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We study the electromechanical behavior of a thin interphase, constituted by a piezoelec-
tric anisotropic shell-like thin layer, embedded between two generic three-dimensional 
piezoelectric bodies by means of the asymptotic analysis in a general curvilinear frame-
work. After defining a small real dimensionless parameter ε, which will tend to zero, we 
characterize two different limit models and their associated limit problems, the so-called 
weak and strong piezoelectric curved interface models, respectively. Moreover, we identify 
the non-classical electromechanical transmission conditions at the interface between the 
two three-dimensional bodies.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Smart materials have been used over the past few decades in several applications in all fields of aeronautical, mechan-
ical, and civil engineering. For what concerns smart structures, the strain state is constantly under control by means of 
sensors and actuators, usually made of piezoelectric materials, integrated within the structure. The more and more promis-
ing applications of piezoelectric composites have lead researchers to develop new methods and analysis tools for a better 
understanding of the mechanisms and behaviors of such structures, which are subjected to electromechanical interactions. 
More often, the piezoelectric actuators are obtained by alternating different thin layers of material with highly contrasted 
electromechanical properties. This generates different types of complex composites, in which each phase interacts with the 
others.

The asymptotic methods have been successfully applied for the mathematical justification of thin structure models in 
both fields of elasticity and piezoelectricity, taking into account also thermal and magnetic effects (see, e.g., [1–3]): this 
has stimulated researchers to tunnel their efforts toward a formal simplification of the modeling of complex structures 
obtained by joining elements presenting highly contrasted geometrical and mechanical properties. A thin interphase inserted 
between two generic media can be considered as the most distinctive bonded joint. The asymptotic expansions method 
allows one to replace the original problem with a reduced transmission problem, in which the thin interphase is substituted 
by a two-dimensional material surface, i.e. a so-called imperfect interface, between the two three-dimensional bodies with 
non-classical transmission conditions. Within the theory of elasticity, the asymptotic analysis of a thin elastic interphase 
between two elastic materials has been deeply investigated through the years, by varying the rigidity ratios between the
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Fig. 1. The geometry of the composite: configuration in the curvilinear coordinates system.

thin inclusion and the surrounding materials and by considering different geometry features (see, e.g., [4–7], within the 
theory of elasticity, and see [8,9], within the theory of piezoelectricity, including also thermal and magnetic couplings).

This work is conceived as the curvilinear generalization of a previous work [8] on asymptotic planar weak and strong 
piezoelectric interface models. In the present work, we identify two different interface limit models of a piezoelectric as-
sembly constituted by a thin piezoelectric shell-like layer inserted between two generic piezoelectric bodies by means of an 
asymptotic analysis in a general curvilinear framework. By defining a small real parameter ε, associated with the thickness 
and the electromechanical properties of the middle layer, we perform an asymptotic analysis by letting ε tend to zero. We 
analyze two different situations by varying the electromechanical stiffness ratios between the middle layer and the adher-
ents: namely, the weak piezoelectric curved interface, where the electromechanical coefficients of the intermediate domain 
have order of magnitude ε with respect to those of the surrounding bodies, the strong piezoelectric curved interface, where 
the electromechanical rigidities have order of magnitude 1

ε . Within the reduced models, the interphase is replaced by a 
material surface (strong case) or a constraint (weak case) whose energy, in both cases, is the limit of the interphase energy. 
This surface energy is then translated in ad hoc transmission conditions at the interface.

The paper is organized as follows. In Sect. 2, we define the position of the problem and we perform the asymptotic 
analysis of the problem. In Sect. 3 and Sect. 4, we deduce, respectively, the two limit interface models. Finally, we discuss 
the results and propose some future developments in the concluding remarks in Sect. 5.

2. Position of the problem and asymptotic expansions

Let �+ and �− be two disjoint open domains with smooth boundaries ∂�+ and ∂�− . Let ω := {
∂�+ ∩ ∂�−}◦

be 
the interior of the common part of the boundaries which is assumed to be a non-empty domain in R2 having a positive 
two-dimensional measure. Let θ ∈ C2(ω; R3) be an immersion such that the two vectors aα(x̃) := ∂αθ(x̃) form the covariant 
basis of the tangent plane to the surface θ (ω) at each point θ(x̃), with x̃ = (xα) ∈ ω; the two vectors aα(x̃), defined by 
the relation aα · aβ = δ

β
α , form the contravariant basis of the tangent plane. Also let a3(x̃) = a3(x̃) := a1(x̃)∧a2(x̃)

|a1(x̃)∧a2(x̃)| be the unit 
normal vector to θ(ω). The covariant and contravariant components aαβ and aαβ of the first fundamental form, the covariant 
and mixed components of the second fundamental form, and the Christoffel symbols of the surface are respectively defined 
by: aαβ := aα · aβ , aαβ := aα · aβ , bαβ := a3 · ∂βaα , bβ

α := aβσ bασ and 
σ
αβ := aσ · ∂βaα . The covariant derivative of T αβ are 

defined by T αβ |τ := ∂τ T αβ + 
α
βσ T τσ + 


β
τσ T ασ .

Let 0 < ε < 1 be a dimensionless small real parameter. Let us consider �m,ε := ω × (−εh, εh), S±,ε := ω × {±εh} and 



m,ε
lat := ∂ω × (−εh, εh). Let xε denote the generic point in the set �m,ε

with xε
α = xα . We consider a shell-like domain 

with middle surface θ(ω) and thickness 2εh, whose reference configuration is the image �m,ε(�
m,ε

) ⊂ R
3 of the set �m,ε

through the mapping given by �m,ε(xε) := θ(x̃) + xε
3a3(x̃), for all xε = (x̃, xε

3) ∈ �
m,ε

.

Moreover, we suppose that there exists an immersion �ε : �ε →R
3 defined as follows:

�ε :=
{

�±,ε on �
±,ε

�m,ε on �
m,ε , �±,ε(S±,ε) = �m,ε(S±,ε),

with �±,ε : �
±,ε → R

3 immersions over �±,ε
defining the curvilinear coordinates on �±,ε

, see Fig. 1. We will note by 
gε

i j := (∂ε
i �ε · ∂ε

j �
ε), the covariant components of the metric tensor, with gε := det(gε

i j), 
p,ε
i j , the Christoffel symbols of 

the second kind induced by the metric gε
i j and T ij‖k := ∂k T i j + 
i

� j T
�k + 


j
�k T �i , the covariant derivatives of T ij .

Let (
ε
mD , 
ε

mN) and (
ε
eD , 
ε

eN) be two suitable partitions of ∂�ε := 
±,ε ∪ 

m,ε
lat . The composite is, on the one hand, 

clamped along 
ε
mD and at an electrical potential ϕε

0 = 0 on 
ε
eD and, on the other hand, subject to surface forces gi,ε on 


ε
mN and surface electrical charges dε on 
ε

eN . The assembly is also subject to body forces f i,ε and electrical loadings ρε
e

acting in �±,ε . The work of the external electromechanical loadings in curvilinear coordinates takes the following form:
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Lε(rε) :=
∫

�±,ε

( f i,ε vε
i + ρε

e ψε)

√
gε± dxε +

∫

ε

mN

gi,ε vε
i

√
gε± d
ε −

∫

ε

eN

dεψε
√

gε± d
ε.

We suppose that �±,ε and �m,ε are constituted by three homogeneous anisotropic piezoelectric materials, whose constitu-
tive laws are defined as follows:{

σ i j,ε(uε,ϕε) = C ijk�,εeε
k‖�(uε) − Pki j,ε Eε

k (ϕε),

Di,ε(uε,ϕε) = P ijk,εeε
j‖k(uε) + Hij,ε Eε

j (ϕ
ε),

where σ i j,ε and Di,ε represent, respectively, the contravariant components of the Cauchy stress tensor and the contravariant 
components of the electrical displacement vector, eε

i‖ j(vε) := 1
2 (∂ε

j vε
i + ∂ε

i vε
j ) − 


p,ε
i j vε

p represent the covariant components 
of the linearized change of metric tensor, ϕε is the electrical potential and Eε

i (ϕε) := −∂ε
i ϕε its associated electrical field. 

C ijk�,ε , P ijk,ε and Hij,ε represent, respectively, the contravariant components of the fourth-order elasticity tensor, the third-
order piezoelectric coupling tensor, and the second-order dielectric tensor related to �±,ε and �m,ε .

Let �ε ⊂ ∂�ε , we introduce the functional spaces

V (�ε,�ε) := {vε ∈ H1(�ε); vε = 0 on �ε}, V(�ε,�ε) := [V (�ε,�ε)]3.

The electromechanical state at the equilibrium is determined by the pair sε := (uε, ϕε). The physical variational problem 
in curvilinear coordinates defined over the variable domain �ε can be written as{

Find sε ∈ V(�ε,
ε
mD) × V (�ε,
ε

eD) such that

A−,ε(sε, rε) + A+,ε(sε, rε) + Am,ε(sε, rε) = Lε(rε),
(1)

for all rε ∈ V(�ε, 
ε
mD) × V (�ε, 
ε

eD), where A±,ε(·, ·) and Am,ε(·, ·) are defined by

A±,m,ε(sε, rε) :=
∫

�±,m,ε

{
C ijk�,ε

±,m eε
k‖�(uε)eε

i‖ j(vε) + Hij,ε
±,m Eε

j (ϕ
ε)Eε

i (ψ
ε) +

+ P ihk,ε
±,m (Eε

i (ψ
ε)eε

h‖k(uε) − Eε
i (ϕ

ε)eε
h‖k(vε))

}√
gε±,m dxε.

In order to study the asymptotic behavior of the solution to problem (1) when ε tends to zero, we rewrite the problem 
on a fixed domain � := �± ∪ �m , independent of ε, by using the classical change of variables as in [1,7], where �± :=
{x ± he3, x ∈ �±}, �m := ω × (−h, h) and S± := ω × {±h}.

We suppose that the electromechanical parameters of �±,ε are independent of ε, so that C ijk�,ε
± := C ijk�

± , P ijk,ε
± := P ijk

± and 
Hij,ε

± := Hij
± . While the constitutive coefficients associated with �m,ε admit the following asymptotic behavior with respect 

to ε: C ijk�
m (ε)

√
gm(ε) = εp C ijk�

m (0)
√

a + O (εp), P ijk
m (ε)

√
gm(ε) = εp P ijk

m (0)
√

a + O (εp) and Hij
m(ε)

√
gm(ε) = εp Hij

m(0)
√

a +
O (εp), with a := det(aαβ) and p ∈ {−1, 1}. For an extensive treatment of the asymptotic analysis for shells and shell-like 
elastic inclusions, see [1,7].

Finally, we assume that Lε(rε) = L(r). According to the previous assumptions, problem (1) can be reformulated on a fixed 
domain � independent of ε. Thus we obtain the following scaled problem in curvilinear coordinates:{

Find s(ε) ∈ V(�,
mD) × V (�,
eD) such that

A−(s(ε), r) + A+(s(ε), r) + Am(s(ε), r) = L(r),
(2)

for all r ∈ V(�, 
mD) × V (�, 
eD), p ∈ {−1, 1}, where

Am(s(ε), r) :=
∫

�m

{
C ijk�

m (ε)ek‖�(ε;u(ε))ei‖ j(ε;v) + 1

ε2
H33

m (ε)∂3ϕ(ε) ∂3ψ

+ 1

ε
Hα3

m (ε)(∂αϕ(ε)∂3ψ + ∂3ϕ(ε)∂αψ) + Hαβ
m (ε)∂αϕ(ε) ∂βψ +

+ Pαhk
m (ε)(∂αϕ(ε)eh‖k(ε;v) − ∂αψeh‖k(ε;u(ε))) +

+ 1

ε
P 3hk

m (ε)(∂3ϕ(ε)eh‖k(ε;v) − ∂3ψeh‖k(ε;u(ε)))

}√
gm(ε)dx,

where eα‖β(ε; v) := 1
2 (∂β vα + ∂α vβ) − 


p
αβ(ε)v p , eα‖3(ε; v) := 1

2 ( 1
ε ∂3 vα + ∂α v3) − 
σ

α3(ε)vσ and e3‖3(ε; v) := 1
ε ∂3 v3. We 

can now perform an asymptotic analysis of the rescaled problem (2) and distinguish the two cases of weak and strong 
piezoelectric interfaces. Since the rescaled problem (2) has a polynomial structure with respect to the small parameter ε, 
we can look for the solution to the problem as a series of powers of ε: s(ε) = s0 + εs1 + ε2s2 + . . . , which implies that 
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u(ε) = u0 +εu1 +ε2u2 + . . . and ϕ(ε) = ϕ0 +εϕ1 +ε2ϕ2 + . . . . By substituting the expression of the asymptotic development 
in (2) and by identifying the terms with identical power of ε, we can finally characterize the limit problems for p = −1 and 
p = 1.

3. The strong piezoelectric curved interface: the case p = −1

In this Section, we characterize the limit model for a strong piezoelectric interface. Let us define the following functionals 
spaces:

X(�̃,�) := {v ∈ H1(�̃), v|ω ∈ H1(ω) v = 0 on �}, X(�̃,�) := [X(�̃,�)]3, �̃ :=:= �+ ∪ ω ∪ �−.

If we choose p = −1 in (2), the formulation of the limit problem is stated in the following theorem.

Theorem 3.1. The leading term s0 = (u0, ϕ0) of the asymptotic expansion satisfies the following variational problem:{
Find s0 ∈ X(�̃,
mD) × X(�̃,
eD) such that

A−(s0, r) + A+(s0, r) +Am(s0, r) = L(r),
(3)

for all r ∈ X(�̃, 
mD) × X(�̃, 
eD), with

Am(s0, r) := 2h

∫
ω

{(
C̃αβστ γστ (u0) + P̃ ταβ∂τϕ

0
)
γαβ(v) +

(
− P̃αστ γστ (u0) + H̃ατ ∂τϕ

0
)

∂αψ
}√

a dx̃,

where γαβ(v) := 1
2 (∂α vβ + ∂β vα) − 
τ

αβ vτ − bαβ v3 denote the covariant components of the linearized change of metric tensor and 
C̃αβστ , P̃ ταβ and H̃ατ represent the reduced interface electromechanical moduli.

The variational limit problem results into a non-classical transmission problem between �+ and �− with ad hoc trans-
mission conditions at the interface ω. This problem represents a piezoelectric curvilinear generalization of the Ventcel-type 
transmission conditions obtained for strong elastic and piezoelectric interfaces in [7,8]. After an integration by parts, we can 
rewrite problem (3) in its differential form:

Electrostatic problems Elasticity problems Transmission conditions on ω⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂i Di± + 

p
pi Di± = ρe in �±,

Di±ni = d on 
eN ,

ϕ0 = 0 on 
eD ,

D̃ανα = 0 on γeN ,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−σ
i j
±‖ j = f i in �±,

σ
i j
±n j = gi on 
mN ,

u0 = 0 on 
mD ,

σ̃ αiνα = 0 on γmN ,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�u0 � = 0, �ϕ0 � = 0,

�σα3 � = −σ̃ αβ |β,

�σ 33 � = −bαβσ̃ αβ,

� D3 � = −(∂α D̃α + 
τ
τα D̃α),

where σ̃ αβ := C̃αβστ γστ (u0) + P̃ ταβ∂τ ϕ
0 and D̃α := P̃αστ γστ (u0) − H̃ατ ∂τ ϕ

0 represent, respectively, the two-dimensional 
membrane stresses and electric displacement, � f � := f |S+ − f |S− = f+ − f− represents the jump function of f at the 
interface between �+ and �− and (να) denotes the unit normal vector to the uncharged electromechanical boundaries 
γeN , γmN ⊂ ∂ω. The limit model for a strong piezoelectric interface implies the continuity of the limit state s0 = (u0, ϕ0)

across the interface. At the same time, it provides that the normal and shear stresses and the normal electric displacement 
with respect to the tangent plane of the interface are discontinuous: their jumps depend on the two-dimensional curvilinear 
surface divergence of the membrane stresses and electric displacements. This is a classical feature for what concerns with 
mechanically hard and highly conducting interface models, see, e.g., [7,10].

It is interesting to notice that, by considering some particular material symmetry groups for the interphase material, 
the elastic and electric behaviors of the interface are completely decoupled and, hence, the interface limit model does not 
show any piezoelectric coupling. For instance, in the case of a monoclinic material of class 2 with unique poling direction 
in x3, which is compatible with the material symmetry group of a shell-like structure, the electromechanical coefficients 
Cαβσ3

m (0) = Cα333
m (0) = Pαβσ

m (0) = Pα33
m (0) = P 3α3

m (0) = Hα3
m (0) vanish and, hence, the reduced constitutive parameters 

Pταβ = 0. The bilinear form takes the following simple form

Am(s0, r) := 2h

∫
ω

{
C̃αβστ γστ (u0)γαβ(v) + H̃ατ ∂τ ϕ

0∂αψ
}√

a dx̃,

which is associated with a two-dimensional membrane elastic energy and two-dimensional electric surface energy, with no 
piezoelectric coupling.
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4. The weak piezoelectric curved interface problem: the case p = 1

In this Section, we characterize the limit model for a weak piezoelectric interface. We define the following functional 
spaces:

W (�,�) := {v ∈ L2(�); v± ∈ H1(�±), v = 0 on �}, W(�,�) := [W (�,�)]3.

Let us choose p = 1 in (2), the formulation of the limit problem is stated in the following theorem.

Theorem 4.1. The leading term s0 = (u0, ϕ0) of the asymptotic expansion satisfies the following variational problem:{
Find s0 ∈ W(�,
mD) × W (�,
eD) such that

A−(s0, r) + A+(s0, r) + am(s0, r) = L(r),
(4)

for all r ∈ W(�, 
mD) × W (�, 
eD), with

am(s0, r) := 1

2h

∫
ω

{(
C i3 j3

m (0)�u0
j � + P 3i3

m (0)�ϕ0 �
)

�vi � +
(

H33
m (0)�ϕ0 � − P 3i3

m (0)�u0
i �

)
�ψ �

}√
a dx̃.

Thanks to the asymptotic analysis, we transform the limit problem onto a coupled electromechanical interface problem 
between �+ and �− , with non-classical transmission conditions at the interface ω. This problem represents a piezoelectric 
curvilinear generalization of the weak linear elastic and piezoelectric interfaces obtained in [4,8]. We rewrite problem (4) in 
its differential form and we obtain:

Electrostatic problems Elasticity problems Transmission conditions on ω⎧⎪⎨
⎪⎩

∂i Di± + 

p
pi Di± = ρe in �±,

Di±ni = d on 
eN ,

ϕ0 = 0 on 
eD ,

⎧⎪⎪⎨
⎪⎪⎩

−σ
i j
±‖ j = f i in �±,

σ
i j
±n j = gi on 
mN ,

u0 = 0 on 
mD ,

⎧⎨
⎩ σ i3± = − 1

2h

(
C i3 j3

m (0)�u0
j � + P 3i3

m (0)�ϕ0 �
)

,

D3± = 1
2h

(
H33

m (0)�ϕ0 � − P 3i3
m (0)�u0

i �
)
.

The limit model for a piezoelectric curved interface provides a discontinuity of the limit state s0 = (u0, ϕ0) at the interface 
between �+ and �− . Besides, subtracting two by two the transmission conditions above, we obtain that the jump of the 
normal and shear stresses and the jump of the normal electric displacement, relatively to the plane of the interface ω, 
vanish, so that �σ i3 � = � D3 � = 0. This feature is common for what concerns mechanically soft and lowly conducting interface 
models, see, e.g., [4,5,10].

In the case of a middle layer constituted by a monoclinic class-2 material with a unique poling direction in x3, since the 
electromechanical coefficients Cαβσ3

m (0) = Cα333
m (0) = Pαβσ

m (0) = Pα33
m (0) = P 3α3

m (0) = Hα3
m (0) = 0, the bilinear form related 

to the interface problem reduces to

am(s0, r) := 1

2h

∫
ω

{
Cα3β3

m (0)�u0
α � �vβ � +

(
C3333

m (0)�u0
3 � + P 333

m (0)�ϕ0 �
)

�v3 � +

+
(
−P 333

m (0)�u0
3 � + H33

m (0)�ϕ0 �
)

�ψ �
}√

a dx̃.

In this particular case, the elastic membrane behavior of the interface is completely decoupled from the piezoelectric 
transversal behavior: from a mechanical point of view, the interphase layer is replaced, respectively, by a distribution of 
elastic shear springs reacting to the gap of the membrane displacements and by a distribution of piezoelectric transversal 
springs reacting to the jump of the transversal displacements and electric potential between the top and bottom faces.

5. Concluding remarks

In the present work, we derive two limit interface models corresponding to a generic piezoelectric composite with a 
piezoelectric curved interphase through an asymptotic analysis. We analyze two particular cases: the first case, for p = 1, 
corresponding from a mechanical point of view to a soft weakly conducting piezoelectric interphase, leads to a weak curved 
interface model; the latter, for p = −1, corresponding to a rigid highly conducting interphase into two piezoelectric media, 
leads to an strong curved interface model. In both cases, the interphase is replaced by a particular surface energy, which is 
associated with ad hoc transmission conditions at the interface of the two bodies.

As future developments, we would like to study more complex curved interface problems taking into account thermo-
electromagnetoelastic couplings and time-dependent phenomena as in [9].
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