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Our work presents an analytical study of the determination of the reflection coefficient 
during the interaction between the regular wave current and a horizontal plate. This study 
was done using the linearized potential flow theory with the evanescent modes model, 
while searching for complex solutions to the dispersion equation that are neither real pure 
nor imaginary pure. To validate the established model, it has been confronted with the 
experimental results of V. Rey and J. Touboul, in a first phase, and then compared to those 
of the numerical study by H.-X. Lin et al. Then, this model was used to study the effect of 
current on the reflection coefficient.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

On présente dans ce travail une étude analytique de la détermination du coefficient de 
réflexion lors de l’interaction houle–courant–plaque. Cette étude a été faite dans le cadre de 
la théorie potentielle linéarisée moyennant le modèle des modes évanescents, en cherchant 
des solutions complexes de l’équation de dispersion qui ne soient, ni réelles pures, ni 
imaginaires pures. Pour valider le modèle établi, on l’a d’abord confronté aux résultats 
expérimentaux de V. Rey et J. Touboul, puis à ceux, issus de la modélisation, de H.-X. Lin 
et al. Ensuite, on a utilisé ce modèle pour étudier l’effet du courant sur le coefficient de 
réflexion.
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Fig. 1. Geometry of the problem.

1. Introduction

The protection of beaches, and of other coastal structures such as harbors, lakes etc. requires the maximization of wave 
reflection, hence the importance of wave reflectors. In certain circumstances, the wave is accompanied by currents. Wave 
reflectors, in these cases, have to consider the interaction wave–current.

The wave–current interaction has been the subject of several studies. We can name that by P. Osuna and J. Monbaliu in 
2004 on the North Sea [1], the one by Y.-Y. Chen et al. in 2012 on the particle trajectory in Lagrangian description [2], and a 
theoretical and a numerical study by D. Zhifei and J.-T. Kirby on the interaction between a gravity wave of weak amplitude 
and a sheared current [3].

A submerged horizontal plate is a reflector of regular wave that enables the circulation of water, above and beneath; 
hence its environmental impact is minimal. In the last decades, the interaction between regular wave and plate has pro-
gressively attracted the interest of the researchers. In 1984, Patarapanich [4] showed, with the plane wave model, that the 
reflection coefficient of a gravity wave by a submerged horizontal plate depends on the ratio of the water depth to the 
wavelength of the incident wave, the ratio of the depth of the plate immersion to the depth of water, and on the ratio 
of the plate length to the wavelength of the wave that propagates above the plate. In 1986, Guevel [5] brought out that 
the body of water below the plate behaved as an oscillating wall. In 1990, H. Kojima et al. [6] presented an experimental 
study on energy transfer from the fundamental toward the transmitted second harmonic by the method of Goda using 
multiple probes. In 1993, Molin and Betous [7], to minimize the efforts on the structure, used a perforated tile and made 
an experimental and analytical study on the reflection coefficient, using the evanescent modes model. In 2001, Brossard 
et al. [8] showed experimentally, using a mobile probes technique, that during the interaction between a regular wave and 
plate, there is free upper harmonic production. In 2012, K. Wang et al. [9] presented an analysis of the velocity field using 
a numerical method (BEM). In 2014, H. Behera and T. Sahoo [10] studied the interaction of a gravity wave and of a flexible 
porous horizontal plate.

In 2003, V. Rey et al. [11] conducted an experimental study on wave–current–plate interaction for regular and irregular 
waves. In 2014, H.-X. Lin et al. [12] made a numerical study on the wave reflection and production of harmonics during the 
current–wave–plate interaction.

In this work, we present an analytical study of the determination of the reflection coefficient during the regular wave–
current–plate interaction. This study was carried out as part of the linearized potential flow theory using the evanescent 
modes model. To take account of evanescent modes in the presence of current, the dispersion equation had to be solved by 
looking for complex solutions that are, neither pure real, nor pure imaginary.

To validate the established model, it has been confronted with the experimental results of V. Rey and J. Touboul [13], in 
a first phase, and then compared to those of the numerical study by H.-X. Lin et al. Then, this model was used to study the 
effect of current on the reflection coefficient.

2. Formulation of the problem

We are interested in the calculation of the reflection coefficient of a regular wave in the presence of uniform current, 
when interacting with a fixed horizontal plate totally immersed in a channel. The studied regular wave is potential and of 
low wave steepness, whereas the surface tension is negligible. A monochromatic wave is emitted upstream, and downstream, 
the wave does not undergo any reflection. The area of study is divided into four sub-domains, as shown in Fig. 1.

Seeking for the potential in the form of a superposition of potential associated with the current φc(x, y, t) = U x and that 
associated with a monochromatic regular wave φh(x, y, t) = ϕ(x, y)eiωt , the total potential is written:

• in sub domains D p , 1 ≤ p ≤ 3:

φp(x, y, t) = U x + [
Apeik−

p xcosh
(
k−

p (y + H p)
) + B peik+

p xcosh
(
k+

p (y + H p)
)]

eiωt

+
[

N∑
n=1

(
Apnek−

pnxcos
(
k−

pn(y + H p)
) + B pnek+

pnxcos
(
k+

pn(y + H p)
))]

eiωt (1)
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Fig. 2. Reflection coefficient as a function of the period for the following characteristics: plate thickness e = 0.1 m, plate length 2l = 1.53 m, plate immersion 
h = 0.5 m, water depth H = 3 m and current velocity U = 0.3 m/s.

In this equation, H1 and H2 are both equal to the water depth in the channel (H1 = H2 = H), H3 is equal to the plate 
immersion (H3 = h), ω is the pulsation of the wave, N denotes the number of evanescent modes, A1n and B2n are all zero, 
A1 is given by: A1 = gai

1
(ω−Uk−

1 ) cosh(k−
1 H)

(where ai is the wave amplitude that propagates at the free surface, g is the 

acceleration of gravity), and the constants k±
p and k±

pn are the roots of the following equations, respectively:

(
ω ± U

(
k±

p

))2 = g
(
k±

p

) × tanh
((

k±
p

)
H p

)
(2)(

iω ± U
(
k±

pn

))2 = g
(
k±

pn

) × tan
((

k±
pn

)
H p

)
(3)

• in sub domain D4:

φ4(x, y, t) = U x +
[(

A4 + B4x +
N∑

n=1

(
A4ne−μnx + B4neμnx) cos

(
μn(y + H)

))]
eiωt (4)

μn = nπ
H − h − e

where e is the plate’s thickness.

All constants {B1, B1n, A3, B3, A3n, B3n, A4, B4, A4n, B4n, A2 and A2n for 1 ≤ n ≤ N} that are present in the equations (1) and 
(4) are unknown.

The solutions to Eq. (2) are the wave numbers of the propagating modes. This equation has been subject of investigation 
of several studies. We can mention the study by P. Maissa et al. [14] and the experimental display by P. Faltot et al. [15].

The solutions to Eq. (3) correspond to evanescent modes. In the absence of current (U = 0), these solutions are pure 
real. However, in the presence of current, it is easy to verify that this equation firstly has no pure real solution, secondly 
the pure imaginary solutions are those corresponding to Eq. (2). Therefore, to establish this model, it is necessary to look 
for solutions (k±

pn) to the nonzero real part and to the nonzero imaginary part, as well. Those solutions have to be such that 
k−

pn = −k+
pn .

By means of the matching conditions between the sub domains that express the continuity of the velocity potential and, 
that of the horizontal velocity at the edges of attack and trailing, of the plate (x = −l and x = l, respectively), we obtain a 
linear algebraic system of 6N + 6 equations and 6N + 6 unknowns (see Appendix A). The wave reflection coefficient that 
propagates at the free surface is given by:

R = (ω + Uk+
1 )

(ω − Uk−
1 )

× cosh(k+
1 H)

cosh(k−
1 H)

× B1

A1

The reflection coefficient, like the elements of the matrix corresponding to this system, depends on the relative depth 
kH (which expresses the ratio of the water depth in the channel to the wavelength of the incident wave, in the absence of 
current), on the plate immersion ratio (h/H), on the relative plate length (2l)/h (ratio of the total length of the plate at its 
immersion depth below the free surface level at rest) and on the Froude number (U/

√
g H).
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Fig. 3. Reflection coefficient as a function of the period for the following characteristics: plate thickness e = 0.01 m, plate length 2l = 0.25 m, water depth 
H = 0.2 m, and relative current velocity (U/C g0) = 0.12 (C g0 is the group velocity at T = 0.75 s) for a plate immersion at h = 0.1 m.

Fig. 4. Reflection coefficients as a function of the period for the following characteristics: plate thickness e = 0.1 m, plate length 2l = 1.53 m, plate 
immersion h = 0.5 m, water depth H = 3 m, and current velocities U = 0 and 0.3 m/s.

3. Validation of the model

To validate this model, the results were compared with those made experimentally by V. Rey and J. Touboul [13] firstly, 
and then with the numerical results of H.-X. Lin et al. [12]. For each of these two cases, we studied the effect of the number 
N of evanescent modes taken into account in Eqs. (1) and (4). For this, the reflection coefficient calculated by this model is 
represented as a function of the period, for different values of the number N of evanescent modes. In Fig. 2, the reflection 
coefficient is calculated by using the data used by V. Rey and J. Touboul [13]. In Fig. 3, the data used are those of H.-X. Lin 
et al. [12].

The results in Figs. 2 and 3 show that the reflection coefficient calculated by this model increases with the number of 
evanescent modes taken into account. However when this number reached 28 the reflection coefficient cease to increase 
practically. For the rest, the number of evanescent modes taken into account is N = 30.

Fig. 4 shows, depending on the period, the values of the reflection coefficient measured experimentally by V. Rey and 
J. Touboul [13] and calculated analytically by this model. The analytical calculations were made in the absence of current 
(U = 0) and in the presence of a current of velocity U = 0.3 m/s, for a plate thickness e = 0.1 m.

Fig. 5 shows the values of the reflection coefficient, depending on the period, for (U/C g0) = 0.12 (ratio of the current 
velocity relative to the (C g0) group velocity calculated in the absence of current). The results of this model are compared 
with those calculated numerically by H.-X. Lin et al. [12].

In Fig. 6, we compare the results of this model with the results calculated numerically by H.-X. Lin et al. [12], by 
representing the values of the reflection coefficient as a function of the plate length, for (U/C g0) = 0.07 (ratio of the 
current velocity relative to the (C g0) group velocity calculated in the absence of current).

The results presented in Figs. 4–6 show that: (1) the results of this model are in agreement with the experimental values 
obtained by V. Rey and J. Touboul [13] and also with the numerical results of H.-X. Lin et al. [12]; (2) the model presents 
a slight difference in the range of periods between 1.5 and 2 s in comparison with the experimental results of V. Rey and 
J. Touboul [13].
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Fig. 5. Reflection coefficient as a function of the period for the following characteristics: plate thickness e = 0.01 m, plate length 2l = 0.25 m, water depth 
H = 0.2 m, and relative current velocity (U/C g0) = 0.12 (C g0 is the group velocity at T = 0.75 s) for plate immersions h = 0.1 m and = 0.07 m.

Fig. 6. Reflection coefficient as a function of the length of the plate, for: plate thickness e = 0.01 m, plate immersion h = 0.1 m, water depth H = 0.2 m, 
and relative current velocity (U/C g0) = 0.07 (C g0 is the group velocity at T = 0.75 s).

Fig. 7. Reflection coefficient as a function of kH for: a thin plate (e = 0) of relative plate length 2l/h = 3, a plate immersion ratio h/H = 0.5, and different 
values of the Froude number (F r = U√

g H
).

4. Effect of the current

To study the effect of the current on the reflection coefficient of regular waves, the reflection coefficient was calculated 
by this theoretical model for different values of the Froude number while keeping constant the plate immersion ratio as 
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Table 1
Effect of the Froude number on the maximum of the reflection 
coefficient. M0: reflection coefficient maximum calculated by this 
model without current. M: reflection coefficient maximum calcu-
lated by this model in the presence of current.

Froude number
U√
g H

= 0.036 U√
g H

= 0.073 U√
g H

= 0.092

M−M0
M0

5% 19.62% 24.84%

well as a relative plate length. Fig. 7 shows the variations of the reflection coefficient as a function of the relative depth 
(kH), for different values of the Froude number, ( U√

g H
= 0, U√

g H
= 0.036, U√

g H
= 0.073, U√

g H
= 0.092). In Table 1, we present 

the relative difference of the reflection coefficient maximum ( M−M0
M0

, where M0 is the reflection coefficient maximum in the 
absence of current and M is the reflection coefficient maximum in the presence of current) for the different values of the 
Froude number.

The results show that when the plate immersion ratio and relative plate length are both given: (1) the maximum of 
the reflection coefficient increases with the Froude number (2) the band with, where the reflection coefficient exceeds 0.25, 
increases slightly with the Froude number.

5. Conclusion

The evanescent modes model based on complex solutions to the dispersion equation, of non-zero real part and non-zero 
imaginary part, is consistent with the experimental measurements made by V. Rey and J. Touboul [13] as well as with the 
results of the numerical study by H.-X. Lin et al. [12].

By means of this model, we can deduce that (1) the maximum of the reflection coefficient increases with the Froude 
number, and (2) the band width where the reflection coefficient exceeds 0.25 increases slightly with the Froude number.

Appendix A

• The continuity of the velocity potential at the edge of attack (x = −l):

φ1(−l, y) = φ3(−l, y) if h ≤ y ≤ 0

φ1(−l, y) = φ4(−l, y) if H ≤ y ≤ −h

Multiplying these two equations respectively by cos(k−
3n(y + h)) and cos(μn(y + H)) then after integrating, we obtain:

0∫
−h

φ1(−l, y) cos
(
k−

3n(y + h)
)
dy =

0∫
−h

φ3(−l, y) cos
(
k−

3n(y + h)
)
dy (1 ≤ n ≤ N)

−h∫
−H

φ1(−l, y) cos
(
μn(y + H)

)
dy =

−h∫
−H

φ4(−l, y) cos
(
μn(y + H)

)
dy (1 ≤ n ≤ N)

This gives 2N equations (two equations for each value of n). Two other equations are obtained by replacing
cos(k−

3n(y + h)) by cosh(k−
3 (y + h)) and cos(μn(y + H)) by 1 (one) in the previous process, respectively. Hence the number 

of equations is 2N + 2.

• The continuity of the horizontal velocity at the edge of attack, (x = −l):

∂φ1(−l, y)

∂x
= ∂φ3(−l, y)

∂x
if h ≤ y ≤ 0

∂φ1(−l, y)

∂x
= ∂φ4(−l, y)

∂x
if H ≤ y ≤ −h

By multiplying these two equations by cos(k+
1n(y + H)) and then by integrating and summing, we obtain:

0∫
∂φ1(−l, y)

∂x
cos

(
k+

1n(y + H)
)
dy =

0∫
∂φ3(−l, y)

∂x
cos

(
k+

1n(y + H)
)
dy
−H −h
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+
−h∫

−H

∂φ4(−l, y)

∂x
cos

(
k+

1n(y + H)
)
dy (1 ≤ n ≤ N)

By replacing cos(k+
1n(y + H)) by cosh(k+

1 (y + H)) in the previous process, we obtain another equation. In addition, by 
using the matching conditions between the sub domains at the edge of attack, we obtain 3N + 3 equations.

• By a similar process at the edge of trailing (x = l), by replacing φ1 by φ2, k+
1 by k−

1 , k+
1n by k−

1n, k−
3 by k+

3 and k−
3n by 

k+
3n , we obtain 3N + 3 other equations.

Therefore, using the continuity of the velocity potential and that of the horizontal velocity at the edges of attack and 
trailing of the plate, we obtain the following system (Eqs. (5)–(16)):

0∫
−h

φ1(−l, y) cos
(
k−

3n(y + h)
)
dy =

0∫
−h

φ3(−l, y) cos
(
k−

3n(y + h)
)
dy (1 ≤ n ≤ N) (5)

0∫
−h

φ1(−l, y) cosh
(
k−

3 (y + h)
)
dy =

0∫
−h

φ3(−l, y) cosh
(
k−

3 (y + h)
)
dy (6)

−h∫
−H

φ1(−l, y) cos
(
μn(y + H)

)
dy =

−h∫
−H

φ4(−l, y) cos
(
μn(y + H)

)
dy (1 ≤ n ≤ N) (7)

−h∫
−H

φ1(−l, y)dy =
−h∫

−H

φ4(−l, y)dy (8)

0∫
−H

∂φ1(−l, y)

∂x
cos

(
k+

1n(y + H)
)
dy =

0∫
−h

∂φ3(−l, y)

∂x
cos

(
k+

1n(y + H)
)
dy

+
−h∫

−H

∂φ4(−l, y)

∂x
cos

(
k+

1n(y + H)
)
dy (1 ≤ n ≤ N) (9)

0∫
−H

∂φ1(−l, y)

∂x
cosh

(
k+

1 (y + H)
)
dy =

0∫
−h

∂φ3(−l, y)

∂x
cosh

(
k+

1 (y + H)
)
dy

+
−h∫

−H

∂φ4(−l, y)

∂x
cosh

(
k+

1 (y + H)
)
dy (10)

0∫
−h

φ2(l, y) cos
(
k+

3n(y + h)
)
dy =

0∫
−h

φ3(l, y) cos
(
k+

3n(y + h)
)
dy (1 ≤ n ≤ N) (11)

0∫
−h

φ2(l, y) cosh
(
k+

3 (y + h)
)
dy =

0∫
−h

φ3(l, y) cosh
(
k+

3 (y + h)
)
dy (12)

−h∫
−H

φ2(l, y) cos
(
μn(y + H)

)
dy =

−h∫
−H

φ4(l, y) cos
(
μn(y + H)

)
dy (1 ≤ n ≤ N) (13)

−h∫
φ2(l, y)dy =

−h∫
φ4(l, y)dy (14)
−H −H
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0∫
−H

∂φ2(l, y)

∂x
cos

(
k−

1n(y + H)
)
dy =

0∫
−h

∂φ3(l, y)

∂x
cos

(
k−

1n(y + H)
)
dy

+
−h∫

−H

∂φ4(l, y)

∂x
cos

(
k−

1n(y + H)
)
dy (1 ≤ n ≤ N) (15)

0∫
−H

∂φ2(l, y)

∂x
cosh

(
k−

1 (y + H)
)
dy =

0∫
−h

∂φ3(l, y)

∂x
cosh

(
k−

1 (y + H)
)
dy +

−h∫
−H

∂φ4(l, y)

∂x
cosh

(
k−

1 (y + H)
)
dy (16)

This is a linear algebraic system of 6N +6 equations and 6N +6 unknowns, which are the constants {B1, B1n, A3, B3, A3n,

B3n, A4, B4, A4n, B4n, A2 and A2n for 1 ≤ n ≤ N}. The linearity of this system results from that of the velocity potential. The 
elements of the matrix corresponding to this system depend on h, H , 2l, ω, and U . The wave pulsation ω is depending on 
kH by means of the dispersion equation in absence of current ω2 H

g = kH × tanh(kH), where k is the wave number of the 
incident wave in the absence of current. Hence the elements of the matrix corresponding to this system depend on kH , 
h/H , 2l/h, and U/

√
g H .
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