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This paper examines the combined effects of the buoyancy force and of the magnetic 
field on the entropy generation rate in the flow of a couple stress fluid through a porous 
vertical channel. The flow’s dynamical equations were non-dimensionalised and solved via 
the application of the Adomian decomposition method (ADM). Variations of some thermo-
physical parameters were conducted and discussed, with regard to the physics of the fluid. 
Our result shows that the entropy generation rate increases as the buoyancy increases in 
the fluid. In addition, the irreversibility in the flow system results mainly from the fluid’s 
viscosity, ohmic heating, and the buoyancy.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Over the last few decades, the study of the thermodynamic analysis involving channel fluid flows has attracted a lot of 
research effort due to its application in several renewable energy systems. Examples of this include the prediction of the 
efficiency of many thermal systems exchanging heat between two heat reservoirs including other Carnot systems. Basically, 
the process of energy generation usually culminates in the wastage of excessive energy, which is dissipated in the form 
of heat. Following from this, there is a need to minimise this inherent wastage by improving the energy of the system. In 
this regard, few research work had been reported in the literature [1–21]. Specifically, Adesanya and Makinde [1] reported 
the entropy generation in a couple stress fluid flowing steadily through a porous channel with slip at the isothermal walls, 
Das et al. [2] examined the entropy generation in a magnetohydrodynamic (MHD) pseudo-plastic nanofluid flow through 
a porous channel with convective heating. In addition, Adesanya and Makinde [3] studied the entropy generation rate in 
the couple stress fluid flowing through a porous channel with convective heating at the walls. Eegunjobi and Makinde [4]
studied the effect of the buoyancy force and of the Navier slip on the entropy generation rate in a vertical porous channel. 
The authors also extended their work [5] by investigating the inherent irreversibility of heat transfer in the steady flow of a 
couple stress fluid through a vertical channel filled with porous materials.

In all the studies in Refs. [1–21] dealing with thermodynamic analysis linked with channel fluid flow, the combined 
effect of a uniform magnetic field applied transversely to the flow channel and the buoyancy force due to a change in 
the temperatures at the two boundary plates were neglected. However, magnetohydrodynamics (MHD) fluid flow, which is 
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Fig. 1. The geometry of the model.

partly dependent on buoyancy, plays a vital role in many industrial and thermal engineering applications. For instance, it is 
useful in controlled irrigation systems, controlling extremely hot moving fluids like molten steel and liquid film, as well as 
in the polymer industry. Many researchers have examined the entropy analysis in a buoyancy-driven fluid flow. For example, 
Riley [22] presented a buoyancy-dependent MHD flow. Also, Alboussière et al. [23] investigated the asymptotic behaviour 
of a buoyancy-driven convection in the presence of a uniform magnetic field. Moreover, Eegunjobi and Makinde in [4,5]
examined the second-law analysis for a buoyancy-driven incompressible fluid flow through a porous channel by imposing 
Navier slip conditions at the walls. In the same vein, Makinde and Chinyoka [24] examined the inherent irreversibility for 
flow and heat transfer inside a vertical channel made of two uniformly porous parallel plates with suction/injection under 
the combined action of a buoyancy force, a transverse magnetic field, and a constant pressure gradient.

Motivated by studies in [4,5,22–25], the objective of the present study is to examine the combined influence of the 
buoyancy and the magnetic field of the couple stress fluid on entropy generation within the flow channel, which has not 
been accounted for in the previous studies. The outcoming results are expected to enhance many industrial and thermal 
engineering processes whose working medium is a non-Newtonian fluid, with a view to minimise entropy generation, which 
tends to deplete the amount of useful energy for work.

To achieve this objective, flow-governing equations are formulated, non-dimensionalised, and approximate solutions to 
the dimensionless coupled non-linear boundary-value problem are obtained by using a semi-analytical Adomian decomposi-
tion method [26,27]. This method has been chosen because it does not require any linearisation, discretisation, use of initial 
guess or pertubation. These approximation solutions are used to compute the entropy generation rate and the irreversibility 
ratio.

In the following section, the problem is formulated, and a non-dimensional analysis is also presented. Section 3 contains 
the problem-solving method, the results are presented and discussed in Section 4, while Section 5 concludes the paper.

2. Mathematical formulation

A steady hydromagnetic non-Newtonian fluid flow between two permeable parallel vertical plates, with upthrust effect, 
is considered. The parallel plates are stationary regarding the motion of the fluid, as shown in the geometry of the problem 
(see Fig. 1). A 2-dimensional perpendicular coordinate system is employed, with the x-axis along the flow direction for the 
problem analysis. The width of the channel is y = h. Fluid injection occurs at the plate, where y = 0 at a uniform rate v0. 
The system also allows fluid suction at the plate where y = h, at the same velocity v0. A constant magnetic field of strength 
B0 is applied perpendicular to the direction of the fluid flow. The flow problem is analysed so that no external voltage 
is applied to the flow system, and with negligible induced magnetic field and Hall effect. With reference to Boussinesq’s 
approximation [28], a density difference exists in the flow system due to the temperature difference at the isothermal 
walls, which results in the buoyancy force contribution in the constitutive system equations. From this, the momentum 
and energy balance equations, with the local volumetric entropy generation rate (EG ) for the fluid flow, can be written as 
follows [1,4,12]:
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In this present analysis, the extended Navier boundary condition is used. Therefore, the appropriate boundary condition for 
the flow system may be written as

u′(0) = γ1
du′(0)

dy′ − αη

μ

d3u′(0)

dy′ 3
,

d2u′(0)

dy′ 2
= 0, T (0) = T0 (4)

u′(1) = γ2
du′(1)

dy′ − αη

μ

d3u′(1)

dy′ 3
,

d2u′(1)

dy′ 2
= 0, T (1) = T0 (5)

where u′ and P are the fluid velocity and pressure respectively, v0 is the injection/suction velocity at the channel walls, η is 
the coefficient of the couple stress, μ is the dynamic viscosity, γi corresponds to the Navier slip coefficients at the lower 
and upper plates, respectively for i = 1, 2, ρ is the fluid density, σe is the fluid electrical conductivity, κ is the coefficient of 
thermal conductivity, cP is the isobaric specific heat, T f and T0 are the final and initial fluid temperatures, respectively, T is 
the temperature of the fluid, β is the volumetric expansion coefficient, g is the acceleration due to gravity and α = 1 is a 
variable constant.

In Eq. (1), the applied magnetic field B of magnitude B0 may be analysed using the following Maxwell’s equations and 
Ohm’s law:

∇.B = 0,∇ × B = μm J , J = σe(E + u′ × B) (6)

where μm is the magnetic permeability, J is the current density, u′ is the fluid velocity, σe is the fluid electrical conductivity, 
and E is the fluid electrical field. We consider a flow system with a small induced magnetic field, hence μm = 0. In addition, 
there is no applied voltage or polarisation voltage in the flow system, hence E = 0. The effective electromagnetic force in 
the fluid may be defined as:

Em = J × B (7)

Using Eq. (6) in Eq. (7):

Em = −σe u′B2
0 î (8)

where î is a unit vector in the x-direction.
Using the following dimensionless parameters and variables in Eqs. (1)–(5):
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h
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ν
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κ
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h
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h
(9)

Eqs. (1)–(3) may be written in the form of dimensionless boundary value problems, as

s
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together with the boundary conditions
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while the entropy generation can be computed using

Ns = (
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)2 + Br

�
(
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)2 + Br
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(

d2u

dy2
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�
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The present model – Eqs. (1), (2) and (3) – is comparable to that studied by Adesanya and Makinde [1] in the asymptotic 
case corresponding to Ha2, Gr, α → 0, and Eegunjobi and Makinde [4] in the asymptotic case where Ha2, η, α → 0.
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3. Adomian decomposition method of solution

In this section, the semi-analytical Adomian decomposition method is employed to obtain the solutions to the mo-
mentum equation (10), the energy equation (11), and the entropy production equation (13), subjected to boundary condi-
tion (12). Usually, the boundary value problems are converted into the equivalent integral equations with u′′(0) = u′′(1) = 0. 
Thus,
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y∫

0
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y∫

0

y∫
0

y∫
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The coefficients f0, f1, f2, c0 and c1 in Eqs. (14), (15) were determined by using the method of undetermined coeffi-
cients. Next, the flow velocity is considered to be in form of the infinite series:
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Substituting (16) into (14) and (15), we obtain:
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Following from the above, (16) may be expressed in the recursive form

u0(y) = f0 + f1 y + y3

6
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To further simplify the computational task with a view to reducing the computational load in (18), the modified recurrent 
relation

θ0(y) = c1 y (21)

is used, so that
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It has been shown in [8] that the ADM series solution converges rapidly. As a result, few terms of the series can guarantee 
reliable approximate solutions to the problem. Here, we set the number of iterations to m = 3, so that the approximate 
solutions (16) may be written as finite series as follows:

u(y) =
3∑
0

un(y), θ(y) =
3∑
0

θn(y) (26)

The irreversibility in the heat flow to the viscous fluid is analysed using (13) by expressing the entropy generation 
number Ns as a partial sum of the entropy generation due to heat transfer, and the irreversibility resulting from fluid 
friction and Ohmic heating of the fluid. Therefore we set N1 and N2 as follows:

N1 =
( dθ

dy

)2
, N2 = Br

�

( du

dy

)2 + Br

�a2

( d2u

dy2

)2 + Br

�
Ha2u2 (27)

The Bejan number Be, which is a parameter that measures the irreversibility ratio in the heat flow, may be defined as

Be = N1

Ns
= 1

1 + �
,� = N2

N1
(28)

where � is the irreversibility ratio, a parameter that measures the rate of destruction of the available work in the flow sys-
tem. The Bejan number in Eq. (28) is bounded in the interval 0 ≤ Be ≤ 1. The irreversibility due to heat transfer is dominant 
when Be = 1, while the irreversibility due to viscosity and magnetic field is dominant when Be = 0. The dimensionless equa-
tions (10)–(13), with the boundary conditions (12), were solved using the algorithm in (19)–(26), coded in MATHEMATICA 
symbolic package. Using the numerical procedure discussed above, we computed the dimensionless velocity, temperature, 
entropy generation, and irreversibility ratio. In what follows, we discussed some interesting results from our findings.
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Fig. 2. Parameterised velocity profiles of the fluid flow: (a) by varying the Grashof number Gr, with Ha = 1, Br = 5, Pr = 25, � = 1, a = s = 1, β1 = β2 = 0.1; 
(b) by varying the Hartmann number Ha, with Gr = 1, Br = 5, Pr = 25, � = 1, a = s = 1, β1 = β2 = 0.1; (c) by varying the couple stress inverse a, with 
Gr = 1, Ha = 1, Br = 5, Pr = 25, � = 1, s = 1, β1 = β2 = 0.1.

Fig. 3. Parameterised temperature profiles of the fluid flow: (a) by varying the Grashof number Gr, with Ha = 1, Br = 5, Pr = 25, � = 1, a = s = 1, 
β1 = β2 = 0.1; (b) by varying the Hartmann number Ha, with Gr = 1, Br = 5, Pr = 25, � = 1, a = s = 1, β1 = β2 = 0.1; (c) by varying the couple stress 
inverse a, with Gr = 1, Ha = 1, Br = 5, Pr = 25, � = 1, s = 1, β1 = β2 = 0.1.

4. Results and discussion

We start by examining the effect of a number of parameters in the dimensionless model equations, which govern, in 
this present paper, the evolution of the fluid velocity u, of the fluid temperature θ , of the entropy generation Ns, and 
of the irreversibility ratio Be. These are the Grashof number, Gr, the Hartmann number Ha, and the couple stress inverse 
parameter a. In Fig. 2a, we investigate the effect of buoyancy, in terms of Gr, on the flow velocity, with respect to the width 
of the flow channel. It is observed from this figure that as Gr increases, the fluid momentum also increases. As a result, 
the flow velocity increases. The buoyancy effect is gravity and temperature difference dependent. The buoyancy effect is not 
significant at the walls. In Fig. 2b, the applied magnetic field showed the same behaviour as the buoyancy effect as regards 
the evolution of the flow velocity profile. As the Hartmann number, Ha, increases, the fluid particles speed up mainly at the 
centreline of the flow channel. The Lorentz force constitutes the resistance/drag to the flow of electrically conducting fluid, 
which effectively reduces the momentum of the fluid parcels in the adjacent fluid layers. In contrast, our study shows that 
the velocity of the flow increases as the strength of the magnetic field increases. This is due to the presence of buoyancy 
forces in the flow system. As the fluid surges, the effective positive jump in the velocity of the fluid parcels suppresses the 
decreasing rate of change of momentum caused by the Lorentz force in the flow system, thereby increasing the velocity of 
the fluid. Fig. 2c shows the effect of increasing the couple stress inverse parameter on the velocity of the flow. It is observed 
from the figure that increasing the couple stress inverse parameter also increases the velocity of the fluid motion. This is 
caused by the reduction in the friction arising from the effect of particle additives, which constitute a size-dependent effect 
in couple stress fluids. Moreover, the rotational field of the fluid particles becomes minimal. Consequently, an increase in 
the couple stress results in a corresponding increase in the velocity profile of the fluid.

Also in Fig. 3, the behaviour of the flow temperature is described with respect to the buoyancy effect, the magnetic field 
parameter, and the couple stress inverse parameter. It is clear from Fig. 3a that increasing the Grashof number, Gr, increases 
the temperature of the fluid. This can be explained by the increase in the translational kinetic energy of the flow. Buoyancy 
increases the fluid velocity. As a result, the kinetic energy, E = 1

2 mu2 (in terms of the fluid particle’s mass m and velocity u) 
increases, resulting in an increase in the fluid’s thermodynamic temperature. The kinetic energy E is comparable with the 
Brinkman number given by Br = 1 mv2, where m = 2μ . It is observed in Fig. 3b that the increase in the magnetic 
2 0 κ(T f−T0)
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Fig. 4. Entropy generation rate: (a) by varying the Grashof number Gr, with Ha = 1, Br = 5, Pr = 25, � = 1, a = s = 1, β1 = β2 = 0.1; (b) by varying the 
Hartmann number Ha with Gr = 1, Br = 5, Pr = 25, � = 1, a = s = 1, β1 = β2 = 0.1; (c) by varying the couple stress inverse a, with Gr = 1, Ha = 1, Br = 5, 
Pr = 25, � = 1, s = 1, β1 = β2 = 0.1.

Fig. 5. Irreversibility ratio: (a) by varying the Grashof number Gr, with Ha = 1, Br = 5, Pr = 25, � = 1, a = s = 1, β1 = β2 = 0.1; (b) by varying the Hartmann 
number Ha, with Gr = 1, Br = 5, Pr = 25, � = 1, a = s = 1, β1 = β2 = 0.1; (c) by varying the couple stress inverse a, with Gr = 1, Ha = 1, Br = 5, Pr = 25, 
� = 1, s = 1, β1 = β2 = 0.1.

field intensity results in an increase in the channel’s temperature, while Fig. 3c reveals that increasing the couple stresses 
decreases the temperature profile in the channel. Expectedly, couple stresses enhance the fluid’s intermolecular cohesion, 
thereby increasing the fluid’s resistance to shear stress; consequently, the temperature rises within the flow channel.

Furthermore, entropy production shows an interesting response to changes in buoyancy, as revealed by Fig. 4a. The fluid 
shows an increasing degree of randomness in the fluid particles, mainly at the centreline of the channel, as the Grashof 
number increases. The increased randomness here is due to the increased rate of change of momentum in the fluid as 
the parameter Gr increases. This is also observed in Fig. 4b. Entropy generation increases as the magnetic field strength 
increases, but with entropy freeze-out in the width region 0.64 ≤ y ≤ 0.68. Moreover, in Fig. 4c, a reversed scenario is 
observed. The rate of entropy generation decreases rapidly as the couple stress inverse parameter increases.

Fig. 5 shows the dominance of the two forms of irreversibilities inherent to the fluid, namely the irreversibility due 
to fluid viscosity, ohmic heating, and buoyancy, and irreversibility due to heat transfer. We refer to the Bejan number 
versus the channel’s width (Be–y) chart as Entropy Contribution to Irreversibility Scale (ECIS), which compares the partial 
irreversibilities contributed by the different entropy sources such as N1 and N2 to the total irreversibility in the flow system. 
It is clear from Fig. 5a that, as Gr increases, the irreversibility due to fluid viscosity, Joule heating, and buoyancy dominates. 
In Fig. 5b and c, it is observed that as the Hartmann number Ha and the couple stress inverse parameter a increase, the 
irreversibility due to heat transfer dominates.

5. Conclusion

In this work, we examined the combined effect of buoyancy and magnetic field on the entropy generation in a couple 
stress hydromagnetic fluid flow, using the Adomian decomposition method to obtain the analytical solution that approx-
imates the velocity and temperature profiles, which are used to obtain the entropy generation production as well as the 
Bejan number. We observed that the addition of the buoyancy force into the momentum balance equation reveals a rather 
interesting channel fluid flow dynamics. Buoyancy could enhance the fluid velocity response as well as the temperature of 
the system. We showed that an increase in buoyancy forces results in a regime of irreversibility ratio dominated by the 
irreversibility due to fluid viscosity, ohmic heating, and buoyancy. In addition, it was found that the entropy generation rate 
increases with increasing buoyancy forces.
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Nomenclature

u dimensionless fluid velocity
s suction/injection parameter
Pr Prandtl number
Br Brinkman number
Gr Grashof number
a2 couple stress parameter
� parameter that measures the temperature dif-

ference between the two heat reservoirs
G dimensionless pressure gradient
β1 dimensionless Navier slip parameter at the 

lower wall
β2 dimensionless Navier slip parameter at the up-

per wall
Ha2 Hartmann number
T fluid temperature
T f final fluid temperature
γ1 Navier slip coefficient at the lower plate
γ2 Navier slip coefficient at the upper plate
v0 uniform suction/injection velocity
h width of the channel

x′, y′ Cartesian coordinates
x, y dimensionless Cartesian coordinates
B0 magnetic field strength
μ dynamic viscosity
σe electrical conductivity
η coefficient of couple stress
u′ fluid velocity
EG volumetic rate of entropy
Ns entropy generation number
N1 entropy generation due to heat transfer
N2 entropy generation due to entropy generation 

due to fluid friction and ohmic heating
κ thermal conductivity
ρ fluid density
cP specific heat at constant pressure
T0 temperature at the lower plate
θ dimensionless fluid temperature
β volumetric expansion coefficient
g acceleration due to gravity
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