are illustrated in the following examples.

Table 1 shows the comparison of the fundamental frequency parameter (w = ωh
√

ρc/Ec) for SSSS Al/Al2O3 square plates 
with three values of the thickness-to-length ratio (h/a = 0.05, 0.1 and 0.2). It can be seen that the proposed refined theory 
using an analytical solution based on the neutral surface concept and the others theories give identical results for all values 
of the power-law index k. The capability of the present solution is also tested for two types of materials, the plates made of 
Al/Al2O3 and Al/ZrO2 for a wide range of power-law indices k in Table 2. A close correlation is achieved. Table 3 examines 
the effect of the thickness-to-length ratio h/a on the first eight non-dimensional natural frequencies w = ωa2

√
ρh/D for 

simply supported isotropic square plate. As can be seen from the table, not only for thin plates but also for thick plates, the 
natural frequencies are predicted as accurately by the present method.

Tables 4 and 5 show the comparison of fundamental frequency w = ωa2
√

ρh/D of FG rectangular plates on their elas-
tic foundation with those reported by Akhavan et al., Hassen Ait Atmane et al., Matsunaga and Thai et al., with different 
values of the thickness-to-length ratios and of foundation stiffness parameters. It can be seen that the results are in ex-
cellent agreement with each other. Fundamental frequencies w = ωb2√S H/A/π2 of the FG square plate (a/b = 1) with 
simply-supported boundary conditions for h/a = 0.01, 0.1, and 0.2 are listed in Table 6 for different values of the foundation 
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Table 1
Comparison of fundamental frequency parameters w = ωh

√
ρc/Ec for SSSS Al/Al2O3 square plates (a/b = 1).

Thickness-to-length ratio h/a Method Gradient index k

0 1 4 10

0.05 Hosseini-Hashemi [14] 0.01480 0.01150 0.01013 0.00963
Matsunaga [16] – – – –
Zhao [19] 0.01464 0.01118 0.00970 0.00931
Present 0.01479 0.00997 0.00883 0.00810

0.1 Hosseini-Hashemi [14] 0.05769 0.04454 0.03825 0.03627
Matsunaga [16] 0.05777 0.04427 0.03811 0.03642
Zhao [19] 0.05673 0.04346 0.03757 0.03591
Present 0.05769 0.03913 0.03443 0.03150

0.2 Hosseini-Hashemi [14] 0.2112 0.1650 0.1371 0.1304
Matsunaga [16] 0.2121 0.1640 0.1383 0.1306
Zhao [19] 0.2055 0.1587 0.1356 0.1284
Present 0.2112 0.1460 0.1255 0.1142

Table 2
Comparison of fundamental frequency parameters w = ωa2√

ρc/Ec/h for SSSS square plates (a/b = 1) when h/a = 0.1.

FGMs Method Gradient index k

0 1 2 5 8 10

Al/Al2O3 Hosseini-Hashemi [14] 5.7693 4.4545 4.0063 3.7837 3.6830 3.6277
Zhao [19] 5.6763 4.3474 3.9474 3.7218 3.6410 3.5923
Present 5.7696 3.9138 3.7034 3.3635 3.2093 3.1500

Al/ZrO2 Hosseini-Hashemi [14] 5.7693 5.2532 5.3084 5.2940 5.2312 5.1893
Zhao [19] 5.6763 4.8713 4.6977 4.5549 4.4741 4.4323
Present 5.7696 5.0800 5.1148 5.1381 5.1156 5.1000

Table 3
Comparison of non-dimensional natural frequencies w = ωa2

√
ρh/D for a simply supported isotropic square plate.

Thickness-to-length ratio h/a Method Mode

1,1 1,2 2,1 2,2 3,1 1,3 3,2 2,3

0.001 Leissa [17] 19.7392 49.348 49.348 78.9568 98.696 98.696 128.3021 128.3021
Zhou et al. [15] 19.7115 49.347 49.347 78.9528 98.6911 98.6911 128.3048 128.3048
Akavci [20] 19.7391 49.3476 49.3476 78.9557 98.6943 98.6943 128.3020 128.3020
Present 19.7391 49.3475 49.3475 78.9556 98.6942 98.6942 128.3018 128.3018

0.01 Liu et al. [18] 19.7319 49.3027 49.3027 78.8410 98.5150 98.5150 127.9993 127.9993
Nagino et al. 19.732 49.305 49.305 78.846 98.525 98.525 128.01 128.01
Akavci [20] 19.7322 49.3045 49.3045 78.8456 98.5223 98.5223 128.012 128.012
Present 19.7320 49.3032 49.3032 78.8422 98.5171 98.5171 128.0027 128.0027

0.1 Liu et al. [18] 19.0584 45.4478 45.4478 69.7167 84.9264 84.9264 106.5154 106.5154
Hosseini et al. [14] 19.0653 45.4869 45.4869 69.8093 85.0646 85.0646 106.7350 106.7350
Akavci [20] 19.0850 45.5957 45.5957 70.0595 85.4315 85.4315 107.3040 107.3040
Present 19.0660 45.4917 45.4917 69.8212 85.0829 85.0829 106.7652 106.7652

0.2 Shufrin et al. 17.4524 38.1884 38.1884 55.2539 65.3130 65.3130 78.9864 78.9864
Hosseini et al. [14] 17.4523 38.1883 38.1883 55.2543 65.3135 65.3135 78.9865 78.9865
Akavci [20] 17.5149 38.4722 38.4722 55.8358 66.1207 66.1207 80.1637 80.1637
Present 17.4553 38.2052 38.2052 55.2943 65.3731 65.3731 79.0812 79.0812

stiffness parameters, and are computed and compared with other published data. It can be seen from the table that a good 
agreement is achieved between the results of the present theory and those of other theories.

Figs. 1 and 2 contain the plots of non-dimensional fundamental frequency w = ωa2/h
√

ρm/Em of Al/Al2O3 functionally 
graded square plates with respect to the power-law index k (k = 0 to 10) without the elastic foundation (K0 = K1 = 0). It 
is clear that the increase in the power-law index k causes a decrease in the non-dimensional fundamental frequency. The 
latter increases when the aspect and side-to-thickness ratios increase.

Figs. 3 and 4 display the variation of the non-dimensional fundamental frequency w = ωa2/h
√

ρm/Em of Al/Al2O3 func-
tionally graded square plates with respect to the power-law index k (k = 0 to 10) resting on Winkler and Winkler–Pasternak 
foundations, respectively. It can be observed that the frequencies increase with the increase in the foundation parameters.
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Table 4
Comparison of fundamental frequency parameters w = ωa2

√
ρh/D for an isotropic square plate.

Thickness-to-length ratio h/a K0 K1 Method

Akhavan et al. [21] Hassen Ait Atmane [22] Present study

0.001 0 0 19.7391 19.7392 19.7320
102 10 26.2112 26.2112 26.2048
103 102 57.9961 57.9962 57.9894

0.1 0 0 19.0840 19.0658 19.0660
102 10 25.6368 25.6236 25.5989
103 102 57.3969 57.3923 57.2775

0.2 0 0 17.5055 17.4531 17.4553
102 10 24.3074 24.2728 24.1068
103 102 56.0359 56.0311 56.0260

Table 5
Comparison of non-dimensional natural frequencies w = ωa2

√
ρh/D for a simply supported isotropic square plate resting on an elastic foundation

(h/b = 0.2).

K0 K1
�
ω11

�
ω12

�
ω13

Matsunaga 
[16]

Thai et al. 
[23]

Present Matsunaga 
[16]

Thai et al. 
[23]

Present Matsunaga 
[16]

Thai et al. 
[23]

Present

0 0 17.5260 17.4523 17.45533 38.4827 38.1883 38.2052 65.9961 65.3135 65.3731
10 17.7847 17.7248 17.7196 38.5929 38.3098 38.3203 66.0569 65.3841 65.4378

102 19.9528 20.0076 19.9413 39.5669 39.3895 39.3417 66.5995 66.0138 66.0178
103 34.3395 35.5039 35.1278 47.8667 48.8772 48.3829 71.5577 72.0036 71.5586
104 45.5260 45.5255 45.5260 71.9829 71.9829 71.98299 97.4964 101.7990 101.79922
105 45.5260 45.5255 45.5260 71.9829 71.9829 71.9829 101.7992 101.7990 101.7992

0 10 22.0429 22.2145 22.0950 43.4816 43.7943 43.5262 71.4914 71.9198 71.4814
10 22.2453 22.4286 22.3043 43.5747 43.9009 43.6274 71.5423 71.9839 71.5406

102 23.9830 24.2723 24.1068 44.3994 44.8445 44.5271 71.9964 72.5554 72.0713
103 36.6276 38.0650 37.6468 51.6029 53.3580 52.6856 76.1848 78.0290 77.1762
104 45.5260 45.5255 45.5260 71.9829 71.9829 71.9829 99.0187 101.7990 101.7992
105 45.5260 45.5255 45.5260 71.9829 71.9829 71.9829 101.7992 101.7990 101.7992

Table 6
Comparison of fundamental frequency parameter w = ωb2√

S H/A/π2 for homogeneous SSSS square plates (a/b = 1).

Thickness-to-length ratio h/a Method Fundamental frequency parameter

Foundation stiffness parameters (K0, K1) (100,0) (500,0) (100,10) (500,10)
0.01 Hosseini-Hashemi [14] 2.2413 3.0215 2.6551 3.3400

Mindlin theory [4] 2.2413 3.0215 2.6551 3.3400
3D method [5] 2.2413 3.0214 2.6551 3.3398
Present 2.2413 3.0214 2.6551 3.3399

Foundation stiffness parameters (K0, K1) (200,0) (1000,0) (200,10) (1000,10)
0.1 Hosseini-Hashemi [14] 2.3989 3.7212 2.7842 3.9805

Mindlin theory [4] 2.3989 3.7212 2.7842 3.9805
3D method [5] 2.3951 3.7008 2.7756 3.9566
Present 2.3971 3.7153 2.7811 3.9738

Foundation stiffness parameters (K0, K1) (0,10) (10,10) (100,10) (1000,10)
0.2 Hosseini-Hashemi [14] 2.2505 2.2722 2.4590 3.8567

Mindlin theory [4] 2.2505 2.2722 2.4591 3.8567
3D method [5] 2.2334 2.2539 2.4300 3.7111
Present 2.2386 2.2599 2.4425 3.8144

In Fig. 5, the variations of non-dimensional fundamental frequencies w = ωb2√S H/A/π2 of simply supported Al/Al2O3
functionally graded square plates with respect to the thickness-to-length ratio δ = h/a are plotted. It is seen from the figure 
that increasing the value of the Winkler coefficient of foundation causes an increase in the fundamental frequency.

5. Conclusions

In this work, an efficient new refined shear deformation theory based on the neutral surface concept was effectively 
used to study extensively the free vibration analysis of an FG simply-supported plate resting on elastic foundations using an 
analytical procedure. Equilibrium equations are obtained using Hamilton’s principle. The Navier method is used for the ana-
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Fig. 2. Non-dimensional fundamental frequency w = ωa2/h
√

ρm/Em of Al/Al2O3 as a function of the power-law index k.

Fig. 3. Non-dimensional fundamental frequency w = ωa2/h
√

ρm/Em of Al/Al2O3 as a function of the power-law index k.

Fig. 4. Non-dimensional fundamental frequency w = ωa2/h
√

ρm/Em of Al/Al2O3 resting on a Winkler foundation as a function of the power-law index k.

lytical solutions of the functionally graded plate with simply supported boundary conditions. It was demonstrated that the 
present solution is highly efficient for an exact analysis of the vibration of FG rectangular plates on the elastic foundations. 
Parametric studies for making the power-law index, the foundation stiffness parameters, the aspect and side-to-thickness 
ratios vary are discussed and demonstrated through illustrative numerical examples. The present findings will be a useful 
benchmark for evaluating other analytical and numerical methods
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Fig. 5. Non-dimensional fundamental frequency w = ωa2/h
√

ρm/Em of Al/Al2O3 resting on an elastic foundation as a function of the power-law index k.

Fig. 6. Non-dimensional fundamental frequency w = ωb2√
S H/A/π2 of Al/Al2O3 resting on an elastic foundation as a function of the thickness-to-length 

ratio (δ = h/a).
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