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The dynamic analysis of cracked rotors is of considerable current interest. In the present 
paper, the effect of the presence of a transverse crack in a rotor supported by two 
hydrodynamic journal bearings is investigated. A nonlinear model of a flexible cracked 
rotor–bearing system is proposed. The model of the hydrodynamic forces is derived based 
on the assumption of a short bearing approximation and a half-Sommerfeld boundary 
condition. The system of nonlinear differential equations is integrated numerically using 
the Runge–Kutta method. The effect of the crack depth on the motion of the journal center 
in the vicinity of the stability limit is investigated. Bifurcation diagrams and Poincaré maps 
are used to determine the effect of the crack on the stability limit and on the journal 
motion.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

A crack defect in a rotor is generally considered a sever fault. The dynamic analysis of cracked rotors is a problem of 
great interest due to its practical importance; consequently, it has received considerable attention in the last decades. The 
presence of a crack affects the dynamic response of a rotor because of the reduction in the rotor’s stiffness and thus in the 
natural frequencies of the original uncracked rotor [1]. Different approaches have been proposed for dynamic analysis of a 
cracked rotor based on two established models. The first one is the model of opening and closing crack, or switching model. 
In this model, the stiffness of the rotor varies between the stiffness corresponding to the closed crack and the stiffness 
corresponding to the open crack. In the second model, known as the breathing crack model, a partial opening/closing of 
the crack is modeled using a periodic function that governs the change in stiffness. Several studies have considered the 
effect of a crack on the stability of the rotor using several methods to model the presence of a crack. Papadopoulos and 
Dimarogonas [2] used an analytical approach to compute the local flexibility of a cracked shaft using the strain energy and 
the stress intensity. This approach has been validated by experimental results. Sekhar and Prabhu [3] computed the natural 
frequencies and mode shapes of a cracked rotor using a Finite Element Model. The detection of a crack in the shaft is based 
on the variation of natural frequencies. Mayes and Davies [4] studied the presence of a crack using the switching crack 
model. The opening and closing of the crack are modeled by a truncated Fourier series. Mancilla and Sinou [5] showed, 
using a numerical simulation, that the evolution of the orbit of the journal center on the one-half and one-third first 
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Nomenclature

m rotor mass per bearing
g gravity constant
{Z} = {x y}T vector of the disk displacements in inertial 

coordinates
a depth of the crack
d diameter of the shaft
r = a/d dimensionless crack depth ratio
l length of the shaft
C bearing radial clearance
e = O b O j bearing eccentricity
ε = e/C relative eccentricity
ω angular velocity
� = ω

√
C/g dimensionless journal angular velocity

τ = ωt dimensionless time
φ attitude angle
β torsional angle
ξ,η rotating coordinates, ξ along crack orientation, 

η perpendicular to the crack orientation
O b bearing center
O j dynamic position of the journal center

fε, fφ radial and tangential components of the hy-
drodynamic forces

K half shaft stiffness

Kξ ,
Kη stiffness changes due to crack, in ξ and η

directions

kξ dimensionless stiffness change along ξ direc-

tion (
kξ = 
Kξ /K )

kη dimensionless stiffness change along η direc-

tion (
kη = 
Kη/K )
K̄ = K (C/mg) dimensionless stiffness of the uncracked 

shaft
Γ = μRL3/(2mC2.5 g0.5) bearing parameter
μ constant lubricant viscosity
g(ωt) crack function that defines the angular posi-

tion of the crack
kij (i = x, j = y) stiffness matrix coefficients
[KR] stiffness matrix of the rotor system in rotating 

coordinate system
[K I] stiffness matrix of the rotor system in inertial 

coordinate system
[M] rotor mass matrix

frequency can be used to detect rotor cracks. Sinou and Lees [6] evaluated the dynamic response of a rotor with a breathing 
crack by using the time-frequency domain approach. The increase in the harmonic components of the dynamic system 
response and the evolution of the size of the orbit are the principal indicators of the presence of a crack in a rotating shaft. 
Later, they have used the Harmonic Balance Method to study the influence of a crack on the dynamic response of a rotor. 
The evolution of the trajectory center of the rotor near half of the first critical speed is an indication of the existence of 
a crack [7]. Xue and Cao [8] used the Runge–Kutta method to solve a system of differential equations of a cracked rotor. 
Bifurcation diagrams, Poincaré sections and rotor trajectory diagrams are used to study the effect of rotating speed, and 
crack depth on the dynamic response of the rotor. The onset of a period doubling orbit is considered an indicator of the 
presence of a crack in the shaft. The domain of instability increases considerably when the crack deepens.

A nonlinear model of a cracked rotor–bearing system is used by Luo and Zhang [9]. Harmonic frequency method is 
used to study the presence of the crack. The analysis proves that the increase of the depth of a crack reduces the stability 
limit of the system. Chaofeng and Hexing [10] used the Finite Element Method to study the stability of a nonlinear cracked 
rotor–bearing system. To study the effect of the depth of the crack on the stability of the rotor as a function of the rotor 
speed, they used bifurcation diagrams, Poincaré sections, and trajectories of the shaft center. They also showed that the 
crack fault reduces the stability speed of the rotor as the crack becomes deeper. The simulation results have been validated 
experimentally. In this study, they showed that the stability speed limit decreases as the crack becomes deeper. Gasch [11]
used Floquet theory to study the effect of a crack in the vibrations signal. He showed that a deeper crack in the shaft 
changes the natural frequencies, and that the crack detection, in practice, is difficult for cracks depth less than 25%.

In this paper, a four-degree-of-freedom dynamic model of a perfectly balanced flexible cracked rotor supported by hy-
drodynamic journal bearings is derived. The fluid film force components corresponding to the half Sommerfeld conditions 
for a short hydrodynamic bearing are used (L/D ≤ 0.25). Bifurcation diagrams and trajectories of the journal center have 
been used to predict the effect of the crack depth on the limits of the stability and its motion in the vicinity of the stability 
limit. The validity of this research is proved by the detection of a crack in the journal using bifurcation diagrams, Poincaré 
sections, trajectories of the journal center and power spectra.

2. A nonlinear model of a balanced flexible cracked rotor–bearing system

Fig. 1 shows a symmetrical balanced flexible cracked rotor that has a mass 2m supported by two identical hydrodynamic 
short bearings O b is the bearing center, O j is the dynamic position of the journal center and fε , fφ are respectively the 
radial and tangential components of the hydrodynamic forces applied on each journal bearing.

To analyze the dynamic response of a flexible balanced cracked rotor, the following assumptions are used:

(a) the deflection of the shaft is sufficiently small to permit the use of classical linear beam theory;
(b) due to the short bearing assumption and lubricant force description, the length to diameter, L/D , has to be less or equal 

to 0.25;
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Fig. 1. (a) Hydrodynamic forces applied on the journal. (b) A general view of the rotor. (c) Coordinate system associated with the crack.

(c) motion at the bearings is supposed to be perfectly symmetrical; moreover, due to its nonlinear character, this includes 
having exactly the same initial conditions, I.C.s.;

(d) the rotor mass is lumped at the mid-point with a massless shaft, a central load of 2 mg and an effective shaft stiffness 
2K (K is the effective stiffness of the half-rotor);

(e) the gyroscopic effects of the journal and of the central disk are negligible.

The equations of motion for the journal center in Cartesian coordinates are derived using the equilibrium equation of forces 
on the journal as follows [11,12]:[

sinφ cosφ

− cosφ sinφ

]{
fε
fφ

}
+

[
K 0
0 K

]{
x − Cε sinφ

y + Cε cosφ

}
=

{
0
0

}
(1)

According to the short bearing theory and the half Sommerfeld condition, the dimensionless radial and tangential compo-
nents of the fluid film forces are [13]:

f̄ε = fε
mCω2

= − Γ

�

[
2ε2(1 − 2φ̇)

(1 − ε2)2
+ π

(1 + 2ε2)ε̇

(1 − ε2)2.5

]

f̄φ = fφ
mCω2

= Γ

�

[
π

(1 − 2φ̇)ε

2(1 − ε2)1.5
+ 4εε̇

(1 − ε2)2

] (2)

where Γ = μRL3/(2mC2.5 g0.5) is the bearing parameter and � = ω
√

C/g is the dimensionless rotor speed. A2 × 2 inverse 
matrix is used in the bearing forces, Eq. (2), provides Eq. (3).{

ε̇
φ̇

}
=

{
0

−0.5

}
+ 1

�Γ (π2 + 2(π2 − 8)ε2)

[
π(1 − ε2)2.5 −4ε(1 − ε2)2

4(1 − ε2)2 − 2π(1−ε2)1.5(1+2ε2)
ε

]{
f̄ε
f̄φ

}
(3)

The stiffness matrix for the cracked shaft in rotating coordinates (ξ, η), defined in Fig. 1c, can be written as [1]:

[K R ] =
[

kξ 0
0 kη

]
=

[
K 0
0 K

]
− g(ωt)

[

kξ 0

0 
kη

]
(4)

where the first matrix in the right-hand side of Eq. (4) represents the stiffness of the uncracked shaft, and the second matrix 
represents the change in stiffness 
kξ and 
kη in the ξ and η directions. The crack function g(ωt) describes the angular 
position of the crack defined as follows [11]:

g(ωt) = 1 + cos(ωt)

2
(5)

The stiffness matrix for the rotor with a cracked shaft in inertial coordinates is given by [14]:

[K I ] =
[

kxx kxy

kyx kyy

]
=

[
K 0
0 K

]
− g(ωt)

K

2

[

k1 + 
k2 cos(2ωt) 
k2 sin(2ωt)


k2 sin(2ωt) 
k1 − 
k2 cos(2ωt)

]
(6)

where 
k1 = 
kξ + 
kη; 
k2 = 
kξ − 
kη .
The nonlinear coupled equations of motion of the balanced flexible cracked rotor can be written in inertial coordinate 

frame as:

[M]{ Z̈} + [K I ]{Z} =
{

0
−mg

}
(7)
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Fig. 2. Bifurcation diagrams of a balanced flexible rotor for Γ = 0.1 and K̄ = 1: (a) numerical integration, (b) numerical continuation.

where [M] =
[

m 0
0 m

]
is the rotor mass matrix and {Z} = {x − Cε sin(φ)y + Cε cos(φ)}T is the vector of the disk displacements 

relative to the journal motion. The parameters ε, φ, x and y are all functions of time t .
Using equations (6) and (7), the dimensionless form of the equations of motion is obtained.{ ¯̈x

¯̈y
}

= − K̄

� 2

([
1 0
0 1

]
− g(τ )

2

[

k1 + 
k2 cos(2τ ) 
k2 sin(2τ )


k2 sin(2τ ) 
k1 − 
k2 cos(τ )

]){
x̄ − ε sin(φ)

ȳ + ε cos(φ)

}
+

{
0

− 1
� 2

}
(8)

where τ = ωt , x̄ = x/C , ȳ = y/C , and ε = e/C .
Using Eqs. (3) and (8), the complete system of differential equations of motion may be written as follows:

ε̇ − [
π
(
1 − ε2)2.5

f̄ε − 4ε
(
1 − ε2)2

f̄φ
] 1

�Γ (π2 + 2(π2 − 8)ε2)
= 0

φ̇ + 1

2
−

[
4
(
1 − ε2)2

f̄ε − 2π(1 − ε2)1.5(1 + 2ε2)

ε
f̄φ

]
1

�Γ (π2 + 2(π2 − 8)ε2)
= 0

ẍ + K̄

� 2

[
1 − g(τ )

2

[(

k1 + 
k2 cos(2τ )

)(
x̄ − ε sin(φ)

) + 
k2 sin(2τ )
(

ȳ + ε cos(φ)
)]] = 0

ÿ + K̄

� 2

[
− g(τ )

2

(

k2 sin(2τ )

)(
x̄ − ε sin(φ)

) +
(

1 − g(τ )

2

)(

k1 − 
k2 cos(2τ )

)(
ȳ + ε cos(φ)

)] + 1

� 2
= 0

(9)

where f̄ε and f̄φ are given by Eq. (2).
The system of equations (9) can be expressed as a system of six first-order differential equations of the following form:

Ẋ = f (X;Γ,�,
kξ ,
kη, K̄ ) (10)

where X = (x1, x2, x3, x4, x5, x6)
T = (ε, φ, ̄x, ̄̇x, ȳ, ¯̇y)T. Therefore the system depends on five dimensionless parameters 

(Γ, �, 
kξ , 
kη, K̄ ).

3. Numerical results and discussion

The dynamic response of the flexible cracked balanced rotor supported by hydrodynamic bearings is considered. The 
equations of motion (Eq. (9)) are integrated numerically using the Runge–Kutta method. To ensure that the data used to 
study the dynamic response of hydrodynamic bearings corresponds to a steady state, the data points for the first 800 
revolutions of the rotor are not included in the figures. The dimensionless rotor speed � is used as a control parameter 
in the bifurcation analysis. To investigate the effect of the crack, the balanced uncracked rotor is used as a reference. The 
dimensionless stiffness variation 
kξ and 
kη of the shaft due to the crack are increased progressively. Three values of the 
dimensionless crack depth ratio defined in the nomenclature are considered, r = 12%, r = 25%, and r = 50%, corresponding 
to three pairs of the dimensionless stiffness 
kξ and 
kη , (0.07, 0.02), (0.2, 0.03) and (0.4, 0.16) [14,15]. To determine the 
effect of the shaft crack on the dynamic response of the system, the dynamic trajectories of the journal center, bifurcation 
diagrams, Poincaré sections, and frequency spectra are plotted. The trajectory plot and the Poincaré sections are used to 
reveal the type of motion. The bifurcation diagram reveals the periodicity of the motion and the power spectrum is used to 
reveal the frequency content of the motion.
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Fig. 3. Bifurcation diagrams of a balanced flexible rotor for Γ = 0.1 and K̄ = 10: (a) numerical integration, (b) numerical continuation.

Fig. 4. Bifurcation diagram of the journal center of a balanced flexible cracked rotor for a small crack, 
kξ = 0.07, 
kη = 0.02, Γ = 0.1 and K̄ = 1.

Fig. 5. Dynamic response of journal center of the uncracked rotor–bearing system for � = 2, Γ = 0.1 and K̄ = 1: (a) trajectory of the journal center, 
(b) Poincaré section, (c) power spectrum.

To verify the validity of the results obtained by numerical integration, a comparative study is carried out with results 
obtained by numerical continuation using the Matlab toolbox MATCONT for the case of a flexible balanced rotor without a 
crack.

Figs. 2 and 3 show, respectively, the bifurcation diagram of the journal eccentricity for an increasing rotor speed � for 
the bearing parameter Γ = 0.1 and for two shaft flexibilities K̄ = 1 and K̄ = 10. The figures show that the journal’s steady-
state stability limits obtained by numerical integration are in concordance with those obtained by numerical continuation.

Fig. 4 shows the bifurcation diagram obtained by numerical integration of a balanced cracked rotor for a small depth 
of the crack depicted by r = 12% for Γ = 0.1 and K̄ = 1. For � ≤ 2.1 the rotor is stable, but the journal’s motion is 
different from that of the rotor without a crack, as shown in Fig. 2. For instance, the motion of the journal center of the 
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Fig. 6. Dynamic response of the journal center of the cracked rotor–bearing system for � = 2, Γ = 0.1, 
kξ = 0.07, 
kη = 0.02, and K̄ = 1: (a) trajectory 
of the journal center, (b) Poincaré section, (c) power spectrum.

Fig. 7. Bifurcation diagram of a balanced flexible cracked rotor for a medium crack, 
kξ = 0.2, 
kη = 0.03, Γ = 0.1, and K̄ = 1.

Fig. 8. Dynamic response of the cracked rotor–bearing system for � = 2, Γ = 0.1, 
kξ = 0.2, 
kη = 0.03, and K̄ = 1: (a) trajectory of the journal center, 
(b) Poincaré section, (c) power spectrum.

system without a crack is periodic for � = 2, as shown in Fig. 5a–c. At the same value of � , a double loop appears in 
the trajectory of the journal center, as shown in Fig. 6a, and the motion is 2T periodic (Fig. 6b), at half rotating frequency 
(Fig. 6c). The system loses its stability at � ≈ 2.1. For low values of the crack, the dynamic trajectory of the system changes, 
but the stability limit does not undergo a significant change. In this case, the use of the bifurcation diagram is not sufficient 
to prove the presence of a small crack. In order to show the influence of the crack, the trajectory of the journal center, the 
Poincaré section, and the power spectrum have to be used. The increase in the journal’s amplitude of oscillation and the 
onset of a periodic double loop motion with a period corresponding to the half rotational speed are considered as indicators 
of the presence of a transverse crack.

Fig. 7 shows the bifurcation diagram for a medium crack depth for r = 25%, Γ = 0.1, and K̄ = 1. The stability limit does 
not show any significant change compared to the system with a small crack depth (Fig. 4).
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Fig. 9. Bifurcation diagram of a balanced flexible cracked rotor for a large crack, 
kξ = 0.4, 
kη = 0.16, Γ = 0.1 and K̄ = 1.

Fig. 10. Dynamic response of the cracked rotor–bearing system: trajectory of the journal center, Poincaré section, and power spectrum for � =
0.5, 1.4 and 1.45.
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Fig. 11. Bifurcation diagram of a balanced flexible cracked rotor for Γ = 0.1 and K̄ = 10: (a) 
kξ = 0.07, 
kη = 0.02, (b) 
kξ = 0.2, 
kη = 0.03 and 
(c) 
kξ = 0.4, 
kη = 0.16.

However, the increase in the depth of the crack affects the journal’s motion. For example, for a rotor angular frequency 
� = 2, the trajectory of the journal increases, two orbit appear (two points in the Poincaré section), and in the power 
spectrum, a new component has appeared on the one-half rotational frequency (Fig. 8 compared to Fig. 5).

For parameters corresponding to a larger rotor crack, 
kη = 0.4 and 
kξ = 0.16, the stability critical speed � decreases 
to 1.4 (Fig. 9). For � = 0.5, the motion of the rotor is periodic (Fig. 10a–c). For � = 1.4, the orbit is distorted and com-
prised of two loops of different sizes (Fig. 10d). The motion of the rotor also changes and becomes 2T -periodic, as two 
points appear in the Poincaré section diagram, Fig. 10e. Spectral analysis shows that the amplitude of the one-half rotation 
frequency exceeds the amplitude of the rotation frequency (Fig. 10f). This proves the presence of a deeper crack on the 
shaft. The motion of the system becomes chaotic for � ≥ 1.45 (Fig. 10g–h).

Fig. 11 shows the bifurcation diagrams of the cracked rotor for a bearing parameter Γ = 0.1, shaft flexibility K̄ = 10
and three values of the dimensionless crack stiffness. The limit of stability of the system decreases with the increase in the 
depth of the crack (Fig. 11a–c).

For low crack depths (r = 12%), the trajectory of the journal center is composed of two loops (Fig. 12a) for � = 2. 
The motion of the rotor, depicted by the two points in the Poincaré section (Fig. 12b), is a 2T -periodic. The presence of a 
component at one-half rotational frequency in the spectrum (Fig. 12c) proves the presence of the crack. In the vicinity of 
the stability limit, the center of the journal undergoes single loops with slight variations in their sizes (Fig. 12d). Several 
well points appear in the Poincaré section, which indicates that the motion is quasi-periodic (Fig. 12e). The structured am-
plitude of a one-third rotational frequency increases and exceeds the amplitude of the first rotational frequency (Fig. 12f). 
For � = 2.95, the trajectory of the journal center diverges and the journal becomes in contact with the bearing (Fig. 12g); 
the motion becomes chaotic (Fig. 12h). These results agree qualitatively with the experimental results reported in the paper 
of Gómez-Mancilla [5] and Li Chaofeng [10], in which they have shown that the motion becomes quasi-periodic and the 
amplitudes of the one-third and one-half critical frequency increase and exceed the amplitude of the first rotational fre-
quency. For a deeper crack (r = 50%), A double periodic motion appears and the trajectory of the journal center becomes 
wider (Fig. 13a compared to Fig. 12a). The motion of the rotor is 2T -periodic (Fig. 13b), and the amplitude of the rotational 
frequency increases (Fig. 13c compared to Fig. 12c). For � = 2.8, the motion is quasi-periodic (Fig. 13d–e), and the ampli-



N. Ferjaoui et al. / C. R. Mecanique 344 (2016) 661–671 669
Fig. 12. Response of the cracked rotor–bearing system for Γ = 0.1, K̄ = 10, 
kξ = 0.07 and 
kη = 0.02: trajectory of the journal center, Poincaré section 
and power spectrum for � = 2, 2.9, and 2.95.

Table 1
Stability limit of the journal center.

Dimensionless depth ratio r

Γ 0% 12% 25% 50%

K̄ = 1 1 1.55 1.55 1.45 1.40
0.1 2.10 2.10 2.10 1.40
0.05 3.60 3.60 3.60 3.55

K̄ = 10 1 2.4 2.4 2.35 2.30
0.1 2.9 2.9 2.85 2.80
0.05 4.20 4.20 4.15 4.10

tude of the one-third rotational frequency exceeds the amplitude of the first rotational frequency (Fig. 13f). The motion of 
the system becomes chaotic for � = 2.85 (Fig. 13g–h).

Table 1 presents the speed limits of stability � for the three values of the bearing parameter Γ and the two values of 
the shaft flexibility. The limit of stability does not change significantly for low values of the crack depth. When the crack 
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Fig. 13. Response of the cracked rotor–bearing system for Γ = 0.1, K̄ = 10, 
kξ = 0.4 and 
kη = 0.16: trajectory of the journal center, Poincaré section 
and power spectrum for � = 2, 2.8 and 2.85.

depth increases, the limit of stability decreases, especially for small values of Γ and low values of the flexibility K̄ . The 
presence of a crack has a limited effect on the stability limit for small values of the depth of the crack; however, it has an 
important effect on the dynamic response of the rotor. T -, 2T -, 3T -, . . . , nT -periodic motions of the rotor appear before the 
onset of instability.

4. Conclusion

A nonlinear dynamic analysis of balanced flexible cracked rotor–bearing systems is investigated. Bifurcation diagrams, 
Poincaré sections and trajectories of journal center are used to study the effect of the crack on the dynamic response and 
on the stability of the system. The presence of a crack in the shaft affects the orbit of the journal center and decreases the 
stability limit. A small crack has no significant effect on the stability limit, but affects the type of motion of the journal 
center. The appearance of one-third and one-half rotational frequency components in the spectrum and the increase of its 
amplitude at are considered an indicators of the presence of a crack in the rotor.
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