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This paper details the development of the Proper Generalized Decomposition as a 
space–time integrator of elastoplastic problems and shows its ability to determine the 
elastoplastic states resulting from cyclic loadings. The first part of this paper recalls the 
step-by-step resolution in time of an elastoplastic problem. The implementation of the 
Proper Generalized Decomposition is then developed in a second part. In the last third 
part, applications and numerical simulations are presented to show the relevance of the 
method.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The prediction of the fatigue life span of mechanical components requires a good knowledge of the stabilized cyclic 
mechanical states. Thermomechanical loads applied periodically to a structure can indeed lead to various limit states.

– The elastic shakedown: the cyclic behavior at any point of the structure is then elastic. A plastic deformation can 
develop during the first cycles but ends up being stabilized. The lifespan analyses are then based on high-cycle fatigue 
criteria.

– The plastic shakedown: the cyclic behavior in each point stabilizes in that case on an elastoplastic cycle, which is 
repeated during the following cycles. The lifespan analyses then require low-cycle (oligocyclic) fatigue criteria.

– The cyclic ratcheting behavior: it then appears a progressive deformation that increments cycle after cycle. This phe-
nomenon is related to the behavior of material combined with certain types of loading and can lead to the ruin of the 
structure.

The search for these limit states by a classical step-by-step method can lead to extremely long computation times. In 
practice, such a method can become unusable when the number of cycles is very high.
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To predict the limit states, several authors then proposed simplified methods that are based on estimates of the param-
eters of the stabilized state [1–3]. Peigney and Stolz [4] proposed an approach using optimal control and Maitournam et al. 
[5] developed a direct research method of the limit states by decomposing in Fourier series the equations and the variables 
of the problem. Other common practices in industry consist in searching the stabilized states starting from a step-by-step 
calculation, but by using a behavior model identified on the material’s cyclic curve, in such a way as to obtain the stabilized 
states in only some cycles. Other authors like Lesne and Savalle [6], Chaboche and Cailletaud [7] have sought to reduce the 
simulation times by reducing the number of simulated cycles by means of a method of jumps of cycles.

Finally, alternative methods to the step-by-step calculations of the elastoplastic transients have also been developed. 
These methods are generally based on the convergence of an iterative process between a global resolution of the equilibrium 
equations on the whole analysis time interval to obtain a solution that is statically and kinematically admissible, and a local 
resolution of the constitutive equations for the calculation of the plastic correction of the stresses. The Large Time Increment 
(LATIN) method is, in the authors’ knowledge, the first method suggested in this domain [8,9]; more recently Comte et al. 
[10] proposed an alternative by projecting the global equations on a basis of wavelets.

The method that we propose in this article falls within this last category. It aims at reducing the computation times by 
using the “Proper Generalized Decomposition” (PGD) as a space–time integrator of the elastoplastic problem to determine 
the elastoplastic (or viscoplastic) states resulting from cyclic thermomechanical loads, but more generally from any type of 
loading.

The PGD is a method of model reduction whose principle consists in seeking a global solution to a problem involving 
numerous variables (space variables, time, various parameters) by separating these variables [11–13]. One thus seeks the 
solution in the form of a sum of modes, each mode being calculated as a product of functions of each of the considered 
variables. The PGD is an a priori method and does not require the calculation of a reference basis, contrary to the “Proper 
Orthogonal Decomposition” (POD) method introduced by Lumley [14].

Although the convergence of the method is not yet demonstrated in a general way, recent works showed a satisfactory 
numerical behavior in solid mechanics [15], and more particularly in the treatment of viscoelasticity [16,17].

2. In-time step-by-step resolution of elastoplastic problems

2.1. Weak formulation

The problem we propose to solve is governed at any instant t ∈ T = [0, τ ] by the equilibrium equations of a continuous 
medium supplied with the usual boundary conditions:⎧⎪⎨

⎪⎩
div(σ ) + f v = 0 in � (a)

σ ·n = T p on �T (b)

u = 0 on �u (b)

(1)

In these equations, T = [0, τ ] is the time interval of analysis; � is the spatial domain of the study, of boundary ∂� =
�T ∪ �u ; σ (x, t) is the Cauchy stress tensor; u(x, t) is the displacement vector; f v (x, t) represents volume forces and 
T p(x, t), surface forces; n is the unit outward normal vector to the boundary ∂�. Note that the loads can be time dependent.

Here we place ourselves within the framework of the infinitesimal strain theory. At any instant and at any point, σ (x, t)
is connected to the history of strain ε(x, t) at the same point by the constitutive equations of elastoplasticity (or elastovis-
coplasticity). Any behavioral model can be used at this stage; more generally, the method presented below can be applied 
such as it is to other types of constitutive equations.

The classical resolution of elastoplastic problems by a step-by-step finite-element approach is based on the following 
weak formulation (itself very classical), which consists in searching, at each time t , the displacement field u(x, t) verifying:

∀v∗(x),

∫

�

v∗(x)· f v(x, t) dω +
∫

�T

v∗(x)·T p(x, t) ds −
∫

�

ε
(

v∗(x)
) : σ (x, t) dω = 0 (2)

where v∗(x) are test functions and ε(v∗) = 1

2

(
grad v∗ + gradt v∗).

Let us note that the mechanical state depends on time t only through the loading. In fact, the time t is only useful to 
describe the loading history, the inertial forces being neglected.

2.2. Finite-element problem

On the basis of the weak formulation (2), the application of a finite-element approximation (in space) to the problem 
(1) leads to search at each time the displacement field u(x, t) in the following form, inside each element [18,19]:

u(x, t) =
ne∑

Ne
i (x) Ui

e(t) = Ne(x)·U e(t) (3)

i=1
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where Ne(x) and U e(t) represent respectively the array of element shape functions and the vector of nodes’ displacements 
for the element e at time t . For clearness reasons, we will omit the reference to the element e in the sequel and write: 
u(x, t) = N(x)·U (t). The test functions will be also written in the form: v∗(x) = N ·V ∗ .

The problem (2) can thus be stated in the following form.
Find at each time t the vector of nodal displacements U (t) such that:

∀ V ∗, V ∗t·R(t) = 0

i.e. such that:

R(t) = 0 (4)

In equation (4), R(t) represents the vector of instantaneous nodal residuals at time t , which results from the assembly of 
the elementary residuals Re(t). Its expression immediately comes from Eq. (2) wherein the approximation scheme (3) is 
injected:

R(t) =
∫

�

N(x)t· f v(x, t) dω +
∫

�T

N(x)t·T p(x, t) ds −
∫

�

B(x)t·σ (x, t) dω (5)

where B(x)t represents the matrix which allows to pass from nodal displacements to the components of the strain tensor 
and where σ (x, t) = (σ11 σ22 σ33 σ12 σ13 σ23)

t represents the classical notation of Voigt for the components of the stress 
tensor.

Note that the vector of instantaneous residuals R(t) depends on time through the loading (which is a data) and the state 
of stress at any point, which himself depends on the history of deformation and thus on the history of displacement until 
the time t .

The various integrals appearing in Eq. (5) are computed by Gauss integration. At each Gauss point, the stress state 
is calculated step by step in time using a suited algorithm (of ‘radial return’ type), which depends on the constitutive 
equations considered (see, for example, [20,21]).

The resolution of the problem (4) can be achieved using the Newton–Raphson method (see for example [22]) and gives 
the displacement vector U (t) at each loading step.

3. Implementation of the Proper Generalized Decomposition

3.1. Principle

The Proper Generalized Decomposition (PGD) consists in seeking the solutions to a problem using the separation of 
variables. In our case, we apply it to the resolution of elastoplastic problems by looking for solutions by separating the 
variables of space x and of time t .

The aim is thus to approximate the field of displacement by a sequence of functions uM (x, t) of the following form:

uM (x, t) =
M∑

α=1

dα(x) fα(t) (6)

where the functions dα(x) and fα(t) are now looked for by finite-element approximations in space for dα(x) and in time 
for fα(t). Therefore we do not intend any more to solve the problem step by step in time, but globally on the whole time 
interval T = [0, τ ] of the study.

The search for the modes in space and in time is performed iteratively, mode after mode. Thus, having an ap-
proximation uM(x, t) until an order M , we look for a couple of functions (dM+1(x), f M+1(t)) such that uM+1(x, t) =
uM(x, t) + dM+1(x) f M+1(t) constitutes a better approximation of the solution u(x, t).

3.2. Weak formulation

To apply the finite element method in space and in time, the weak formulation of the problem is now obtained by 
multiplying Eq. (1)(a) by weight functions v∗(x, t) that are written in the form:

v∗(x, t) = d∗(x) f (t) + d(x) f ∗(t) (7)

and then by integrating the result on the time interval T and the space domain �. Let us note that in Eq. (7), the searched 
functions of the variables of space and time are noted d(x) and f (t) to reduce the writing. Integrating by part on the space 
domain � and taking into account the boundary conditions (1)(b)(1)(c), the variational problem becomes:

Find d(x) and f (t) such that:
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∀ v∗(x, t),

∫

T

∫

�

v∗(x, t)· f v(x, t) dω dt +
∫

T

∫

�T

v∗(x, t)·T p(x, t) ds dt

−
∫

T

∫

�

ε
(

v∗(x, t)
) : σ (x, t) dω dt = 0

(8)

As Eq. (8) must be satisfied whatever v∗ given by Eq. (7), it must be satisfied whatever d∗ and f ∗ independently:

∀d∗(x),

∫

T

f (t)

∫

�

d∗(x)· f v(x, t) dω dt +
∫

T

f (t)

∫

�T

d∗(x)·T p(x, t) ds dt

−
∫

T

f (t)

∫

�

ε
(
d∗(x)

) : σ (x, t) dω dt = 0
(9a)

∀ f ∗(t),
∫

T

f ∗(t)
∫

�

d(x)· f v(x, t) dω dt +
∫

T

f ∗(t)
∫

�T

d(x)·T p(x, t) ds dt

−
∫

T

f ∗(t)
∫

�

ε
(
d(x)

) : σ (x, t) dω dt = 0
(9b)

The weak formulation of the problem now consists of two variational equations, one relative to the function of space 
variables (9a) and the other one to the function of time (9b).

After resolution, we set dM+1(x) = d(x) and f M+1(t) = f (t), and we move on to the next mode. The strategy of resolution 
will be discussed in section 4 for the discrete problem.

3.3. Finite-element formulation

We consider a mesh of the spatial domain �. The field d(x) is sought in the following form:

d(x) = N(x)·D (10)

where N(x) and D represent respectively the array of element shape functions and the vector of nodal values of d(x). The 
field d∗(x) is approximate in the same way by d∗(x) = N(x)·D∗ .

The time domain T = [0, τ ] is subdivided in time sub-intervals representing finite elements in time. The ends of the 
sub-intervals are the temporal nodes to which correspond various times ti . The temporal nodes are numbered from 1 to 
NT per ascending order of the times ti to which they correspond. We denote Fi the value of the time function at the ith 
temporal node i.e. at time ti . The approximation of the function f (t) can then be written as:

f (t) = P (t)·F (11)

where P (t) and F represent respectively the array of shape functions of the temporal elements and the vector of the values 
of function f (t) at temporal nodes. f ∗(t) is approximate in the same manner by f ∗(t) = P (t)·F ∗ . Notice that, considering 
equations (10) and (11), (6) becomes uM (x, t) = N(x)·U (t)M with:

U (t)M =
M∑

α=1

Dα ·P (t)t·F α (12)

where U (t)M is the vector of displacements of the nodes of the space domain during time obtained with M modes and Dα , 
F α (α = 1, . . . , M) are the computed modes in space and in time.

With the schemes of approximation (10) and (11), the variational problem (9) is thus equivalent to find D and F such 
that:

∫

T

f (t)

⎛
⎜⎝

∫

�

N(x)t· f v(x, t) dω +
∫

�T

N(x)t·T p(x, t) ds −
∫

�

B(x)t·σ (x, t) dω

⎞
⎟⎠ dt = 0

∫

T

P (t)·D
⎛
⎜⎝

∫

�

N(x)t· f v(x, t) dω +
∫

�T

N(x)t·T p(x, t) ds −
∫

�

B(x)t·σ (x, t) dω

⎞
⎟⎠ dt = 0

that we can rewrite with Eq. (5) under the form:
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ϕ� =
∫

T

f (t) R(t)dt = 0 (13a)

ψ T =
∫

T

P (t)·Dt·R(t)dt = 0 (13b)

Equation (13a) defines the residual in space whose dimension is equal to 3 times the number of nodes of the space domain 
� (in 3D). Equation (13b) defines the residual in time; its dimension is equal to the number of temporal nodes.

Remark 3.1. In elastoplasticity, and more generally in non-linear problems, the integrals in space and time are not easily 
separable. As proposed in the LATIN method, one could use a Proper Orthogonal Decomposition [23]. But experience shows 
that this approach can introduce a numerical noise detrimental for the calculation quality [24]. In this work, the stresses 
σ (x, t) are calculated in a standard way, step by step in time without decomposition. Therefore, Eqs. (13a) and (13b) are 
still coupled despite the PGD decomposition of the displacement field.

Let us notice that ϕ� and ψ T depend nonlinearly on D and on F through the vector of the instantaneous residuals R(t)
defined by Eq. (5), which depends at each time on

U (t)M+1 =
M∑

α=1

Dα ·P (t)t·F α + D·P (t)t·F

The choice of the temporal finite elements of whom the shape functions depend on can be any a priori. In the present 
case, we will choose two-node elements.

The time integration of Eqs. (13a) and (13b) could be performed by a classical Gauss integration. In the present case, a 
nodal integration will be preferred. The integration points are thus the temporal nodes; with the ith node, corresponding 
to time ti , will be associated the weight ωi = 1

2 (	ti + 	ti+1), where 	ti = ti − ti−1 and 	ti+1 = ti+1 − ti correspond to the 
lengths (or time steps) of the element that precedes and of the one that follows ti (note the particular cases of the first and 
last nodes corresponding to the times t1 and tNT for which the weights will be respectively equal to 1

2 	t2 and 1
2 	tNT ).

The advantage of the nodal time integration is that it decouples the components of the vector ψ T in Eq. (13b), which 
are written now:

∀ i = 1, . . . , Nt, ψiT = ωi Dt·R(ti) = 0 (14)

The resolution in time therefore consists in solving Nt non-linear scalar equations D t·R(ti) = 0.

4. Discussion on different strategies of resolution in elastoplasticity

The purpose of this paragraph is to describe the different strategies of calculation that have been considered for solving 
an elastoplastic problem.

The determination of D and F for each mode is based on the resolution of the coupled non-linear equations (13a) and 
(14). It is the exact resolution of these two systems of equations which will lead to an approximation made up of a minimal 
number of modes.

With this intention, Eq. (13a) could be solved by using a Newton–Raphson method to calculate D while supposing F
(and thus f (t)) known. Then Eqs. (14) would be solved to calculate F while fixing D at the value previously found. Once 
the time function computed, one would go back to the resolution of Eq. (13a) and so on until convergence, as described 
in Algorithm 4.1. This method leads to solve an a priori large nonlinear system in space at each iteration of space–time 
coupling. This seems therefore expensive; in addition, the accurate resolution of the problem in space, whereas the time 
function is not yet well evaluated does not seem to be suitable.

Algorithm 4.1: First strategy of resolution.

Loop on PGD modes

Space–Time coupling

Space resolution

Newton–Raphson method applied to Eq. (13a) for computing D

until convergence;

Time resolution

Newton–Raphson method to solve Eq. (14) for i = 1, . . . , Nt

until convergence;

until convergence;

until PGD criterion is reached;
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Unlike the first strategy, where two full resolutions in space and in time are successively carried out, another strategy for 
the resolution consists in considering the space–time problem as a whole and thus to link together until convergence a suc-
cession of calculations including an iteration of resolution of Eq. (13a) to correct D while supposing F known and followed 
by a resolution of Eq. (14) to calculate F while fixing D at the found value. The process is repeated until convergence, as it 
can be seen in Algorithm 4.2.

Algorithm 4.2: Second strategy of resolution.

Loop on PGD modes

Resolution loop in Space and Time

Newton–Raphson iteration for computing D

Newton–Raphson method to solve equation Eq. (14) for i = 1, . . . , Nt

until convergence;

until PGD criterion is reached;

A last strategy would be to no more strive to solve perfectly Eq. (13a). For each mode, D could thus be calculated 
assuming the behavior is elastic, i.e. by the resolution of a linear system derived from Eq. (13a), and be used then to solve 
Eq. (14) precisely. This leads to the method described in Algorithm 4.3. It is clear that this approach would lead to a number 
of modes larger than the one that would be obtained with one of the previous methods. But considering the resolution time, 
this method could appear as efficient.

Algorithm 4.3: Third strategy of resolution.

Loop on PGD modes

Space linear resolution for D

Time resolution

Newton–Raphson method to solve Eq. (14) for i = 1, . . . , Nt

until convergence is reached;

until PGD criterion is reached;

In all the cases, the convergence of the sequence will be supposed to be reached when:

ρ =
⎛
⎝ 1

τ

∫

T

R(t)t·R(t)dt

⎞
⎠

1
2

� εT (15)

where R(t) is computed with the last solution obtained and εT is a desired accuracy threshold.

Remark 4.1 (Resolution of Eqs. (14)). The equations of the system of Eq. (14) being uncoupled, its resolution can be done step 
by step in time. Indeed, F1 can be determined by the resolution of the first equation of Eq. (14). Dt·R(t1) being a function 
of F1 only, the determination of F1 can be done by a secant method. Then, knowing F1, Dt·R(t2) becomes a function of F2
only. The determination of F2 can thus be done in the same way, and so on until i = NT .

Full results such as the computing time and the convergence are not yet obtained. As it can be stated from Eqs. (13b)
and (14), the PGD needs much more calculations of the instantaneous residuals R(t) than the step-by-step method, but, 
as a counterpart, far less resolutions of a global matrix system associated with the problem in space. It is thus expected 
that the efficiency of the method should be checked for large finite-element meshes in space and numerous time steps. The 
applications presented in the next section only contain few degrees of freedom; therefore their aim is only to validate the 
concepts of the method. A comprehensive study to compare the proposed strategies will be completed in a future work.

5. Applications

Modeling the ratcheting effect requires the implementation of complex models such as those described for example in 
[25] or [26].

In the present case, our goal is only to show the ability of the PGD to simulate the evolutions of the mechanical variables 
and therefore the ratcheting effect. This is why we have chosen to consider a von Mises elastoplastic material with nonlinear 
kinematic hardening of ‘Armstrong–Frederick’ type [27], known to lead to a constant ratcheting during cycles in the case of 
asymmetric cycles of imposed stresses. The law of evolution of the kinematic variable is given by:
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Fig. 1. Displacement of the end of the cube during cycles.

Fig. 2. Computed strain–stress cycles.

χ̇ = 2

3
c ε̇p − γ χ ṗ (16)

where χ̇ = dχ
dt , εp is the tensor of the plastic deformations, ṗ =

√
2
3 ε̇p : ε̇p is the cumulated equivalent plastic strain rate 

and c and γ are two parameters.

5.1. Uniaxial (tension–compression/traction and compression) test

The parameters of the model used in this case are for the Young modulus: E = 210,000 MPa, for the yield stress: 
σ y = 200 MPa, c = 25,000 MPa, and γ = 125.

We consider a unit volume element subjected to uniaxial stress cycles between −220 MPa and 300 MPa.
Fig. 1 shows the displacement of the end of the cube during cycles with a step-by-step resolution and a PGD solution 

with two modes using Algorithm 4.3. In this example, the first mode has been calculated considering a fully elastic behavior. 
The second mode is therefore the first elastoplastic mode.

Fig. 2 gives the evolution of the axial stress as a function of the axial deformation. These two figures clearly highlight the 
ratcheting effect and the ability of the PGD to reproduce it. It should be noted that the time steps used for the PGD being 
the same as those used for the step-by-step resolution, the error made for the integration of the constitutive equations is 
the same in both cases.

5.2. Perforated plate subjected to a monotonic loading

We now consider a perforated plate whose mesh and loading are given in Fig. 3. The behavior model used here is an 
isotropic work hardening one (Young modulus: E = 210,000 MPa, Poisson coefficient ν = 0, 3, yield stress σ y = 100 MPa, 
hardening slope 5000 MPa). A monotonic pressure is applied from 0 to 75 MPa. Figs. 4 and 5 give the axial displacement 
of node 35 and the transverse displacement of node 53 over time and show the ability of the PGD to give a quite satisfying 
solution from only 2 modes using algorithm 3. Here again, the first mode is a fully elastic mode.
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Fig. 3. Mesh and loading of the perforated plate – Plastic zone at 75 MPa.

Fig. 4. Axial displacement of node 35 over time.

Fig. 5. Transverse displacement of node 53 over time.

5.3. Perforated plate subjected to a cyclic loading

We take again the nonlinear kinematic hardening model used previously for the cube and the cyclic loading described in 
Fig. 6 is applied to the plate. The parameters of the model used in this case are E = 210,000 MPa, ν = 0, 3, σ y = 100 MPa, 
c = 25,000 MPa, and γ = 125.

Figs. 7 and 8 giving the axial displacement of node 35 and the transverse displacement of node 53 show the convergence 
of the method, using Algorithm 4.2. The loading being far more complex than the monotonic loading considered previously, 
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Fig. 6. Cyclic loading of the perforated plate.

Fig. 7. Axial displacement of node 35 over time.

Fig. 8. Transverse displacement of node 53 over time.

an accurate solution with the PGD requires more modes. Fig. 9 is giving the axial stress evolution as a function of the axial 
deformation in the element located near the hole reveals, during first cycles, a phenomenon of progressive deformation 
combined with an average stress relaxation.
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Fig. 9. Evolutions of the axial stress as a function of the axial deformation.

6. Conclusion

The PGD was successfully applied for simulating elastoplastic problems with the choice of a finite element method for 
the approximation both in space and in time. The method leads to solve two coupled nonlinear problems, one in space and 
one in time, and the same approach can be applied to other constitutive equations.

The first results are promising. They show the ability of the PGD to simulate complex cyclic evolutions with ratcheting 
effects. The more complex is the evolution of the loading of course in space but also in time, the bigger is the number of 
modes necessary to obtain a satisfying solution.

As it has been explained in section 4, different strategies can be used to solve the coupled space–time problem. Full 
results relative to the computing time and the convergence will be completed in a future work.

References

[1] J. Zarka, J. Frelat, G. Inglebert, P. Kasmai-Navidi, A New Approach in Inelastic Analysis of Structures, CADLM, Gif-sur-Yvette, France, 1990.
[2] A. Benoit, M.-H. Maitournam, L. Rémy, F. Oger, Cyclic behaviour of structures under thermomechanical loadings: application to exhaust manifolds, Int. 

J. Fatigue 38 (2012) 65–74.
[3] K.V. Spiliopoulos, K.D. Panagiotou, A direct method to predict cyclic steady states of elastoplastic structures, Comput. Methods Appl. Mech. Eng. 

223 (224) (2012) 186–198.
[4] M. Peigney, C. Stolz, An optimal control approach to the analysis of inelastic structures under cyclic loading, J. Mech. Phys. Solids 51 (4) (2003) 575–605.
[5] M.-H. Maitournam, B. Pommier, J.-J. Thomas, Determination of the asymptotic response of a structure under cyclic thermomechanical loading, C. R. 

Mecanique 330 (10) (2002) 703–708.
[6] P.-M. Lesne, S. Savalle, An efficient cycle jump technique for viscoplastic structure calculations involving large number of cycles, in: 2nd Int. Conf. on 

Computational Plasticity, Barcelona, Spain, 1989, pp. 591–602.
[7] J.-L. Chaboche, G. Cailletaud, Integration methods for complex plastic constitutive equations, Comput. Methods Appl. Mech. Eng. 133 (1996) 125–155.
[8] P. Boisse, P. Bussy, P. Ladevèze, A new approach in non-linear mechanics: the large time increment method, Int. J. Numer. Methods Eng. 29 (1990) 

647–663.
[9] J.-Y. Cognard, P. Ladevèze, A large time increment approach for cyclic viscoplasticity, Int. J. Plast. 9 (1993) 141–157.

[10] F. Comte, M.-H. Maitournam, P. Burry, T. Mac Lan Nguyen, A direct method for the solution of evolution problems, C. R. Mecanique 334 (2006) 317–322.
[11] A. Ammar, M. Normandin, F. Chinesta, Solving parametric complex fluids models in rheometric flows, J. Non-Newton. Fluid Mech. 165 (2010) 

1588–1601.
[12] E. Pruliere, F. Chinesta, A. Ammar, On the deterministic solution of multidimensional parametric models by using the Proper Generalized Decomposi-

tion, Math. Comput. Simul. 81 (2010) 791–810.
[13] F. Chinesta, R. Keunings, A. Leygue, The Proper Generalized Decomposition for Advanced Numerical Simulations: A Primer, SpringerBriefs Appl. Sci. 

Technol., Springer, 2014.
[14] J.L. Lumley, The structure of inhomogeneous turbulent flows, in: A.M. Yaglom, V.I. Tatarsky (Eds.), Atmospheric Turbulence and Radio Wave Propagation, 

Moscow, 1967, pp. 166–178.
[15] C. Germoso, J.V. Aguado, A. Fraile, E. Alarcon, F. Chinesta, Efficient PGD-based dynamic calculation of non-linear soil behavior, C. R. Mecanique 344 (1) 

(2016) 24–41.
[16] M. Hammoud, M. Beringhier, J.-C. Grandidier, A reduced simulation applied to the viscoelastic fatigue of polymers, C. R. Mecanique 342 (2014) 671–691.
[17] A. Ammar, A. Zghal, F. Morel, F. Chinesta, On the space–time separated representation of integral linear viscoelastic models, C. R. Mecanique 343 (4) 

(2015) 247–263.
[18] R. De Borst, M.A. Crisfield, J.J. Remmers, C.V. Verhoosel, Nonlinear Finite Element Analysis of Solids and Structures, John Wiley & Sons, 2012.
[19] P. Wriggers, Nonlinear Finite Element Methods, Springer Science & Business, Media, 2008.
[20] Q. Nguyen, On the elastic plastic initial-boundary value problem and its numerical integration, Int. J. Numer. Methods Eng. 11 (1977) 817–832.
[21] J. Simo, T. Hughes, Computational Inelasticity, Springer-Verlag, New York, 1998.
[22] K.J. Bathe, Finite Element Procedures, Prentice–Hall, 1996.
[23] W. Hu, P.F. Thomson, An evaluation of a large time increment method, Comput. Struct. 58 (1996) 633–637.
[24] P. Despret, Simulation numerique de la solidification avec reduction de modele PGD appliquée à la fonderie, PhD thesis, University of Technology of 

Compiègne, France, 2015 (in French).
[25] H. Burlet, C. Cailletaud, Modeling of cyclic plasticity in finite element codes, in: C.S. Desai (Ed.), 2nd Int. Conf. on Constitutive Laws for Engineering 

Materials: Theory and Applications, Elsevier, Tucson, AZ, USA, 1987, pp. 1157–1164.
[26] J.-L. Chaboche, A review of some plasticity and viscoplasticity constitutive theories, Int. J. Plast. 24 (2008) 1642–1693.
[27] P.J. Armstrong, C.O. Frederick, A mathematical representation of the multiaxial Bauschinger effect, CEGB report No. RD/B/N 731, UK, 1966.

http://refhub.elsevier.com/S1631-0721(16)30068-7/bib5A61726B61s1
http://refhub.elsevier.com/S1631-0721(16)30068-7/bib42656E6F6974s1
http://refhub.elsevier.com/S1631-0721(16)30068-7/bib42656E6F6974s1
http://refhub.elsevier.com/S1631-0721(16)30068-7/bib5370696C696F706F756C6F73s1
http://refhub.elsevier.com/S1631-0721(16)30068-7/bib5370696C696F706F756C6F73s1
http://refhub.elsevier.com/S1631-0721(16)30068-7/bib506569676E6579s1
http://refhub.elsevier.com/S1631-0721(16)30068-7/bib4D6169746F75726E616Ds1
http://refhub.elsevier.com/S1631-0721(16)30068-7/bib4D6169746F75726E616Ds1
http://refhub.elsevier.com/S1631-0721(16)30068-7/bib4C65736E65s1
http://refhub.elsevier.com/S1631-0721(16)30068-7/bib4C65736E65s1
http://refhub.elsevier.com/S1631-0721(16)30068-7/bib436861626F636865s1
http://refhub.elsevier.com/S1631-0721(16)30068-7/bib426F69737365s1
http://refhub.elsevier.com/S1631-0721(16)30068-7/bib426F69737365s1
http://refhub.elsevier.com/S1631-0721(16)30068-7/bib436F676E617264s1
http://refhub.elsevier.com/S1631-0721(16)30068-7/bib436F6D7465s1
http://refhub.elsevier.com/S1631-0721(16)30068-7/bib416D6D617231s1
http://refhub.elsevier.com/S1631-0721(16)30068-7/bib416D6D617231s1
http://refhub.elsevier.com/S1631-0721(16)30068-7/bib5072756C69657265s1
http://refhub.elsevier.com/S1631-0721(16)30068-7/bib5072756C69657265s1
http://refhub.elsevier.com/S1631-0721(16)30068-7/bib4368696E65737461s1
http://refhub.elsevier.com/S1631-0721(16)30068-7/bib4368696E65737461s1
http://refhub.elsevier.com/S1631-0721(16)30068-7/bib4C756D6C6579s1
http://refhub.elsevier.com/S1631-0721(16)30068-7/bib4C756D6C6579s1
http://refhub.elsevier.com/S1631-0721(16)30068-7/bib4765726D6F736Fs1
http://refhub.elsevier.com/S1631-0721(16)30068-7/bib4765726D6F736Fs1
http://refhub.elsevier.com/S1631-0721(16)30068-7/bib48616D6D6F7564s1
http://refhub.elsevier.com/S1631-0721(16)30068-7/bib416D6D617232s1
http://refhub.elsevier.com/S1631-0721(16)30068-7/bib416D6D617232s1
http://refhub.elsevier.com/S1631-0721(16)30068-7/bib4465426F727374s1
http://refhub.elsevier.com/S1631-0721(16)30068-7/bib5772696767657273s1
http://refhub.elsevier.com/S1631-0721(16)30068-7/bib4E677579656Es1
http://refhub.elsevier.com/S1631-0721(16)30068-7/bib53696D6Fs1
http://refhub.elsevier.com/S1631-0721(16)30068-7/bib4261746865s1
http://refhub.elsevier.com/S1631-0721(16)30068-7/bib4875s1
http://refhub.elsevier.com/S1631-0721(16)30068-7/bib44657370726574s1
http://refhub.elsevier.com/S1631-0721(16)30068-7/bib44657370726574s1
http://refhub.elsevier.com/S1631-0721(16)30068-7/bib4275726C6574s1
http://refhub.elsevier.com/S1631-0721(16)30068-7/bib4275726C6574s1
http://refhub.elsevier.com/S1631-0721(16)30068-7/bib436861626F63686532s1
http://refhub.elsevier.com/S1631-0721(16)30068-7/bib41726D7374726F6E67s1

	The Proper Generalized Decomposition as a space-time integrator for elastoplastic problems
	1 Introduction
	2 In-time step-by-step resolution of elastoplastic problems
	2.1 Weak formulation
	2.2 Finite-element problem

	3 Implementation of the Proper Generalized Decomposition
	3.1 Principle
	3.2 Weak formulation
	3.3 Finite-element formulation

	4 Discussion on different strategies of resolution in elastoplasticity
	5 Applications
	5.1 Uniaxial (tension-compression/traction and compression) test
	5.2 Perforated plate subjected to a monotonic loading
	5.3 Perforated plate subjected to a cyclic loading

	6 Conclusion
	References


