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We study wave propagation in an elastic porous medium saturated with a compressible 
Newtonian fluid. The porous network is interconnected whereby the pores are characterized 
by two very different characteristic sizes. At the mesoscopic scale, the medium is described 
using the Biot model, characterized by a high contrast in the hydraulic permeability and 
anisotropic elasticity, whereas the contrast in the Biot coupling coefficient is only moderate. 
Fluid motion is governed by the Darcy flow model extended by inertia terms and by the 
mass conservation equation. The homogenization method based on the asymptotic analysis 
is used to obtain a macroscopic model. To respect the high contrast in the material 
properties, they are scaled by the small parameter, which is involved in the asymptotic 
analysis and characterized by the size of the heterogeneities. Using the estimates of 
wavelengths in the double-porosity networks, it is shown that the macroscopic descriptions 
depend on the contrast in the static permeability associated with pores and micropores and 
on the frequency. Moreover, the microflow in the double porosity is responsible for fading 
memory effects via the macroscopic poroviscoelastic constitutive law.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

r é s u m é

Nous étudions la propagation des ondes dans un milieu poreux élastique dont le réseau 
poreux est interconnecté et saturé par un fluide newtonien compressible. On suppose que 
la taille caractéristique des micropores est très hétérogène dans le réseau poreux. Le milieu 
est caractérisé par un contraste élevé de perméabilités et d’élasticités anisotropes et par 
un contraste modéré pour le coefficient de couplage de Biot. À l’échelle mésoscopique, le 
mouvement du fluide est régi par le modèle d’écoulement de Darcy étendu avec des termes 
d’inertie et par l’équation de conservation de la masse. Le matrice poreuse est décrite en 
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utilisant le modèle de Biot. La méthode d’homogénéisation via l’analyse asymptotique à 
double échelle est utilisée pour obtenir un modèle macroscopique pour des contrastes 
élevés de perméabilité et d’élasticité anisotrope, mais avec des contrastes modérés du 
coefficient de couplage de Biot, lesquels ont été mis à l’échelle par rapport à la taille 
des hétérogénéités. À partir de l’estimation des longueurs d’onde dans les deux réseaux, 
il est montré que, non seulement la description macroscopique dépend du contraste de 
perméabilité statique entre les pores et micropores et de la fréquence, mais aussi que 
la double porosité est responsable des effets de mémoire via la loi de comportement 
poroviscoélastique.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Wave propagation belongs to one of the most challenging issues in modelling fluid-saturated elastic porous media. 
Although the topic has been studied over the past decades and several modelling approaches and particular models have 
been proposed, the dispersion phenomenon has not yet been fully understood. This study is motivated by the need to 
understand the behavior of strongly heterogeneous media subjected to incident waves. Besides the natural materials, such 
as soils, rocks, wood, or bones, the potential applications of the theory reported below are in the field of metamaterials, 
i.e. artificial materials engineered to have properties that may not be found in nature. The design and manufacturing of 
such materials has become possible thanks to the progress made in both materials science and mechanical engineering. 
They are constituted by conventional materials, such as metals, or plastics arranged to form special periodic patterns at 
the microscopic level. Metamaterials gain their properties due to their exactly-designed structures. Their precise shape, 
geometry, size, orientation and arrangement can affect wave propagation in an unconventional manner, creating material 
properties that are unachievable with conventional materials.

In a general setting, fluid-saturated porous (poroelastic) media are constituted by a solid (elastic) skeleton in which 
the fluid-saturated pores are distributed as a connected pore network, or as densely distributed particles. When a unique 
microscopic characteristic size can be defined according to the pore size, such a medium can be studied with a “single” 
porosity type model. However, many natural, as well as artificial porous materials exhibit the presence of heterogeneity 
at scales much larger than microstructure ones, but much smaller than the wavelengths. In such a porous medium with 
heterogeneity at the mesoscopic scale, pore fluids in regions of dissimilar properties respond differently to changes in their 
fluid pressures. In principle, for simulating the wave propagation in such mesoscopic heterogeneous media, a continuum 
porous model with spatially varying coefficients may be used. For media with periodically distributed inhomogeneities at 
the meso-scale, macroscopic effective media can be derived from the continuum equations established at mesoscopic scale. 
In this paper, we consider a “double”-porosity type of poroelastic media, which consists of two linear anisotropic porous 
constituents, whereby their porous systems are interconnected.

The notion of the double porosity is usually associated with other material structures, such as fractured porous rocks, 
which (at the mesoscopic scale) consist of a fluid interacting with a skeleton which itself is a microporous medium. Many 
authors have studied these fluid-saturated porous (poroelastic) media with double porosity by using the various methods, 
among which the phenomenological approach (see for instance [1,2]) and the homogenization approach (see for instance 
[3,4]) can be distinguished. As an advantage, the latter one provides more rigorous a way for obtaining the equations at the 
macroscopic scale, governing the response of the fluid-saturated elastic media with a double porosity, but also allows us to 
define the effective properties at the macroscopic scale using the material properties and the geometrical features at the 
microscopic (or mesoscopic) scale. In this framework, some authors have focused on the acoustic response of such porous 
media (see, for instance, [5–9]).

However, the present work deals with another characterization of a “double-porosity” (or double permeability) medium 
as a periodic mixture of two different porous media that occupy two disjoint subdomains at the mesoscopic scale. The 
domain � is occupied by a periodic mixture consisting of two disjoint elastic porous materials (components) situated in 
domains �c and �m, following the notations introduced in Rohan [10]. The behaviours of the two components are governed 
by the Biot–Darcy model. The decomposition in the two subdomains �c and �m generates the spatial heterogeneity of 
permeability, which will be in the focus of our study (see Fig. 1). In particular, we consider “high permeability contrast” 
media featured by large differences in the intrinsic permeability magnitudes between the two components. In addition to 
the contrast in the permeability, we consider also a high contrast in the anisotropic elasticity and in the Biot coupling 
coefficients. Apart of artificial metamaterial structures, which are in our focus, a similar arrangement can also be found in 
some vegetable concretes. Within the context of sustainable development and noise reduction, “vegetable concrete,” which is 
comprised of renewable material (vegetables particles or fibres as hemp, wood, rubberwood) and different binders (cement 
or lime), appears to be an interesting solution.

Macroscopic material (effective) properties of the upscaled medium are linked to the properties of the phases that consti-
tute the structure at the mesoscopic scale; they are determined by the geometry of the microstructure and the mechanical 
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properties of its microscopic constituents. Understanding the interplay between the combination of these hierarchically ar-
ranged ingredients is necessary for the prediction of the effective material behavior and, in the context of metamaterial 
design, for the optimization of the microstructure to enhance the material’s performances. With the help of bottom-up 
manufacturing techniques, a large number of micrometer-scale designs can now be reduced to the nanometer scale and, 
therefore, can bring completely new quality. The tools needed to create metamaterials include modelling, geometry and 
property design, bottom-up manufacturing and structural characterization at the nanoscale. By controlling the position-
ing of nano-inclusions, nanostructured metamaterials can been designed for interesting fields of applications where wave 
propagation is involved.

For the comprehension of the macroscopic behavior of these materials, the homogenization method developed from 
1980s [11–13] presents a very useful and efficient modelling tool that establishes rigorous links between the multiple scales 
relevant for the whole hierarchical structure. The homogenization method used for upscaling the thermodynamic systems 
described by boundary value problems involving partial differential equations and boundary conditions is based on the 
asymptotic analysis with respect to the scale parameter. To study rigorously such systems by means of functional analysis, 
the two-scale convergence [14] or the periodic unfolding method of homogenization [15] can be used. As an advantage, 
the results, i.e. formulations of the local cell problems, the “global” homogenized models, and expressions for computing 
the homogenized coefficients, are given in forms that can be transformed easily by finite element discretization to obtain 
numerical results.

2. Description of the heterogeneous poroelastic medium

In what follows, the equations are formulated in a Cartesian framework of reference R(O; e1, e2, e3), where O is the 
origin of the space and (e1, e2, e3) is an orthonormal basis for this space. The coordinates of a point M are specified 
by x = (x1, x2, x3) in R. We denote the angular frequency by ω. The gradient and divergence operators are respectively 
denoted by ∇ and ∇·. When these operators have a subscript which is space variable, it is for indicating that the operator 
acts relatively to this space variable, for instance ∇x = (∂x

i ). The dot symbol ‘·’ denotes the scalar product between two 
vectors and the colon symbol ‘:’ stands for the scalar (inner) product of two second-order tensors.

By ∂� we designate the boundary of domain �. The following functional spaces are used: by L2(�) we refer to square 
integrable functions defined in domain �; by H1(�) we mean the Sobolev space W 1,2(�) ⊂ L2(�) formed by square 
integrable functions including their first generalized derivatives; space H1

0(�) ⊂ H1(�) is constituted by functions with zero 
trace on ∂�; the bold notation is used to denote spaces of vector-valued functions, e.g., H1(�); by subscript # we refer to 
the Y -periodic functions; by H0(div, �) we denote vectorial functions from L2(�) with divergence in L2(�) and vanishing 
projection on the normal at ∂� (see, e.g., [16]).

2.1. Mesoscopic model

The models of the fluid-saturated porous (poroelastic) media that we have in mind are relevant to the scale where 
individual fluid-filled pores are not distinguishable so that, at any point of the bulk material, both solid and fluid phases 
are present according to the volume fractions. We shall call such a scale the “physically mesoscopic scale”. In particular, we 
consider the following system of partial differential equations proposed by Biot [17,18] and revised by Auriault et al. [19]

−∇ · (De(u)) + ∇ · (αp) − ω2ρ̄u + iωρf w = 0

−ω2ρfu + η[k(ω)]−1 w + ∇p = 0

iωα : e(u) + ∇ · w + iω

μ
p = 0

(1)

consisting of the momentum equation (1)1, the generalized extended Darcy law (1)2, and the fluid volume conservation (1)3. 
For the sake of simplicity, we omit the volume forces. In equations (1), the vector u is the displacement field describing 
the solid skeleton kinematics, the second-order tensor e(u) is the small strain tensor, the scalar p is the fluid pressure, the 
vector w = φ0(v f − vs) describes the Darcian relative fluid velocity with respect to the solid skeleton involving the velocity 
vector field of fluid v f and solid skeleton vs, and the reference volume fraction of the fluid φ0. By ρs and ρf we denote 
the intrinsic density of the solid phase and fluid density at rest, respectively; hence ρ̄ = ρs(1 − φ0) + φ0ρ

f is the mean 
density. The material properties are defined by the elasticity fourth-order tensor D of the drained solid skeleton, by the Biot 
bulk modulus μ of the solid–fluid mixture, by the second-order tensor of the Biot effective stress coefficient α , and by the 
second-order tensor k(ω) of dynamic permeability, which is a frequency-dependent complex-valued second-order tensor. 
Note that the dependence of k on the frequency enables us to study the response of the system for arbitrary frequency (i.e.
the high- and low-frequency behaviours). This tensor contains the inertial drag and viscous dissipative effects due to the 
pore motion fluid [20]. This splitting up is introduced in what follows.

All the material parameters listed above are defined for a given porous solid skeleton defined at the “physically meso-
scopic scale”. Of course, there is a smaller “physically microscopic scale”, where fluid and solid regions are clearly separate, 
but the parts occupied either by the fluid or by the solid are geometrically distinguishable. In this context, the mesoscopic 
model (1) can be considered as a result of a “homogenization” of a dynamic fluid–structure interaction problem.
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Fig. 1. Schematic illustration of a periodic elastic porous medium: mesoporosities formed by fluid and solid parts lead to large contrasts in the permeability 
and the material properties; the characteristic lengths are defined from L at the macroscopic scale, � at the mesoscopic scale, and �′

c,m at the microscopic 
scale.

To formulate a boundary value problem with equations (1) prescribed in an open bounded domain � ⊂ R
3, we shall 

consider the following boundary conditions on ∂�:

u = ū , w · n = 0 (2)

where ū is sufficiently regular and n is the unit outward normal on ∂�.
In Auriault et al. [19] and Nguyen et al. [21], it has been shown that η[k(ω)]−1 can be defined from its inverse by the 

relation:

η[k(ω)]−1 = [κ(ω)]−1 =
(

iωρ + [K ]−1
)

(3)

where ρ and K are real-valued, second-order tensors associated with the inertia and viscous effects, respectively. Note that 
the second-order tensor ρ (in bold) linked to inertia effects must not to be confused with the mean density ρ̄ . If K is a 
given constant, the inertia effects are well approximated in model (1) for low frequencies, or slow transition events. Should 
also the higher frequencies be respected, K would depend on the particular frequency of incident waves considered. In 
Nguyen et al. [21] such a situation has been explored for a rigid skeleton.

2.2. Periodic structure with double porosity

The heterogeneous elastic porous medium occupying domain � consists of two distinct parts with different magnitudes 
of the hydraulic permeability. A dimensionless scale parameter ε is introduced as the ratio between the characteristic size 
of the heterogeneity at the mesoscopic scale (characteristic length �) and the wavelength which is comparable with a 
macroscopic size L, thus, ε = �/L (see Fig. 1). For a fixed ε > 0 we consider the decomposition of an open bounded domain 
� ⊂ R

3 into two parts, a matrix �ε
m and channels �ε

c . More precisely, with � = �ε
m ∪ �ε

c ∪ 
ε with �ε
m ∩ �ε

c = ∅, where 

ε = �

ε
m ∩�

ε
c is the interface. We require that �ε

c is connected and its boundary ∂�ε
c is Lipschitz. In what follows, labelling 

by one of two subscripts (or superscripts), m and c referring to different material subdomains, the matrix and the channels, 
respectively, is employed.

By virtue of the periodically distributed heterogeneity, � is generated as a periodic lattice using the representative ele-
mentary volume (REV) occupying elementary cell Y defined by Y = ∏3

i=k]0, �k[ . For any given ε > 0 we define coordinates 
y = (yk) ∈ Y which are given for k = 1, 2, 3 by: yk = (xk − �k[xk/�k]Y ) /ε where [xk/�k]Y denotes the integer part of xk/�k . 
At the mesoscopic scale, the heterogeneous structure is a periodic lattice generated by the representative cell Y which is 
decomposed into two disjoint parts Yc and Ym corresponding to the two micropores distributed periodically in subdomains 
�ε

c and �ε
m, respectively (see Fig. 1), thus, Yc = Y \ Y m.
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The reason for such a domain decomposition is related to assumed discontinuities in material coefficients on inter-
face 
ε; in general, we may consider piecewise-continuous material coefficients which are introduced, as follows:

ρ̄ε = χm(y)ρ̄m(y) + χc(y)ρ̄c(y)

ρε = χm(y)ρm(y) + χc(y)ρc(y)

με = χm(y)μm(y) + χc(y)μc(y)

D
ε = χm(y)Dm(y) + ε2χc(y)D̂c(y)

αε = χm(y)αm(y) + εχc(y)αc(y)

K ε = ε2χm(y)K̂ m(y) + χc(y)K c(y)

(4)

where χd for d = m, c are the characteristic functions of domains Yd .
The motivation for the above decomposition corresponds to a situation, where the channels contain fluid and a very 

porous, well permeable skeleton; this can be made of a network of thin entangled fibres. Therefore, the elasticity Dε is 
scaled by ε2 in the domain �ε

c , to capture the compliance. In the matrix, �ε
m, the medium is formed by a much stiffer 

skeleton, however, the permeability K ε is much smaller than that in the channels, therefore the scaling ε2 is adopted 
according to Rohan [10]. The scaling of the Biot coupling coefficients αε by ε in �ε

c , while με is independent of ε, is 
necessary to obtain a nontrivial limit behaviour, as the consequence of scaling the elasticity coefficients.

The double-porosity type scaling was proposed by Arbogast et al. [22] and used also in our recent related works [10,
21,23]. It is combined here with the analogous-type scaling of the elasticity in the complementary part of the mesoscopic 
structure. It is worth noting that the same scaling ansatz was employed to study wave dispersion in the strongly heteroge-
neous periodic elastic solids [24–26]. Obviously, the scaling ansatz proposed above is not the only possible and physically 
motivated definition. Smyshlyaev [27] considered elastic solids where Dε = χm(y)Dm(y) + χc(y)(ε2

D̂c(y) + Dc(y)), where 
Dc is a positive semi-definite tensor. Using such an ansatz, one can describe different behaviours of the elastic material in 
Yc with respect to the bulk and deviatoric parts of the strain. We shall pursue such a treatment in a future work.

3. Main result – homogenized model

The upscaling procedure of the heterogeneous continuum consists of the limit analysis of the solution to the weak 
formulation (5) with respect to ε → 0. For this, we use the periodic unfolding method [28,23] based on the coordinate 
decomposition x = ξ + εy, where ξ = ε

[ x
ε

]
Y is the lattice coordinate at the mesoscopic scale, thus given by the brackets, so 

that y ∈ Y is the local coordinate of the microscopic scale.

Weak formulation We consider the weak formulation of the problem described by the system (1) with the boundary con-
ditions (2). Since the coefficients introduced in (4) are discontinuous on interfaces �ε

m ∩ �ε
c , the differential equations (1)

must be supplemented by transmission conditions on these interface; besides the continuity of the pressure field p and 
the displacement field u, also the normal flux of the fluid w · n and the interface traction T = σn are assumed, where 
σ = De(u) − α p is the effective stress relevant to the mesoscopic scale.

The quantities involved in the boundary value problem are labelled with superscript ε to respect their dependence on 
the scale parameter.

Find (uε, wε, pε) ∈ H1
ū(�) × L2(�) × L2(�), which satisfy

−ω2
∫
�

ρ̄εuε · ṽ + iω
∫
�

ρf wε · ṽ +
∫
�

[Dεe(uε)] : e(ṽ) −
∫
�

pε αε : e(ṽ) = 0

iω
∫
�

ρε wε · w̃ − ω2
∫
�

ρfuε · w̃ +
∫
�

[K ε]−1 wε · w̃ +
∫
�

∇pε · w̃ = 0

iω
∫
�

q̃ αε : e(uε) +
∫
�

q̃∇ · wε + iω
∫
�

1

με
pεq̃ = 0

(5)

for all (ṽ, w̃, p̃) ∈ H1
0(�) × L2(�) × L2(�). The set H1

ū(�) ⊂ H1(�) is formed by functions satisfying the boundary condition 
(2)1.

3.1. Two-scale limit problem

Using estimates on the solution to Eq. (5) the convergence result can be established, which yields the following recovery 
sequences defined in terms of functions QRε = (u0,Rε, ûRε

, U 1,Rε, W Rε, ŵRε
, p0,Rε, P 1,Rε, p̂Rε)
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uε(x) ∼ u0,Rε(x) + χc(y)ûRε
(x, y) + χm(y)εU 1,Rε(x, y)

wε(x) ∼ χc(y)W Rε(x, y) + χm(y)εŵRε
(x, y)

pε(x) ∼ p0,Rε(x) + χc(y)εP 1,Rε(x, y) + χm(y)p̂Rε(x, y)

(6)

where y = x
ε − [ x

ε

]
Y .

We show that the functions QRε converge weakly to Q = (u0, û, U 1, W , ŵ, p0, P 1, p̂) in the unfolded space L2(� × Y ), 
whereby all these limit functions Q(x, y) are Y -periodic in y. Moreover, W = 0 in Ym and, as will be shown below, ∇y ·
W = 0 in Yc, W ·n = 0 on ∂Yc ∩∂Ym. The boundary condition (2)2 holds for the mean seepage velocity, i.e. w0 ·n = 0 on ∂�, 
where w0(x) = ∫

Y W (x, y). It should be noted that u0(x) and p0(x) are the only macroscopic variables. The displacements 
satisfy u0(x) = ū on ∂�. Further we shall use an abstract setting: by A we denote the set of admissible two-scale solutions, 
whereas the space Ã0 contains all the admissible test functions Q̃0 associated with Q.

Upon substituting the recovery sequences in the unfolded (instead of the unfolding method of homogenization, the 
classical two-scale convergence can be used) form of problem (5), and using the corresponding recovery sequences of the 
type (6) adopted for the test functions Q̃0 = (v0, v̂, V 1, ψ, ψ̂, q0, Q 1, ̂q) ∈ Ã0, the following two-scale limit problem imposed 
in � × Y is obtained:

Find Q = (u0, û, U 1, W , ŵ, p0, P 1, p̂) ∈A satisfying

−ω2
∫
�

∫
Y

ρ̄(u0 + χcû) · (v0 + χc v̂) + iω
∫
�

∫
Yc

ρfW · (v0 + χc v̂)

+
∫
�

∫
Yc

D̂ce y(û) : e y(v̂) +
∫
�

∫
Ym

Dm(ex(u0) + e y(U 1)) : (ex(v0) + e y(V 1))

+
∫
�

∫
Yc

α̂c : e y(v̂)p0 +
∫
�

∫
Ym

αm : (ex(v0) + e y(V 1))(p0 + p̂) = 0

(7)

for all (v0, V 1, v̂) ∈ Ã0 (we adopt the inclusion Q̃0 ∈ Ã0 for the subset of relevant test functions), then

−ω2
∫
�

∫
Y

ρf(u0 + χcû) · ψ + iω
∫
�

∫
Yc

ρW · ψ +
∫
�

∫
Yc

[K c]−1W · ψ

+
∫
�

∫
Ym

[K̂ m]−1 ŵ · ψ̂ +
∫
�

∫
Yc

(∇x p0 + ∇y P 1) · ψ +
∫
�

∫
Ym

∇y p̂ · ψ̂ = 0

(8)

for all (ψ, ψ̂) ∈ Ã0, and

iω
∫
�

∫
Yc

α̂c : e y(û)q0 + iω
∫
�

∫
Ym

αm : (ex(u0) + e y(U 1))(q0 + q̂)

−
∫
�

∫
Yc

(∇xq0 + ∇y Q 1) · W −
∫
�

∫
Ym

∇yq̂ · ŵ

+iω
∫
�

∫
Y

1

μ

(
p0 + χm p̂

)(
q0 + χmq̂

)
= 0

(9)

for all (q0, Q 1, ̂q) ∈ Ã0.

3.2. Macroscopic model

Using the classical procedure of the scale separation which is reported briefly in Section 4, the macroscopic equations of 
the homogenized model are obtained. The weak formulation of the macroscopic problem reads as follows.
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Find u0 ∈ H1
0(�) and p0 ∈ H1

0(�) such that

−ω2
∫
�

Mu0 · v0+
∫
�

(
iωIDe(u0) − p0B

)
: e(v0)

+iω
∫
�

(
iωG∇p0 + Cp0

)
· v0 = 0

∫
�

iωq0B′ : e(u0) − ω2
∫
�

u0 ·
(
(G′)T∇q0 + C′q0

)

+
∫
�

(K∇p0) · ∇q0 + iω
∫
�

Hp0q0 = 0

(10)

for all v0 ∈ H1
0(�) and q0 ∈ H1

0(�).
The homogenized coefficients M, ID, B, B′, G, G′, C, C′, K and H depend on the heterogeneity associated with the 

mesoscopic structure where material properties are defined according to (4). The following symmetries hold:

Di jkl = Dkli j = D jikl , Bi j = B′
i j = B ji

G′
ji = −iωGi j , C′

i = −Ci (11)

Ki j = K ji , Mi j = M ji

with an intrinsic notation, we have

B = B′ =BT , G′ = −iωGT

C′ = −C , K = KT (12)

M = MT ,

The differential form of the model can be retrieved from (10); assuming periodic media where all homogenized coeffi-
cients are constant in space (note that the same weak formulation can be obtained for a “slowly varying” heterogeneous 
medium, where the homogenized coefficients depend on x, see [29]), the macroscopic model is formed by the following 
equations where the above listed symmetries (11) are respected:

−ω2Mu0 − ∇ ·
(

iωIDe(u0) − (B − ω2G)p0
)

+ iωCp0 = 0 in �

iω
(
B − ω2(G)T

)
: ∇u0 + ω2C · u0 − ∇ · (K∇p0) + iωHp0 = 0 in �

u0 = ū and (K∇p0 − ω2G′u0) · n = 0 on ∂�

(13)

The following observations are worth noting from the last equations:

(i) Equations (13) are derived upon integrating by parts in the weak form of the limit problem (10). This yields the second 
boundary condition (13)3 which expresses impermeability of the boundary and, thus, is coherent with (2)2 imposed. 
Indeed, using the expressions of the homogenized coefficients K and G′ given in Section 4 (see (21), (22) and (19)), one 
may verify, that w0(x) := ∫

Yc
W (x, ·) =K∇p0 −ω2G′u0 is the effective seepage velocity of the fluid. Hence, in fact, (13)3

reads as w0(x) · n = 0.
(ii) In general, the symmetry of G does not hold, i.e. Gi j �= G ji (see (11)3). As a consequence, the nonsymmetric gradient 
occurs in (13)2, where (G)T : ∇u0 = Gi j∂ ju0

i . This nonsymmetry indicates the presence of gyroscopic inertia effects due 
to the (relative) flow of fluid in the moving skeleton. Tensor B is symmetric, however.
(iii) It can be shown that the poro-viscoelastic coefficients ID, B, and H consist each of two parts: their poroelastic 
parts, ĪD, B̄, and H̄ describe the static macroscopic response of the double-porous medium, or the quasistatic response, 
i.e. for frequencies ω → 0, whereas the other parts, e.g., ĨD(ω) = ID(ω) − ĪD (and similarly for the others coefficients), 
describe the memory effects induced by the flow in the dual porosity represented by the material properties in Ym. It is 
worth to remark that in the standard type of medium obeying the Biot model at the mesoscopic level, as treated in [30], 
i.e. without the strong heterogeneities, the frequency-dependent parts denoted above by ˜( ) are not present.

To conclude this section, we compare the mesoscopic model governed by the set of three equations (1) with the upscaled 
model (13). While (1) involves the three fields u, w, p, the macroscopic limit model involves the mean displacements u0

and the mean pressure p0. Although (13) can be rewritten in terms of u0, p0, and w0 given by the generalized Darcy law 
discussed in (i) on the previous paragraph, it is straightforward to eliminate in (1) the seepage velocity w , which yields (see 
(3), introducing the dynamic permeability κ(ω)):
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−ω2 M(ω)u − ∇ · (De(u)) −A(ω)p = 0

iωA
∗(ω)u − ∇ · (κ(ω)∇p) + iω

μ
p = 0

(14)

where the operators A(ω), A∗(ω) and M(ω) are defined by

−A(ω)p = ∇ · (αp) − iωρ f κ(ω)∇p

A
∗(ω)u = α : ∇u − iωρ f ∇ · (κ(ω)u)

M(ω) = ρ̄ I − iω(ρf)2κ(ω)

(15)

where I is the second-order identity tensor.
Note that the operator A∗ adjoint to A is introduced for a more general situation corresponding to a locally periodic 

medium, so that all homogenized coefficients, thus, also α and κ , are differentiable functions of the macroscopic position 
in �.

We shall comment on possible relationships between the structure of the mesoscopic model (14) and its upscaled rep-
resentation (13) in the conclusion.

4. Local problems and homogenized coefficients

In this section, we introduce the local problems for computing the characteristic responses imposed in the representative 
cell Y . They are obtained from the system (7)–(9) upon substituting there vanishing macroscopic test functions, i.e. for 
v0, q0 = 0. The homogenized coefficients are computed using these characteristic responses; the specific formulae will be 
given in Section 4.3. We recall the Y -periodicity of all the involved functions, which is indicated by the subscript #; thus 
H1

#(Y ) is the space H1(Y ) involving the Y -periodic functions only. In particular, we employ the following space of “bubble 
functions” [31,32] (used for displacement field) and the space of seepage velocities

H1
#,0(Yc) = {v ∈ H1

#(Yc) | v = 0 on ∂Yc \ ∂Y }
H0#(div, Yc) = {w ∈ H#(div, Yc) | w · n = 0 on ∂Yc \ ∂Y , ∇y · w = 0}

An analogous space of scalar bubble functions, denoted by H1
0,#(Ym), is employed. To establish weak formulations of the 

local problems imposed in the matrix and in the channels of the mesostructure, we need the following two spaces:

Am = H1
#(Ym) × H1

0,#(Ym) × L2
#(Ym)

Ac = H1
#0(Yc) × H1

#(Yc) × L2
#(Yc)

4.1. Local problems in the matrix Ym

The first group of local responses is obtained by putting v̂, Q 1, � = 0 (in addition to v0, q0 = 0 applied in (7) and 
(9)), which yields the following coupled system of equations governing the two-scale response in the matrix part of the 
mesostructure:∫

Ym

Dm(ex(u0) + e y(U 1)) : e y(V 1) −
∫

Ym

αm : e y(V 1)(p0 + p̂) = 0

∫
Ym

[K̂ m]−1 ŵ · ψ̂ +
∫

Ym

∇y p̂ · ψ̂ = 0

iω
∫

Ym

αm : (ex(u0) + e y(U 1))q̂ −
∫

Ym

ŵ · ∇yq̂ + iω
∫

Ym

1

μm
(p0 + p̂)q̂ = 0

(16)

which must hold for all (V 1, ψ̂, ̂q) ∈Am. The further step of the classical homogenization procedure consists in decoupling 
the scales, so that the characteristic responses can be distinguished. Due to the problem linearity, the following split can be 
defined:

U 1 = iωωklex
kl(u0) + iωωP p0

ŵ = iωχ̂klex
kl(u0) + iωχ̂ P p0

p̂ = iωπ̂klex
kl(u0) + iωπ̂P p0

(17)

We shall abbreviate the inner product in Ym by 〈·, ·〉Y and use the following bilinear forms
m
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am (u, v) =
∫

Ym

Dme y(u) : e y(v) , bm (p, v) =
∫

Ym

αm : e y(v)p

dm (p, q) =
∫

Ym

1

μm
pq , cm (w, z) =

∫
Ym

[K̂ m]−1 w · z

Upon substituting (17) in (16), we obtain the two autonomous problems:

– Find (ωkl, ̂πkl, χ̂kl
) ∈Am

am

(
ωkl, v

)
− bm

(
π̂kl, v

)
= − 1

iω
am

(

kl, v

)
〈
ẑ, ∇y π̂kl

〉
Ym

+ cm

(
χ̂kl

, ẑ
)

= 0

iωbm

(
q̂, ωkl

)
−

〈
χ̂kl

, ∇yq̂
〉

Ym
+ iωdm

(
π̂kl, q̂

)
= −bm

(
q̂, 
kl

)
for all (v, ̂q, ̂z) ∈Am, where 
kl = (
kl

i ) with 
kl
i = ylδik .

– Find (ωP , ̂πP , χ̂ P
) ∈Am

am

(
ωP , v

)
− bm

(
π̂P , v

)
= 1

iω
bm (1, v)〈

ẑ, ∇y π̂P
〉

Ym
+ cm

(
χ̂ P

, ẑ
)

= 0

iωbm

(
q̂, ωP

)
−

〈
χ̂ P

, ∇yq̂
〉

Ym
+ iωdm

(
π̂P , q̂

)
= −dm

(
1, q̂

)
for all (v, ̂q, ̂z) ∈Am.

4.2. Local problems in the channel Yc

We pursue an analogous procedure reported in Section 4.1. The second group of the local problems is obtained upon 
substituting V 1, ̂q, ψ̂ = 0 (in addition to v0, q0 = 0 applied in (7) and (9)). This leads to the local problem:∫

Yc

D̂ce y(û) : e y(v̂) −
∫
Yc

α̂c : e y(v̂)p0 +
∫
Yc

(
−ω2ρ̄c(u0 + û) + iωρfW

)
· v̂ = 0

∫
Yc

(
−ω2ρf(u0 + û) + iωρcW

)
· ψ +

∫
Yc

[K c]−1W · ψ +
∫
Yc

w̃ · (∇x p0 + ∇y P 1) = 0

∫
Yc

∇yq · W = 0

(18)

for all (v̂, q, ψ) ∈Ac.
We proceed in analogy with the previous paragraph and introduce the following splits:

û = iωω̂k
(
−ω2u0

k

)
+ iωω̂P p0 + iωω̂∇ P ,k

∂x
k p0

P 1 = iωπk
(
−ω2u0

k

)
+ iωπP p0 + iωπ∇ P ,k∂x

k p0

W = iωχk
(
−ω2u0

k

)
+ iωχ P p0 + iωχ∇ P ,k∂x

k p0

(19)

The following bilinear forms are employed (we abbreviate the inner product in Yc by 〈·, ·〉Yc )

ac (u, v) =
∫
Yc

D̂ce y(u) : e y(v) , bc (p, v) =
∫
Yc

α̂c : e y(v)p

�c (z, ψ) =
∫
Yc

(ρcz) · ψ , cc (w, z) =
∫
Yc

[K c]−1 w · z

The decomposition is substituted into the local problem (18), so that the following autonomous problems for the char-
acteristic responses in domain Yc are distinguished.
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– Find (ω̂k
, πk, χk) ∈Ac, such that

ac

(
ω̂k

, v̂
)

− ω2
〈
ρ̄cω̂

k
, v̂

〉
Yc

+ iω
〈
ρfχk, v̂

〉
Yc

= − 1

iω

〈
ρ̄c1k, v̂

〉
Yc

−ω2
〈
ρfω̂k

, ψ
〉

Yc
+ iω�c

(
χk, ψ

)
+ cc

(
χk, ψ

)
+

〈
∇yπk, ψ

〉
Yc

= − 1

iω

〈
ρf1k, ψ

〉
Yc〈

χk, ∇yq
〉

Yc
= 0

for all (v̂, q, ψ) ∈Ac, where 1k = (δik).
– Find (ω̂P

, πP , χ P ) ∈Ac, such that

ac

(
ω̂P

, v̂
)

− ω2
〈
ρ̄cω̂

P
, v̂

〉
Yc

+ iω
〈
ρfχ P , v̂

〉
Yc

= 1

iω
bc

(
1, v̂

)
−ω2

〈
ρfω̂P

, ψ
〉

Yc
+ iω�c

(
χ P , ψ

)
+ cc

(
χ P , ψ

)
+

〈
∇yπP , ψ

〉
Yc

= 0〈
χ P , ∇yq

〉
Yc

= 0

for all (v̂, q, ψ) ∈Ac.
– Find (ω̂∇ P ,k

, π∇ P ,k, χ∇ P ,k) ∈Ac, such that

ac

(
ω̂∇ P ,k

, v̂
)

− ω2
〈
ρ̄cω̂

∇ P ,k
, v̂

〉
Yc

+ iω
〈
ρfχ∇ P ,k, v̂

〉
Yc

= 0

−ω2
〈
ρfω̂∇ P ,k

, ψ
〉

Yc
+ iω�c

(
χ∇ P ,k, ψ

)
+ cc

(
χ∇ P ,k, ψ

)
+〈

∇yπ∇ P ,k, ψ
〉

Yc
= − 1

iω
〈1k, ψ〉Yc〈

χ∇ P ,k, ∇yq
〉

Yc
= 0

for all (v̂, q, ψ) ∈Ac.

Note that, alternatively, the autonomous problems for the local characteristic responses can be reduced using the ob-
vious identity 

〈∇yπ, χ
〉
Yc

= − 〈π, ∇ · χ〉Yc
= 0 for any (π, χ) ∈ H1

#(Yc) × H0#(div, Yc). The same identity can be applied in 
(18); it follows easily (upon integrating by parts) that, for W (x, ·) ∈ H0#(div, Yc), the last equality in (18) vanishes and 〈∇y P 1, w̃

〉
Yc

= 0 as well. Therefore, there is no need to consider the decomposition (19) for P 1; consequently the local 
problems in Yc attain the following generic structure.

Find (ω̂, χ) ∈ H1
#0(Yc) × H0#(div, Yc), such that

ac
(
ω̂, v̂

) − ω2 〈
ρ̄cω̂, v̂

〉
Yc

+ iω
〈
ρfχ , v̂

〉
Yc

= − 1

iω
f (v̂)

−ω2
〈
ρfω̂, ψ

〉
Yc

+ iω�c (χ , ψ) + cc (χ , ψ) = − 1

iω
g(ψ)

for all (v̂, ψ) ∈ H1
#0(Yc) × H0#(div, Yc), where f and g designate a generic form of right hand side terms of the above 

problems.
Note that the two groups of the local problems in Ym and Yc are mutually decoupled.

4.3. Effective material coefficients of the homogenized medium

We now consider the two-scale limit problem (7)–(9) evaluated for vanishing “local” test functions, thus V 1, v̂, Q 1, ̂q,

ψ, ψ̂ = 0, and where we substitute the two-scale functions U 1, P 1, û, p̂, W decomposed using the characteristic responses 
(see (17) and (19)). Below we list formulae for all the homogenized coefficients involved in (10). They can be identified 
there upon collecting particular unknown and test functions; we give this reduced information, which explains the meaning 
of the associated homogenized coefficients.

– Effective viscoelasticity (combining e(u0) and e(v0) in (7))

Di jkl(iω) = iωam

(
ωkl + 1

iω

kl, ωi j + 1

iω

i j

)
+ cm

(
χ̂ i j

, χ̂kl
)

+ iωdm

(
π̂i j, π̂kl

)
(20)
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– Effective coefficients of the Biot stress coupling (Bi j , and the “dynamic part” Gi j by combining p0 and ex(v0) in (7); B′
i j

with the dynamic part G′
i j by combining ex(u0) and q0 in (9))

Bi j = bm

(
1, 
i j

)
+ iωbm

(
π̂P , 
i j

)
−iωam

(
ωP , 
i j

)
Gi j =

∫
Yc

(
iωρ̄cω̂

∇ P , j
i + ρfχ

∇ P , j
i

)

B′
i j = bm

(
1, 
i j

)
+ iωbm

(
1, ωi j

)
+ iωdm

(
1, π̂i j

)
G′

i j = −iω
∫
Yc

χi
j

(21)

– Effective permeability (by combining ∇p0 and ∇q0 in (9))

Ki j = −iω−1
∫
Yc

χ
∇ P , j
i = K ji (22)

– Effective coefficients of the Biot compressibility (by combining p0 and q0 in (9))

H =
∫
Y

μ−1 + iω

⎛
⎜⎝∫

Ym

μ−1
m π̂P + bm

(
1, ωP

)
+ bc

(
1, ω̂P

)⎞
⎟⎠ (23)

– Effective mass (inertia) (by combining −ω2u0 and v0 in (7))

Mi j =
∫
Y

ρ̄ + (iω)3
∫
Yc

ρ̄cω̂
j
i − ω2

∫
Yc

ρfχ
j

i = M ji (24)

– Effective coefficients of the pressure-velocity coupling (combining q0 and u0 in (7), further p0 and v0 in (9)):

Ck = −ω2
∫
Yc

ρ̄cω̂
P
k + iω

∫
Yc

ρfχ̂ P
k

C′
k = −ω2bc

(
1, ω̂k

) (25)

4.4. Comments on the macroscopic model and the homogenized equation

A detailed analysis of the local problems in Ym reveals that the characteristic responses ω and π can be decomposed 
into the constant and frequency-dependent parts, in particular

ωkl(y,ω) = 1

iω
ω̄kl(y) + ω̃kl

(y,ω) , π̂kl(y,ω) = 1

iω
π̄kl(y) + π̃kl(y,ω)

ωP (y,ω) = 1

iω
ω̄P (y) + ω̃P

(y,ω) , π̂P (y,ω) = 1

iω
π̄P (y) + π̃P (y,ω)

(26)

For the other characteristic responses, χ̂kl and χ̂ P , we do not consider their constant parts. Since both the local autonomous 
problems imposed in Ym are quite similar, we explain the decomposition for the one related to the strains ex

kl(u0). Substi-
tution of ωkl and π̂kl using (26) yields the following two subproblems, which can be resolved subsequently.

– Find (ω̄kl, ̄πkl) ∈Am, such that

am

(
ω̄kl, v

)
− bm

(
π̄kl, v

)
= −am

(

kl, v

)
bm

(
q̂, ω̄kl

)
+ dm

(
π̄kl, q̂

)
= −bm

(
q̂, 
kl

)
for all (v, ̂q) ∈Am.
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– Find (ω̃kl
, ̃πkl, χ̃kl

) ∈Am, such that

am

(
ω̃kl

, v
)

− bm

(
π̃kl, v

)
= 0〈

ẑ, ∇y π̃kl
〉

Ym
+ cm

(
χ̂kl

, ẑ
)

= − 1

iω

〈
ẑ, ∇y π̄kl

〉
Ym

iωbm

(
q̂, ω̃kl

)
−

〈
χ̂kl

, ∇yq̂
〉

Ym
+ iωdm

(
π̃kl, q̂

)
= 0

for all (v, ̂q, ̂z) ∈Am.

We can now rewrite the effective coefficients of the poroviscoelastic ID, B, and H by decomposing them into the 
poroelastic parts and the dissipative (frequency-dependent) parts, as announced at the end of the Section 3.2. The following 
expressions hold

iωD̄i jkl = am

(
ω̄kl + 
kl, ω̄i j + 
i j

)
+ dm

(
π̄i j, π̄kl

)
D̃i jkl(iω) = −iωam

(
ω̃kl

, ω̃i j
)

− cm

(
χ̂ i j

, χ̂kl
)

− iωdm

(
π̃i j, π̃kl

) (27)

The Biot coupling coefficients and the compressibility are decomposed by analogy:

B̄i j = bm

(
1 + π̂P , 
i j

)
− am

(
ω̄P , 
i j

)
B̃i j(iω) = iω

[
bm

(
π̃P , 
i j

)
− am

(
ω̃P

, 
i j
)]

H̄ =
∫
Y

μ−1 +
∫

Ym

μ−1
m π̄P + bm

(
1, ω̄P

)

H̃(iω) = iω

⎛
⎜⎝∫

Ym

μ−1
m π̃P + bm

(
1, ω̃P

)
+ bc

(
1, ω̂P

)⎞
⎟⎠

(28)

5. Concluding remarks

This paper presents an extension of the model describing the acoustic waves in the double porosity medium featured by 
the rigid skeleton [10,21]. In these works, we studied how the macroscopic description is influenced by the static permeabil-
ity contrast between the micro- and meso-pores. As the new ingredients of the present study, the double porosity medium 
is constituted by the elastic deformable matrix which is characterized by a “high contrast” between the two subdomains in 
addition to a “high contrast” in the permeabilities and a moderated contrast in the Biot coupling coefficients.

The dispersion analysis can be done in a much similar way, as it has been done, e.g., in [30]. Some preliminary numerical 
results on the phase velocity and the attenuation show the presence of two pressure waves and a significant dispersion, see 
[33]. A complete paper focusing on this aspect is under preparation.

It is worth noting that, if the double-porosity medium is drained (empty pores), the model reduces to an elastic compos-
ite with large contrasts in the elasticity coefficients – the band gaps have been studied using the homogenization approach 
in works [24,27] and other related papers, see [25]. If the fluid resides in pores, the presence of band gaps is not proved for 
the moment; however, as pointed out above, a strong dispersion occurs. Depending on the fluid viscosity, band gaps may 
appear.

The microflow in the double porosity is responsible for the fading memory effects via the macroscopic poroviscoelas-
tic constitutive law. We have shown that all the effective material properties depend on the angular frequency ω in the 
frequency domain. This leads to convolution integrals in time, when transformed in the time domain. Thus, stresses are 
functions not only of the instantaneous deformation, but also depend on the whole past history of deformation. How-
ever, time-independent parts of the convolution kernels can be identified (e.g., elasticity and viscosity properties are both 
contained in ID).
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