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In this paper, we substantiate the claim implicitly made in previous works that the re-
laxed micromorphic model is the only linear, isotropic, reversibly elastic, nonlocal generalized 
continuum model able to describe complete band-gaps on a phenomenological level. To this 
end, we recapitulate the response of the standard Mindlin–Eringen micromorphic model 
with the full micro-distortion gradient ∇ P , the relaxed micromorphic model depending 
only on the Curl P of the micro-distortion P , and a variant of the standard micromorphic 
model, in which the curvature depends only on the divergence Div P of the micro distor-
tion. The Div-model has size-effects, but the dispersion analysis for plane waves shows 
the incapability of that model to even produce a partial band gap. Combining the curva-
ture to depend quadratically on Div P and Curl P shows that such a model is similar to the 
standard Mindlin–Eringen model, which can eventually show only a partial band gap.

© 2016 Published by Elsevier Masson SAS on behalf of Académie des sciences. This is an 
open access article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The micromorphic model [1–5] is a generalized continuum model suitable for the effective multi-scale-description of 
heterogeneous media with strong contrast of the mechanical properties at the microscopic level through the introduction of 
a characteristic length scale Lc. It allows us to incorporate new effects, which extend the classical linear elastic description, 
e.g., size effects, the dispersion of waves and the possibility of micro-motions, which are in principle independent of the 
macro motions. This model couples the macroscopic displacement field u : � ⊂R

3 → R
3 with an affine substructure deformation

attached to each macroscopic point encoded by the micro-distortion field P : � ⊂R
3 → R

3×3.
The curvature contribution in the micromorphic model conceptually determines how the substructure interacts with it-

self, and the associated characteristic length is a measure of the range of action of such micro-structure-related deformation 
modes. In this sense, we call the full-gradient contribution ‖∇ P‖2 (or any other curvature term essentially controlling ∇ P )
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of strong-interaction type: neighboring substructures feel the presence of each other, or, what is the same, the generated 
moment stresses depend on ∇ P .

To the contrary, in the relaxed micromorphic model, the corresponding moment stresses depend only on Curl P , therefore 
there is some freedom between particles, but a connection of neighboring cells is still possible thanks to tangent micro-
interactions. Certain substructure deformations are energetically free (in fact, all compatible parts ∇ϑ in P are not taken 
into account), while the model remains reversibly elastic and energy-conservative. We may call this a weak interaction. As a 
matter of fact, the wording relaxed is motivated by this observation.

In the Div-model to be introduced below, a similar effect appears. The corresponding moment stresses depend only 
on Div P . Therefore, substructure deformations of the type P = Curl ζ + ∇ϑ , where ζ : R3×3 → R

3×3 is arbitrary and 
ϑ : R3 →R

3 satisfies �ϑ ≡ 0, are energetically free. This model is, hence, also of weak-interaction type.
It is therefore intriguing that it is not simply the “weak versus strong interaction” duality which determines the possibility 

of band gaps, but that there is some further hidden mechanism in the relaxed micromorphic model, which, together with 
a positive Cosserat couple modulus μc > 0, is decisive for the ability to model complete band gaps, whereas still being 
nonlocal.

In further contributions, we will provide more detailed arguments concerning the fact that the residual freedom which 
is peculiar to the relaxed micromorphic model is a key feature for allowing band-gap behaviors. In fact, internal variable 
models (i.e. models with no dependence on the derivatives of P at all) still allow the description of complete band gaps 
[6,7], but they loose any information concerning non-locality. Non-local effects are intrinsically present in micro-structured 
materials, even if in some particular cases their overall effect can be, in a first approximation, neglected. Nevertheless, 
as far as the contrast of mechanical properties between adjacent unit cells at the micro level becomes more pronounced, 
non-local effects are sensible enough to rapidly become non-negligible. In this optic, a model including non-locality is to be 
considered as the natural choice for modeling the mechanical behavior of metamaterials.

This paper is now structured as follows. First, we introduce the relaxed micromorphic model with an augmented curva-
ture energy depending also on Div P . The governing equations are derived and the plane-wave ansatz is introduced to study 
wave propagation. Then we particularize the result for specific cases and show the resulting dispersion curves for each of 
them. Finally, we provide for completeness the standard Mindlin–Eringen micromorphic model together with its dispersion 
curves, thus recognizing that it is equivalent to a particular case of the augmented relaxed micromorphic model with Div P .

2. The relaxed micromorphic continuum with ‖Curl P‖2 and ‖Div P‖2

The relaxed micromorphic model [8–11] has been introduced in 2013 in [9] and endows the standard Mindlin–Eringen 
representation with more geometric structure by reducing the curvature energy term to depend only on the second-order 
dislocation density tensor α = − Curl P . Here, we additionally consider also a curvature term depending on Div P . The strain 
energy density for the resulting micromorphic continuum can be written as:

W = μe ‖sym (∇u − P )‖2 + λe

2
(tr (∇u − P ))2︸ ︷︷ ︸

isotropic elastic energy

+μc ‖skew (∇u − P )‖2︸ ︷︷ ︸
rotational elastic coupling

(1)

+ μmicro ‖sym P‖2 + λmicro

2
(tr P )2︸ ︷︷ ︸

micro-self-energy

+ μ L2
c

2
‖Curl P‖2 + μ L2

d

2
‖Div P‖2︸ ︷︷ ︸

simple isotropic curvature

where all the introduced elastic coefficients are assumed to be constant. This decomposition of the strain energy density, 
valid in the isotropic, linear-elastic case, has been proposed in [8,12] where well-posedness theorems have also been proved. 
It is clear that this decomposition introduces a limited number of elastic parameters and we will show how this may help 
in the physical interpretation of the latter. The positive definiteness of the potential energy implies the following simple 
relations on the introduced parameters

μe > 0, μc ≥ 0, 3λe + 2μe > 0, μmicro > 0, 3λmicro + 2μmicro > 0, μ L2
c > 0, μ L2

d > 0 (2)

We need to remark that this model variant is not strictly positive definite in the sense of the standard Mindlin–Eringen 
model. One of the most interesting features of the proposed strain energy density is the reduced number of elastic parame-
ters which are needed to fully describe the mechanical behavior of a micromorphic continuum. Indeed, each parameter can 
be easily related to specific micro- and macro-deformation modes.

Comparing classical linear elasticity with our new relaxed model for Lc, Ld → 0, we can offer an a priori relation between 
μe, λe, μmicro and λmicro on the one side and the effective macroscopic elastic parameters λmacro and μmacro on the other 
side, which we call macroscopic consistency condition (see [13] for the fully anisotropic case and [14] for the isotropic case):

μmacro := μmicro μe

μmicro + μe
, 2μmacro + 3λmacro := (2μmicro + 3λmicro) (2μe + 3λe)

(2μmicro + 3λmicro) + (2μe + 3λe)
(3)

For μmicro → ∞, we recover the Cosserat model or micropolar model, which means that P ∈ so(3), and for Lc → 0 we obtain 
classical linear elasticity with μmacro, λmacro from (3).
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For comparison, the standard isotropic Mindlin–Eringen model with μc > 0 and curvature energy depending on ‖∇ P‖2

tends to a second gradient model when μe, μc → ∞.
The dynamical formulation is obtained defining the kinetic and strain energy densities of the considered mechanical 

system and postulating a stationary action principle. For this, we introduce a micro-inertia density contribution:

J
(
u,t, P ,t

)= 1

2
ρ
∥∥u,t

∥∥2 + 1

2
η
∥∥P ,t

∥∥2 (4)

where η is the scalar micro-inertia density and ρ is the scalar mean density.
For us, it is not at all surprising that the combination of Curl and Div in the curvature contribution at positive Cosserat 

couple modulus behaves similarly as does the full-micro gradient model. This is understandable, since after integration and 
imposing boundary conditions, we have the well-known inequality [15]:

∃C+ > 0 ∀ P ∈ C∞
0 (�,R3×3) :

∫
�

‖Curl P‖2 + ‖Div P‖2dx ≥ C+(�)

∫
�

‖∇ P‖2dx (5)

Equation (5) means that ‖Curl P‖2 and ‖Div P‖2 considered point-wise are not equivalent to the full gradient term ‖∇ P‖2, 
but they become so after integration. Therefore, the Curl–Div-model effectively controls all first derivatives of P . In conse-
quence, the dispersion relations are similar, as can clearly be seen comparing Figs. 7 and 8 with Figs. 1 and 2.

It should also be remarked that the well-posedness of the Div-model (Lc = 0) needs a strictly positive Cosserat couple 
modulus μc > 0, since an inequality of the type:

∃C+ > 0 ∀ P ∈ C∞
0 (�,R3×3) :

∫
�

‖sym P‖2 + ‖Div P‖2dx ≥ C+(�)

∫
�

‖P‖2dx + ‖Div P‖2dx (6)

is not true. Then for μc > 0, there is no need for any additional inequality, since the elastic energy density bounds a priori∫
�

‖P‖2 + ‖Div P‖2dx (7)

Therefore, the corresponding suitable space is a tensor-valued H(Div)-Sobolev space.
Both expressions Div P and Curl P can be used to formulate a complete anisotropic curvature energy. This is possible 

since Div P and Curl P are not arbitrary collections of partial derivatives of P , but satisfy the transformation laws:

Curlξ P #(ξ) = Q [Curlx P (x)] Q T, ξ = Q Tx, where P #(ξ) := Q P (Q T ξ) Q T (8)

Divξ P #(ξ) = Q [Divx P (x)]

with respect to simultaneous rigid rotations Q of the spatial and referential frame [16, eq. (4.29)]. Therefore, we may make 
the ansatz:

W (∇ P ) = WCurl(Curl P ) + WDiv(Div P ) (9)

= μ L2
c

2

〈
Laniso Curl P , Curl P

〉
R3×3 + μ L2

c

2

〈
C̃aniso Div P ,Div P

〉
R3

where Laniso : R3×3 → R
3×3 is a fourth-order tensor with in general 45 independent coefficients and C̃aniso : R3 → R

3 (for 
isotropy C̃aniso has just 1 parameter [13]). In case of isotropy, this can be significantly reduced to:

W (∇ P ) = μ L2
c

2

[
α1 ‖dev sym Curl P‖2 + α2 ‖skew Curl P‖2 + α3

3
(tr Curl P )2 + α4 ‖Div P‖2

]
(10)

2.1. Governing equations

The Lagrangian density L for the augmented relaxed model is defined as follows:

L
(
u,t, P ,t, ∇u , P , Curl P ,Div P

)= J
(
u,t, P ,t

)− W (∇u , P , Curl P ,Div P ) (11)

In order to find the strong equations of motion, we have to perform the first variation of the action functional

A [(u, P )] :=
∫
I

∫
�

L
(
u,t, P ,t, ∇u , P , Curl P ,Div P

)
dx dt (12)

where I = [a, b] is the time interval during which we observe the motion of our system. For the kinetic part we compute
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δ

∫
I

∫
�

J
(
u,t, P ,t

)
dx dt =

∫
I

∫
�

[
Du,t J

(
u,t, P ,t

) · δu,t + D P ,t J
(
u,t, P ,t

) · δP ,t
]

dx dt (13)

=
∫
I

∫
�

1

2

[
Du,t

(
ρ
〈
u,t, u,t

〉) · δu,t + D P ,t

(
η
〈

P ,t, P ,t
〉) · δP ,t

]
dx dt

=
∫
I

∫
�

[
ρ
〈
u,t, δu,t

〉+ η
〈

P ,t, δP ,t
〉]

dx dt

= ρ

∫
�

⎛⎝ 〈u,t, δu
〉∣∣b

a −
∫
I

〈
u,tt, δu

〉
dt

⎞⎠dx + η

∫
�

⎛⎝ 〈 P ,t, δP
〉∣∣b

a −
∫
I

〈
P ,tt, δP

〉
dt

⎞⎠dx

So, considering only the bulk part, we find∫
�

∫
I

〈−ρ u,tt, δu
〉
dt dx +

∫
�

∫
I

〈−η P ,tt, δP
〉
dt dx (14)

For the potential part, we find

δ

∫
I

∫
�

W dx dt =
∫
I

∫
�

[ 〈
D ∇u W , δ∇u

〉+ 〈 D P W , δP
〉+ 〈 DCurl P W , δ Curl P

〉+ 〈 D Div P W , δ Div P
〉]

dx dt (15)

Having already evaluated the part 
〈

D ∇u W , δ∇u 
〉 + 〈

D P W , δP
〉 + 〈

DCurl P W , δ Curl P
〉

in [11], we perform the explicit 
calculation only for the term in Div P . So, we have

δ

∫
I

∫
�

μ L2
d

2
‖Div P‖2 dx dt =

∫
I

∫
�

μ L2
d

2
δ ‖Div P‖2 dx dt =

∫
I

∫
�

μ L2
d

〈
Div P , δ Div P

〉
dx dt (16)

=
∫
I

∫
�

μ L2
d

〈
Div P ,Div δP

〉
dx dt

with1 〈
Div P ,Div δP

〉= Div (Div P · δP ) − 〈∇ Div P , δP
〉

(17)

which in index notation is

Pij, jδPih,h = (Pij, jδPih
)
,h − Pij, jhδPih (18)

we integrate by parts and find that

δ

∫
I

∫
�

μ L2
d

2
‖Div P‖2 dx dt =

∫
I

∫
�

μ L2
d

[
Div (Div P · δP ) − 〈∇ Div P , δP

〉]
dx dt (19)

=
∫
I

∫
∂�

μ L2
d

〈
Div P · δP , n

〉
ds dt +

∫
I

∫
�

〈−μ L2
d ∇ Div P , δP

〉
dx dt

where n is the unit normal field to the boundary. Considering only the kinetic energy associated with P and the potential 
energy related to Div P , we have∫

I

∫
�

(
1

2
η
∥∥ P ,t

∥∥2 − μ L2
d

2
‖Div P‖2

)
dx dt (20)

and, with reference to equations (14) and (19), the bulk part of the first variation is

1 Here and in the sequel, 〈·,·〉 denotes the scalar product between two tensor of orders greater than one (e.g., 〈 A, B 〉= Aij Bi j ). Moreover, a central dot 
stands for the simple contraction between two tensors of order greater than one. For example, (A · v)i = Aij v j . Finally, we use Einstein’s convention of sum 
over repeated indexes if not differently specified.
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∫
I

∫
�

(〈−η P ,tt, δP
〉− 〈−μ L2

d ∇ Div P , δP
〉)

dx dt =
∫
I

∫
�

〈−η P ,tt + μ L2
d ∇ Div P , δP

〉
dx dt (21)

Altogether, see also [11], the strong equations in the bulk are

ρ u,tt = Div [2μe sym (∇u − P ) + λe tr (∇u − P )1+ 2μc skew (∇u − P )]

η P ,tt = 2μe sym (∇u − P ) + λe tr (∇u − P )1+ 2μc skew (∇u − P ) (22)

− 2μmicro sym P − λmicro tr (P )1− μ L2
c Curl Curl P + μ L2

d ∇ Div P︸ ︷︷ ︸
new augmented term

In our study of wave propagation in micromorphic media, we limit ourselves to the case of plane waves traveling in an 
infinite domain. We suppose that the space dependence of all introduced kinematic fields is limited to the component x1
of x, which is also the direction of propagation of the wave. Therefore, we look for solutions to Eq. (22) in the form:

u(x, t) = α ei(k x1− ω t) , α ∈R
3 , P (x, t) = β ei(k x1− ω t) , β ∈R

3×3 (23)

2.2. Decomposition of the equations of motion

Considering the system of PDEs found in (22), we can rewrite this system in a fashion more convenient for the study of 
the propagation of plane waves in a homogeneous isotropic medium. Our approach consists always in projecting the found 
relations in the three orthogonal sub vector spaces Sym (3) ∩ sl (3) , so (3) , 

〈
1 
〉
. In this way, a tensor X ∈ R

3×3 is uniquely 
written by means of the Cartan–Lie decomposition as:

X = dev sym (X) + skew (X) + 1

3
tr (X)1 (24)

where

dev sym (X) =

⎛⎜⎜⎝
XD X(12) X(13)

X(12) XD
2 X(23)

X(13) X(23) XD
3

⎞⎟⎟⎠ , skew (X) =
⎛⎜⎝ 0 X[12] X[13]

−X[12] 0 X[23]

−X[13] −X[23] 0

⎞⎟⎠
1

3
tr (X)1 = XS1

(25)

in which we set

XS = 1

3
(X11 + X22 + X33) , X[12] = 1

2
(X12 − X21) , X(12) = 1

2
(X12 + X21)

XD = X11 − XS, X[13] = 1

2
(X13 − X31) , X(13) = 1

2
(X13 + X31)

XD
α = Xαα − XS, α = 2,3, X[23] = 1

2
(X23 − X32) , X(23) = 1

2
(X23 + X32)

(26)

The components XD
2 and XD

3 are not independent, but are related by the following relation

XD
2 − XD

3 = X V = P22 − P33 (27)

In this way, applying the Cartan–Lie decomposition to the tensor X = sym P in the first equation and to all the tensors 
appearing in the second one, the equations (22) can be written as follows

ρ u,tt = Div [2μe sym (∇u − P ) + λe tr (∇u − P )1+ 2μc skew (∇u − P )]

η
(
dev sym P ,tt

) = 2μe dev sym (∇u − P ) − 2μmicro dev sym P − μ L2
c dev sym (Curl Curl P )

+ μ L2
d dev sym (∇ Div P )

η
(
skew P ,tt

) = 2μc skew (∇u − P ) − μ L2
c skew (Curl Curl P ) + μ L2

d skew (∇ Div P )

η
1

3
tr
(

P ,tt
)
1 =

(
2μe + 3λe

3

)
tr (∇u − P )1−

(
2μmicro + 3λmicro

3

)
tr (P )1

− μ L2
c

1
tr (Curl Curl P )1+ μ L2

d
1

tr (∇ Div P )1

(28)
3 3
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where we have only five independent equations for the dev sym-part, three independent equations for the skew-part and 
one independent equation for the spherical part.

If we demand that the kinematic fields u and P are plane waves in the x1 direction as indicated in (23), we have 
equivalently the following expressions in index notation:

ui (x, t) = ui (x1, t) = αi ei(kx1− ωt) (29)

Pij (x, t) = Pij (x1, t) = βi j ei(kx1− ωt)

In this way, it is easy to derive the expression in components of the projected equations. With respect to the article [11], 
we have to explicitly calculate only the new part in ∇ Div P . We have that

∇ Div P = ∇ Div dev sym P + ∇ Div skew P + ∇ Div

(
1

3
tr (P )1

)
so

dev sym ∇ Div P = dev sym

(
∇ Div dev sym P + ∇ Div skew P + ∇ Div

1

3
tr (P )1

)
skew ∇ Div P = skew

(
∇ Div dev sym P + ∇ Div skew P + ∇ Div

1

3
tr (P )1

)
(30)

1

3
tr (∇ Div P )1 = 1

3
tr

(
∇ Div dev sym P + ∇ Div skew P + ∇ Div

1

3
tr (P )1

)
1

and finally, using the fact that P is assumed to depend only on the scalar space variable x1, we obtain:

dev sym ∇ Div P =

⎛⎜⎜⎝
2
3 P D

,11 + 2
3 P S

,11
1
2 P (12),11 − 1

2 P [12],11
1
2 P (13),11 − 1

2 P [13],11

1
2 P (12),11 − 1

2 P [12],11 − 1
3 P D

,11 − 1
3 P S

,11 0

1
2 P (13),11 − 1

2 P [13],11 0 − 1
3 P D

,11 − 1
3 P S

,11

⎞⎟⎟⎠

skew ∇ Div P = 1

2

⎛⎜⎜⎝
0 −P (12),11 + P [12],11 −P (13),11 + P [13],11

P (12),11 − P [12],11 0 0

P (13),11 − P [13],11 0 0

⎞⎟⎟⎠ (31)

1

3
tr (∇ Div P )1 = 1

3

(
P D

,11 + P S
,11

)
1

Introducing the quantities2

cm =
√

μ L2
c

η
, cd =

√
μ L2

d

η
, cs =

√
μe + μc

ρ

cp =
√

λe + 2μe

ρ
, ωs =

√
2 (μe + μmicro)

η
, ωp =

√
2 (μe + μmicro) + 3 (λe + λmicro)

η

ωr =
√

2μc

η
, ωl =

√
λmicro + 2μmicro

η
, ωt =

√
μmicro

η

(32)

the equations can be written as:

• a set of three equations only involving longitudinal quantities:

ü1 = c2
pu1,11 − 2μe

ρ
P D

,1 − 3λe + 2μe

ρ
P S

,1 (33)

P̈ D = 4

3

μe

η
u1,1 + 1

3
c2

m P D
,11 − 2

3
c2

m P S
,11 − ω2

s P D + 2

3
c2

d P D
,11 + 2

3
c2

d P S
,11︸ ︷︷ ︸

new augmented terms

(34)

2 Due to the chosen values of the parameters, which are supposed to satisfy (2), all the introduced characteristic velocities and frequencies are real. 
Indeed it can be checked that the condition (3λe + 2μe) > 0 together with the condition μe > 0 imply (λe + 2μe) > 0.
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P̈ S = 3λe + 2μe

3η
u1,1 − 1

3
c2

m P D
,11 + 2

3
c2

m P S
,11 − ω2

p P S + 1

3
c2

d P D
,11 + 1

3
c2

d P S
,11︸ ︷︷ ︸

new augmented terms

(35)

• two sets of three equations only involving transverse quantities in the ξ -th direction, with ξ = 2, 3:

üξ = c2
s uξ,11 − 2μe

ρ
P (1ξ),1 + η

ρ
ω2

r P [1ξ ],1 (36)

P̈ (1ξ) = μe

η
uξ,1 + 1

2
c2

m P (1ξ),11 + 1

2
c2

m P [1ξ ],11 − ω2
s P (1ξ) + 1

2
c2

d P (1ξ),11 − 1

2
c2

d P [1ξ ],11︸ ︷︷ ︸
new augmented terms

(37)

P̈ [1ξ ] = −1

2
ω2

r uξ,1 + 1

2
c2

m P (1ξ),11 + 1

2
c2

m P [1ξ ],11 − ω2
r P [1ξ ] − 1

2
c2

d P (1ξ),11 + 1

2
c2

d P [1ξ ],11︸ ︷︷ ︸
new augmented terms

(38)

• one equation only involving the variable P (23):

P̈ (23) = −ω2
s P (23) + c2

m P (23),11 (39)

• one equation only involving the variable P [23]:

P̈ [23] = −ω2
r P [23] + c2

m P [23],11 (40)

• one equation only involving the variable P V :

P̈ V = −ω2
s P V + c2

m P V
,11 (41)

In what follows, we will refer to the dispersion curves stemming from the last three equations as “uncoupled waves”. This 
nomenclature has been chosen because in these equations each variable is not coupled with the others, so that such waves 
propagate independently of the others. Due to the non-locality of the considered micromorphic model, such modes, even 
if independent one from the other, show a dispersive behavior which is completely due to the existence of a characteristic 
length Lc. From a phenomenological point of view, this means that such modes do not propagate at a constant speed, since 
they are affected by what is occurring in the adjacent cells. Such a phenomenon is more intuitively understandable if one 
thinks to a strongly contrasted medium.

3. Particularization for specific energies

In what follows, we will present the results obtained with particular energies and the numerical values of the elastic 
coefficients are chosen as in Table 1 if not differently specified.

We explicitly mention that the numerical values of the present parameters are chosen with the only constraint of re-
specting positive definiteness of the strain energy density.

In particular, the value Lc = 1 mm is chosen as representative of the non-locality of the considered metamaterial. This 
means that Lc represents the distance at which the deformation of a unit cell is “sensed” by the neighboring cells. Such 
a characteristic length can be smaller than the size of the cell when the neighboring cells are weakly influenced by what 
happens in the considered unit cell or can even be much larger than the size of the unit cell for highly non-local metama-
terials. Hence, Lc should not be a priori confused with the characteristic size of the cell itself. This means that the value 
of Lc cannot be used to decide for which wavelength the continuum model starts losing its physical meaning. Indeed, it 
is clear that for wavelengths that are smaller than the unit cell, a continuum model is not reasonable anymore, since the 

Table 1
Values of the parameters used in the numerical simulations (left) and corresponding values of the 
Lamé parameters and of the Young modulus and Poisson ratio as obtained with formula (3) (right).

Parameter Value Unit

μe 200 MPa
λe = 2μe 400 MPa
μc = 5μe 1000 MPa
μmicro 100 MPa
λmicro 100 MPa
Lc 1 mm
ρ 2000 kg/m3

η 10−2 kg/m

Parameter Value Unit

λmacro 82.5 MPa
μmacro 66.7 MPa
Emacro 170 MPa
νmacro 0.28 –
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Fig. 1. Dispersion relations ω = ω(k) for the micromorphic model with ‖Div P‖2 + ‖Curl P‖2 and non-vanishing Cosserat couple modulus μc > 0: only a 
partial band gap on the uncoupled waves can be modeled.

discreteness of the metamaterial cannot be treated in an “averaged” sense. In this paper, we decided not to choose a specific 
topology for the microstructure of the considered metamaterial, this being the object of future work. We hence trace the 
dispersion diagrams by choosing the interval for the wave number k in such a way to disclose the asymptotic properties 
of the curves. Whether the value k = 4/mm is such that the continuum model has already lost is physical meaning or not 
would be intimately connected to the microstructural topologies.

3.1. The micromorphic model with ‖Div P‖2 and ‖Curl P‖2 (Lc = Ld �= 0)

We consider now the model obtained considering Lc = Ld with energy:

W = μe ‖sym (∇u − P )‖2 + λe

2
(tr (∇u − P ))2︸ ︷︷ ︸

isotropic elastic energy

+μc ‖skew (∇u − P )‖2︸ ︷︷ ︸
rotational elastic coupling

(42)

+ μmicro ‖sym P‖2 + λmicro

2
(tr P )2︸ ︷︷ ︸

micro-self-energy

+ μ L2
c

2

(
‖Div P‖2 + ‖Curl P‖2

)
︸ ︷︷ ︸

augmented isotropic curvature

The dynamical equilibrium equations are:

ρ u,tt = Divσ = Div [2μe sym (∇u − P ) + 2μc skew (∇u − P ) + λe tr (∇u − P )1]

η P ,tt = 2μe sym (∇u − P ) + 2μc skew (∇u − P ) + λe tr (∇u − P )1 (43)

− [2μmicro sym P + λmicro tr( P )1] + μ L2
c (∇ (Div P ) − Curl Curl P )︸ ︷︷ ︸

Div∇ P=� P

Note that the structure of the equation is equivalent to the one obtained in the standard micromorphic model with curvature 
1
2 ‖∇ P‖2, see equation (50) in section 4.

We present the dispersion relations obtained with a non-vanishing Cosserat couple modulus μc > 0 (Fig. 1) and for a van-
ishing Cosserat couple modulus μc = 0 (Fig. 2). In all the figures, we consider uncoupled waves (a), longitudinal waves (b), 
and transverse waves (c). The nomenclature adopted is the following: TRO: transverse rotational optic, TSO: transverse shear 
optic, TCVO: transverse constant-volume optic, LA: longitudinal acoustic, LO1–LO2: first and second longitudinal optic, TA: 
transverse acoustic, TO1–TO2: first and second transverse optic.

We conclude that when considering the model with micromorphic medium with ‖Div P‖2 + ‖Curl P‖2 and vanishing 
Cosserat couple modulus μc, there always exist waves that propagate inside the considered medium independently of the 
value of frequency, even if considering separately longitudinal, transverse, and uncoupled waves. The only effect obtainable 
switching on the Cosserat couple modulus μc is to obtain a partial band gap for the uncoupled waves.

3.2. The micromorphic model with only ‖Div P‖2 obtained as a special case of the augmented relaxed model with Lc = 0

The isotropic micromorphic model with ‖Div P‖2 is obtained from the model with ‖Curl P‖2 and ‖Div P‖2 by considering 
Lc = 0 obtaining as standard energy:
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Fig. 2. Dispersion relations ω = ω(k) for the micromorphic model with ‖Div P‖2 + ‖Curl P‖2 and vanishing Cosserat couple modulus μc = 0: no band gap at 
all.

Fig. 3. Dispersion relations ω = ω(k) for the micromorphic model with ‖Div P‖2 and non-vanishing Cosserat couple modulus μc > 0: no band gap on the 
longitudinal and transverse waves can be modeled and the uncoupled waves have fixed frequencies.

W = μe ‖sym (∇u − P )‖2 + λe

2
(tr (∇u − P ))2︸ ︷︷ ︸

isotropic elastic energy

+μc ‖skew (∇u − P )‖2︸ ︷︷ ︸
rotational elastic coupling

(44)

+ μmicro ‖sym P‖2 + λmicro

2
(tr P )2︸ ︷︷ ︸

micro-self-energy

+ μ L2
d

2
‖Div P‖2︸ ︷︷ ︸

isotropic curvature

The dynamical equilibrium equations are:

ρ u,tt = Divσ = Div [2μe sym (∇u − P ) + 2μc skew (∇u − P ) + λe tr (∇u − P )1]

η P ,tt = 2μe sym (∇u − P ) + 2μc skew (∇u − P ) + λe tr (∇u − P )1 (45)

− [2μmicro sym P + λmicro tr( P )1] + μ L2
d ∇ (Div P )

We present the dispersion relations obtained with a non-vanishing Cosserat couple modulus μc > 0 (Fig. 3) and for a 
vanishing Cosserat couple modulus μc = 0 (Fig. 4). In the figures, we consider uncoupled waves (a), longitudinal waves (b), 
and transverse waves (c). TRO: transverse rotational optic, TSO: transverse shear optic, TCVO: transverse constant-volume 
optic, LA: longitudinal acoustic, LO1–LO2: first and second longitudinal optic, TA: transverse acoustic, TO1–TO2: first and 
second transverse optic.

We can conclude that, when considering the micromorphic model with only ‖Div P‖2 for every value of μc, there always 
exist waves that propagate inside the considered medium independently of the value of the frequency. The uncoupled waves 



A. Madeo et al. / C. R. Mecanique 344 (2016) 784–796 793
Fig. 4. Dispersion relations ω = ω(k) for the micromorphic model with ‖Div P‖2 and vanishing Cosserat couple modulus μc = 0: no band gap on the longitu-
dinal and transverse waves can be modeled, and the uncoupled waves have fixed frequencies.

assume a peculiar behavior in which the frequency is independent of the wavenumber k. This is due to the fact that cm = 0
in Eqs. (39), (40) and (41), so that the modes for uncoupled waves become non-dispersive.

3.3. The relaxed micromorphic model obtained as a special case of the augmented relaxed model with Ld = 0

The relaxed micromorphic model is obtained by the model with ‖Curl P‖2 and ‖Div P‖2 by considering Ld = 0, obtaining 
the energy:

W = μe ‖sym (∇u − P )‖2 + λe

2
(tr (∇u − P ))2︸ ︷︷ ︸

isotropic elastic energy

+μc ‖skew (∇u − P )‖2︸ ︷︷ ︸
rotational elastic coupling

(46)

+ μmicro ‖sym P‖2 + λmicro

2
(tr P )2︸ ︷︷ ︸

micro-self-energy

+ μ L2
c

2
‖Curl P‖2︸ ︷︷ ︸

isotropic curvature

The dynamical equilibrium equations are, see also [11]:

ρ u,tt = Divσ = Div [2μe sym (∇u − P ) + 2μc skew (∇u − P ) + λe tr (∇u − P )1]

η P ,tt = 2μe sym (∇u − P ) + 2μc skew (∇u − P ) + λe tr (∇u − P )1 (47)

− [2μmicro sym P + λmicro tr( P )1] − μ L2
c Curl Curl P

We present the dispersion relations obtained with a non-vanishing Cosserat couple modulus μc > 0 (Fig. 5) and for a 
vanishing Cosserat couple modulus μc = 0 (Fig. 6). In the figures, we consider uncoupled waves (a), longitudinal waves (b) 
and transverse waves (c). TRO: Transverse rotational optic, TSO: transverse shear optic, TCVO: transverse constant-volume 
optic, LA: longitudinal acoustic, LO1–LO2: 1st and 2nd longitudinal optic, TA: transverse acoustic, TO1–TO2: 1st and 2nd
transverse optic.

We can conclude that, in general, when considering the relaxed micromorphic medium with vanishing Cosserat couple 
modulus μc, there always exist waves that propagate inside the considered medium independently of the value of the 
frequency. Nevertheless, if one considers a particular case (obtained by imposing suitable kinematical constraints) in which 
only longitudinal waves can propagate, then in the frequency range (ωs,ωl), only standing waves exist, which does not 
allow for wave propagation.

On the other hand, switching on the Cosserat couple modulus μc allows for the description of complete frequency band 
gaps in which no propagation can occur.

4. The standard Mindlin–Eringen model with ‖∇P‖2

The elastic energy of the general anisotropic centro-symmetric micromorphic model in the sense of Mindlin–Eringen (see 
[4] and [3, p. 270, eq. 7.1.4]) can be represented as:
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Fig. 5. Dispersion relations ω = ω(k) for the relaxed micromorphic model with non-vanishing Cosserat couple modulus μc > 0. The complete frequency band 
gap is the shaded intersected domain bounded from the maximum between ωl and ωt and the minimum between ωr and ωs . The existence of the band 
gap is related to μc > 0 via the cut-off frequency ωr =

√
2μc
η of the uncoupled waves TRO and TO1.

Fig. 6. Dispersion relations ω = ω(k) for the relaxed micromorphic model with vanishing Cosserat couple modulus μc = 0: only a partial band gap can be 
modeled.

W = 1

2

〈
Ce (∇u − P ) , (∇u − P )

〉
R3×3︸ ︷︷ ︸

full anisotropic elastic energy

+ 1

2

〈
Cmicro sym P , sym P

〉
R3×3︸ ︷︷ ︸

micro-self-energy

(48)

+ 1

2

〈
Ecross (∇u − P ) , sym P

〉
R3×3︸ ︷︷ ︸

anisotropic cross-coupling

+ μ L2
c

2

〈
L̂aniso ∇ P ,∇ P

〉
R3×3×3︸ ︷︷ ︸

full anisotropic curvature

where Ce : R3×3 → R
3×3 is a fourth-order micromorphic elasticity tensor which has at most 45 independent coefficients 

and which acts on the non-symmetric elastic distortion e = ∇u − P ; Ecross : R3×3 → Sym(3) is a fourth-order cross-coupling 
tensor with the symmetry 

(
Ecross

)
i jkl

=
(
Ecross

)
jikl

having at most 54 independent coefficients. The fourth-order tensor 

Cmicro : Sym(3) → Sym(3) has the classical 21 independent coefficients of classical elasticity, while ̂Laniso :R3×3×3 → R
3×3×3

is a sixth-order tensor that shows astonishing 378 parameters. The parameter μ > 0 is a typical shear modulus and Lc > 0
is one characteristic length, while L̂aniso is, accordingly, dimensionless.

One of the major obstacles in using the micromorphic approach for specific materials is the impossibility to determine 
such multitude of new material coefficients. Not only is the huge number a technical problem, but also the interpretation 
of coefficients is problematic [17–19]. Some of these coefficients are size-dependent, while others are not. A purely formal 
approach, as it is often done, cannot be the final answer.
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Fig. 7. Dispersion relations ω = ω(k) for the standard micromorphic model with ‖∇ P‖2 with a non-vanishing Cosserat couple modulus μc > 0: only a partial 
band gap can be modeled for uncoupled waves.

Fig. 8. Dispersion relations ω = ω(k) for the standard micromorphic model with ‖∇ P‖2 and a vanishing Cosserat couple modulus μc = 0: no band gap at all.

In what follows, we will consider a simplified isotropic energy:

W = μe ‖sym (∇u − P )‖2 + λe

2
(tr (∇u − P ))2︸ ︷︷ ︸

isotropic elastic energy

+μc ‖skew (∇u − P )‖2︸ ︷︷ ︸
rotational elastic coupling

(49)

+ μmicro ‖sym P‖2 + λmicro

2
(tr P )2︸ ︷︷ ︸

micro-self-energy

+ μ L2
c

2
‖∇ P‖2︸ ︷︷ ︸

isotropic curvature

The dynamical equilibrium equations are:

ρ u,tt = Divσ = Div [2μe sym (∇u − P ) + 2μc skew (∇u − P ) + λe tr (∇u − P )1]

η P ,tt = 2μe sym (∇u − P ) + 2μc skew (∇u − P ) + λe tr (∇u − P )1 (50)

− [2μmicro sym P + λmicro tr( P )1] + μ L2
c Div∇ P︸ ︷︷ ︸

� P

We present the dispersion relations obtained with a non-vanishing Cosserat couple modulus μc > 0 (Fig. 7) and for a 
vanishing Cosserat couple modulus μc = 0 (Fig. 8). In the figures, we consider uncoupled waves (a), longitudinal waves (b), 
and transverse waves (c). TRO: transverse rotational optic, TSO: transverse shear optic, TCVO: transverse constant-volume 
optic, LA: longitudinal acoustic, LO1–LO2: first and second longitudinal optic, TA: transverse acoustic, TO1–TO2: first and 
second transverse optic.
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In a way completely equivalent to the case of ‖Div P‖2 and ‖Curl P‖2 (see section 3.1), we can conclude that when 
considering the standard Mindlin–Eringen model with vanishing Cosserat couple modulus μc , there always exist waves that 
propagate inside the considered medium independently of the value of frequency even if considering separately longitudinal, 
transverse and uncoupled waves.

The only effect obtainable switching on the Cosserat couple modulus μc is to obtain a partial band gap for the uncoupled 
waves.

5. Conclusion

Metamaterials are artifacts composed by microstructural elements assembled in periodic or quasi-periodic patterns, giving 
rise to materials with unorthodox properties. For some of these metamaterials, the presence of a microstructure allows for 
macroscopic wave-inhibition. More particularly, this means that, given the topology of the microstructure, when the material 
is solicited at frequencies that fall in the band-gap region, any of the possible micro-motions is activated at such frequencies. 
Hence, this results in the impossibility of waves to travel in the considered metamaterial.

The relaxed micromorphic model is the only linear, isotropic, reversibly elastic, non-local generalized continuum model known 
to date able to predict complete frequency band gaps. It is decisive to use Curl P instead of the full micro-distortion gradient 
∇ P and to take a positive Cosserat couple modulus μc > 0.

Future work will be devoted to the fitting of some of the introduced parameters on real band-gap metamaterials. More-
over, the effect of extra micro-inertia terms besides η‖P ,t‖2 will be also investigated.

Considering that non-locality is an intrinsic characteristic feature of micro-structured materials, especially when high 
contrasts of the mechanical properties occur at the micro-level, models that allow for its description are a necessary require-
ment. The relaxed micromorphic model is the only generalized continuum model that is simultaneously able to account for 
non-locality and for band-gaps onset in metamaterials.
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