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A one-dimensional model of an elastic junction that contains hard- and readily-movable 
thin rods is derived, and asymptotic formulas for eigenvalues with rigorous estimates 
for remainders are given. In addition to vector functions satisfying classical ordinary 
differential equations, the model involves algebraic unknowns and algebraic relations 
corresponding to the longitudinal rigid motion of readily-movable rods.
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r é s u m é

Nous obtenons un modèle 1D d’une jonction élastique qui contient des barres dures 
fines facilement déplaçables, et nous donnons un développement asymptotique des valeurs 
propres justifié par des estimations d’erreur rigoureuses. En plus de fonctions vectorielles 
satisfaisant des équations différentielles ordinaires, le modèle met en jeu des inconnues et 
des relations algébriques correspondant au mouvement rigide longitudinal des barres.

© 2016 Published by Elsevier Masson SAS on behalf of Académie des sciences.

1. Statement of problem

Let Q j(h), j = 1, 2, 3 be three vertical thin (h � 1) rods

Q j(h) = {x = (y, z) ∈R
2 ×R : |y − Y j| < h, z = x3 ∈ (0, L j)} (1)

with circular cross-sections of radius h > 0 and length L j . By rescaling, the smallest length is reduced to one so that the 
Cartesian coordinates x = (x1, x2, x3) and all geometrical parameters become dimensionless. The centers Y j of the rod soles 
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Fig. 1. The elastic junction (a) and its one-dimensional skeleton (b).

ω0
j (h) are vertices of a nontrivial triangle, and the upper ends ωL j

j (h) = {x : |y −Y j| < h, z = L j} are embedded into the nodes 
θ j(h) = {x : h−1(y − Y j, z − L j) ∈ θ j} where θ j ⊂R

3 are bounded Lipschitz domains. Moreover, the nodes are connected with 
other three rods Qk(h), k = 1, 2, 3, also of radius h and with length Lk = (|Y k − Y k+1|2 + |Lk − Lk+1|2

)1/2
, where Y 4 = Y 1

and L4 = L1. All rods and nodes composing the spatial junction �(h), see Fig. 1a, are isotropic and homogeneous with the 
Lamé constants λ ≥ 0 and μ > 0. The spectral elasticity problem reads:

−μ(∇ · ∇)uh(x) − (λ + μ)∇∇ · uh(x) = �huh(x), x ∈ �(h) (2)

σ n(uh; x) = 0, x ∈ ∂�(h) \
(
ω0

1(h) ∪ ω0
2(h) ∪ ω0

3(h)
)

(3)

uh(x) = 0, x ∈ ω0
j (h), j = 1,2,3 (4)

Here, ∇ = grad, ∇· = div, n is the outward normal defined almost everywhere on the Lipschitz (our assumption) boundary 
∂�(h), uh = (uh

1, u
h
2, u

h
3) is the displacement vector and σ (n)(uh) the normal stress vector. In other words, the surface ∂�(h)

is traction-free, see (3), except for the rod slopes ω0
j (h) which are fixed, see (4).

The main goal of the paper is to construct asymptotics as h → +0 of eigenvalues �h
m = ρ(
h

m)2 of the problem (2)–(4)
where ρ > 0 is the constant material density and 
h

m > 0 is a frequency of natural oscillations of the junction �(h).

2. Motivation

The common knowledge of different reactions of thin solids on longitudinal and bending deformations comes from 
everyday life, but brings quite big complications into the rigorous asymptotic analysis of elastic junctions. Although the 
limit one-dimensional models of beams and rods with various boundary conditions at their ends, see [1–4] and many 
others, results on their finite junctions are much less developed (we here do not touch the homogenization of lattices, 
which are rather different elastic objects). We mention the original paper [5] investigating an angular joint of two beams 
and an asymptotic procedure for arbitrary shaped finite junctions of anisotropic inhomogeneous beams [6] and rods [7]. In 
the latter papers also, the classification “readily/hard-movable” of elements, rods and nodes, was introduced while in the 
presence of readily-movable rods an adequate one-dimensional model of the junction is no longer differential, but gains 
algebraic unknowns and equations. These results are related to static elasticity problems, but in this note we adapt those 
asymptotic procedures to the formulated eigenvalue problem.

In Section 7 we will comment on possible generalizations, but here we restrict the geometry and elastic properties of 
the junction in order to make formulas shorter and more explicit.

3. Asymptotic expansions for hard-movable rods

On the vertical rods (1), we accept the standard asymptotic ansatz

uh(x) = h−2U−2(z) + h−1U−1(η j, z) + h0U 0(η j, z) + h1U 1(η j, z) + . . . , x ∈ Q j(h) (5)

where η j = h−1(y − Y j) are stretched coordinates,

U−2(z) =
2∑

i=1

e(i)w j
i (z), U−1(η j, z) = e(3)

(
w j

3(z) −
2∑

i=1

η
j
i ∂z w j

i (z)
)

+ θ(η j)w j
4(z) (6)

w j
k(z) is the projection on the xk-axis (with the unit vector e(k), k = 1, 2, 3) of the displacement vector averaged over the 

cross-section of Q j(h), θ(η j) = η
j
1e(2) − η

j
2e(1) and w j

4(z) is the averaged twist. Explicit expressions for U 0 and U 1 are 
available too, see, e.g., [1–4], but in the sequel we will only need asymptotic formulas for the averaged force F j and torque 
T j at the end ωL j

(h) of Q j(h), namely
j
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F jh
i = h2 E

4
∂2

z w j
i (L j) + . . . , F jh

3 = h1 E∂z w j
3(L j) + . . . , E = μ

3λ + 2μ

λ + μ
(7)

T jh
i = (−1)i E∂2

z w j
3−i(L j) + . . . , T jh

3 = μ

4
∂z w j

4(L j) + . . . (8)

where E is the Young modulus.
The vector functions w j = (w j

1, w
j
2, w

j
3, w

j
4), columns in R4, satisfy the ordinary differential equations

D(−∂z)B D(∂z)w j(z) = M K w j(z), z ∈ (0, L j) (9)

where the diagonal matrices are given by

D(∂z) = diag{∂2
z , ∂2

z , ∂z, ∂z}, K = diag{1,1,0,0}, B = diag

{
E

4
,

E

4
, E,

μ

4

}

and the new spectral parameter M comes from the following asymptotic expansion in the low-frequency range of the 
spectrum of the problem (2)–(4):

�h = hM + �̃h

According to [3, Ch. 7, §3], the spectral parameter appears only in the first two lines of the system (9). The very reason 
for this effect is nothing but the lower order h−1 of the longitudinal displacement uh

3 compared with h−2 of the transversal 
ones in the vertical rods Q j(h) which are to be regarded as hard-movable due to the Dirichlet condition (4). In view of 
formulas (6), the latter leads to

w j
i (0) = 0, ∂z w j

i (0) = 0, w j
2+i(0) = 0, i = 1,2 (10)

At the same time, a simple mechanical observation recognizes the cross-bars Qk(h) as readily movable because the vertical 
thin stands Q j(h) cannot gravely resist against horizontal movements of the frame Q1(h) ∪ Q2(h) ∪ Q3(h). Hence, we need 
to modify ansatz (5), (6), according to [6,7].

4. Asymptotic expansions for readily-movable rods

The rod Qk(h) = {x : |yk| < h, zk ∈ (0, Lk)} is supplied with the Cartesian coordinate system xk = (xk
1, x

k
2, x

k
3) = (yk, zk)

with the unit vector ek
( j) of the xk

j -axis. The asymptotic expansion in these rods

uh(x) = h−2U−2(zk) + h−1U−1(ηk, zk) + h0U0(ηk, zk) + h1U1(ηk, zk) + . . . , x ∈ Qk(h) (11)

involves the stretched transversal coordinates ηk = h−1yk and the main term

U−2(zk) =
2∑

i=1

ek
(i)w

k
i (zk) + ek

(3)a
k (12)

with the new, cf. (6), unknown constant longitudinal displacement ek
(3)

ak . Other terms in (11), written in local coordinates, 
depend on the unknown vector function wk = (wk

1, w
k
2, w

k
3, w

k
4) but, owing to differentiation in zk , are independent of ak and 

therefore look quite similar to the asymptotic terms in (5). In this way, the last term in (12) does not affect the procedure 
of derivation of the differential equations

D(−∂z)B D(∂z)wk(z) = M K wk(z), z ∈ (0,Lk) (13)

The longitudinal inertia force hMek
(3)h

−1ak is too small and does not enter the limit system, but it will appear in the 
transmission conditions and make them nonlocal.

As usual in multistage asymptotic procedures, cf. [2], [3], [8, Ch. 4], [9] introduction of the free parameter ak in (12)
requires for the orthogonality condition

Lk∫
0

wk
3(z) dz = 0 (14)

imposed on the lower-order asymptotic term in the same component of the displacement vector.
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5. Transmission conditions

To close the system (13) and (9) which had been supplied with the boundary conditions (10) only, we must attribute 
transmission conditions at the points z = L j relating w j with w j, w j+1, while w4 coincides with w1. In papers [6] and [7], 
this has been done in stationary problems by regarding boundary layers in the vicinity of the nodes θ j(h), cf. [8]. Here, we 
will conclude the conditions by comparing the asymptotic expansions (5), (6) and (11), (12) while taking into account the 
equilibrium of certain fragments of the elastic junction. A rigorous justification of such an approach is supported by the 
final theorem on asymptotics.

Formulas (7) and (8), although in the local coordinates and on the base of (10), (11), apply to the rotations Rkh(0), Rkh(L j)

and the torques Tkh(0), Tkh(L j) at the ends of the rod Qk(h). Since all components of these vectors gain the same order in h, 
we just state the traditional transmission conditions of Kirchhoff’s type:

R j1 = R j1(L j) = R j+1 1(0), j = 1,2,3 (15)

−T j 1 − T j 1(L j) + T j+1 1(0) = 0, j = 1,2,3 (16)

In [10], the conditions (15) and (16) are classified as stable and intrinsic, respectively.
Observing that the coefficient h−1 of e j

(3)
w j

3 and ek
(3)

wk
3 is much less than the coefficient h−2 of e j

(i)w j
i and ek

(i)w
k
i +ek

(3)
ak , 

there is no need to endow wk
3 and wk

3 with any stable transmission condition, but only with the intrinsic ones

F j1
3 = F j1

3 (L j) = F j+1 1
3 (0) = 0, j = 1,2,3 (17)

However, other components enjoy conditions of both types. First of all, the continuity of displacements requires that

2∑
i=1

e j
(i)w j

i (L j) =
2∑

i=1

e j
(i)w

j
i (L j) + e j

(3)a
j =

2∑
i=1

e j+1
(i) w j+1

i (0) + e j+1
(3) a j+1 (18)

The differential equation for wk
3 in (13) and the relations (7), (14) and (17) show that wk

3 = 0 in (0, Lk). Thus, formulas (17)
are valid automatically and we have to deal with the averaged longitudinal forces fk

3(0) and fk
3(Lk) at the ends of the rod 

Qk(h) with the next order in h. We write the equilibrium equation of this rod

fk
(3)(0) − fk

(3)(Lk) + π�Lkak = 0, k = 1,2,3 (19)

the latter term being the averaged inertia force mentioned above. Also the equilibrium equation of the node θ j(h)

3∑
i=1

(
−e j

(i)F
j1
i − e j

(i)F
j1
i (L j) + e j+1

(i) F j+1 1
i (0)

)
+ e j

(3)f
j
3(L j) − e j+1

(3) f j+1
3 (0) = 0, j = 1,2,3 (20)

must hold. The differential-algebraic formulation of the one-dimensional model is completed.

6. The variational formulation

Let H 	 M = {w j, wk, ak} be a space of vector functions w j ∈ H2(0, L j)
2 × H1(0, L j), wk ∈ H2(0, L j)

2 × H1(0, Lk)
2 and 

constants ak with j, k = 1, 2, 3, which are subject to the stable boundary and transmission conditions (10) and (15), (18) as 
well as the orthogonality conditions (14). As usual, see [10], we multiply the systems (9) and (13) scalarly with test vector 
functions v j and vk , respectively, and integrate by parts using the intrinsic transmission conditions (16), (17), (18) together 
with the algebraic equations (19) to process addends outside integrals. As a result of algebraic transformations, we obtain:

3∑
p=1

((
B D(∂z)w p, D(∂z)v p)

(0,L p)
+ (

B D(∂z)wp, D(∂z)vp)
(0,Lp)

)

= �

3∑
p=1

((
K w p, v p)

(0,L p)
+ (

K wp,vp)
(0,Lp)

+ Lpapbp
)
, ∀ V= (v j,vk,bk) ∈H

(21)

Here, (·, ·)(0,l) is the inner product in the Lebesgue space L2(0, l). The left-hand side of the integral identity (21) with V =W

is the double kinetic energy of harmonic in time oscillations of the junction, while the last terms reflect the longitudinal 
rigid motion h−2akek

(3)
of the rods Qk(h).

Lemma. The spectral variational problem (21) (or (9), (10), (13)–(20) in the differential-algebraic form) has the positive monotone 
unbounded sequence of eigenvalues
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0 < M1 ≤ M2 ≤ . . . ≤ Mn ≤ . . . → +∞ (22)

listed according to their multiplicity. The corresponding eigenvectors W1, W2, . . . , Wn, . . . ∈ H can be subject to the normalization 
and orthogonality conditions A(Wn, Wm) = δn,m, where δn,m is the Kronecker symbol.

7. Theorem on asymptotics

In [11], an anisotropic Korn inequality is proved that distinguishes between hard and readily-movable rods. Since, for 
brevity, we do not present here estimates of remainders in the asymptotics of the elastic fields, we write the inequality in 
a very condensed form

3∑
p=1

(
‖uh

3; L2(Q p(h))‖2 + h2
2∑

i=1

‖uh
i ; L2(Q p(h))‖2 + h2‖uh; L2(Qp(h))‖2

)

≤ C
3∑

α,β=1

∥∥∂uh
α

∂xβ

+ ∂uh
β

∂xα
; L2(�(h))

∥∥2

The difference between the displacements of stands and crossbars in Fig. 1 is easily recognized in (23): the norm 
‖uh

3; L2(Qk(h))‖ gets the factor h, but ‖uh
3; L2(Q j(h))‖ does not. This distinction explains why the classical asymptotic ansatz 

(5), (6) ought to be modified in (11), (12).
A routine but combersome scheme, cf., [12] and [6], [7], based on the intact form [11] of the Korn inequality, leads to 

the final assertion for our asymptotic analysis.

Theorem. The eigenvalue sequences (22) and

0 < �h
1 ≤ �h

2 ≤ . . . ≤ �h
n ≤ . . . → +∞ (23)

of the model problem and the original elasticity problem (2)–(4) are in the relationship

|�h
n − hMn| ≤ cnh3/2 ∀h ∈ (0,hn]

where cn and hn are some positive numbers depending on the number n of eigenvalues.

We deliberately missed an opportunity to apply an extremely complicated and involved scheme of the direct and inverse 
reduction [12,13], which describes an explicit dependence of the numbers cn and hn on certain characteristics of the limit 
spectrum (22).

Many specifications of the elastic junction �(h) were introduced to simplify the demonstration only. For example, rods 
can have varying cross-sections and are made of inhomogeneous anisotropic materials. These modifications do not influence 
the model at all, but the constant matrix B in (9) and (13) is no longer diagonal and becomes dependent on z and zk , 
cf. [1–4]. Changes in the configurations of rods are available as well, but require an application of the classification proce-
dure [7]. For example, if the sole ω0

1(h) is released, then the term U−2(z) in formula (5) on the rod Q 1(h) must be replaced 
by the sum (12), and a new algebraic unknown must be introduced as well.
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