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In the real life, most industrial structures are subject to multiple load cases. The present 
paper proposes a topology optimization formulation for multiple loading cases. It is based 
on the recently developed Direct Method of Limit Analysis for plastic topology Design 
(LADM). In this formulation, a single mathematical problem is considered to optimize 
structures under multiple loading cases; each case acts independently at a different time. 
For the continuous design problem, as in LADM, a unique iteration is considered. For the 
discrete, i.e. black and white, topology optimization problem, the same approach used in 
LADM is conserved with the use of a sequence of conic programming problems of the 
same form as the continuous design problem. The proposed method is illustrated with 
continuous and discrete example design problems. Examples with multiple loading cases 
confirm the conservation of the LADM features.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Dans la vie réelle, la majorité des structures industrielles sont soumises à des cas de 
charges multiples. Le présent article propose une formulation pour l’optimisation de la 
topologie des structures soumises à plusieurs cas de chargement. Il est basé sur une 
technique récente développée en utilisant une méthode directe d’analyse limite pour la 
conception topologique des structures plastiques (LADM). Dans cette formulation, un seul 
problème mathématique est généré pour optimiser les structures soumises à des cas de 
chargements multiples, chaque cas agissant indépendamment à différents moments. Pour 
le problème continu, comme dans la LADM, une seule itération est nécessaire. Pour le 
problème discret, l’approche utilisée dans la méthode LADM est conservée, avec l’utilisation 
d’une séquence de problèmes de programmation de coniques de même forme que le 
problème de conception continue. La méthode proposée est illustrée par des problèmes 

* Correspondence to: Université de Carthage, Institut supérieur des technologies de l’environnement de l’urbanisme et du bâtiment, 2, rue de l’Artisanat-
Charguia 2, 2035 Tunis, Tunisia.

E-mail address: kammounzied@yahoo.fr.
http://dx.doi.org/10.1016/j.crme.2016.08.002
1631-0721/© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

http://dx.doi.org/10.1016/j.crme.2016.08.002
http://www.ScienceDirect.com/
http://www.sciencedirect.com
mailto:kammounzied@yahoo.fr
http://dx.doi.org/10.1016/j.crme.2016.08.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.crme.2016.08.002&domain=pdf


726 Z. Kammoun / C. R. Mecanique 344 (2016) 725–735
continus et discrets. Les exemples de topologie avec plusieurs cas de chargement montrent 
la conservation des caractéristiques de la méthode LADM.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Today, topology optimization techniques are highly demanded and used in the industry [1], and powerful dedicated soft-
ware have emerged [2]. However, most of the work on the topology optimization of continuum structures was traditionally 
treated with elastic structures [2–6].

If the Solid Isotropic Microstructure with Penalization for intermediate densities (SIMP) [7] method is the most popular 
among the numerical FE-based topology optimization methods applied in industrial softwares [2], several other methods 
have been developed. Among the latter, stress-based topology optimization [8,9] represents a great interest for real applica-
tions.

According to Kiyono et al. [10], the topology optimization problem for stress design is still an open problem due to a 
number of difficulties.

One of these difficulties is the nonzero stresses in “void” regions; many solutions have been proposed to prevent this 
issue, such as the e-relaxation method, the qp-relaxation method, and the relaxed stress indicator method. Another difficulty 
is related to the high computational cost that reduces the efficiency of the optimization solver, and a third difficulty is 
related to the high nonlinear behavior of this problem, requesting an efficient and accurate optimizer. Another problematic 
issue is the presence of some intermediate material which requests a post-processing step, after which the stress value may 
increase.

In many industrial applications, the structure is loaded by Multiple Loading Cases (MLCs). Each of these loading cases 
acts independently at a different time. Frequently, these loading cases are completely independent of each other. And each 
case, when considered separately, can induce a totally different topology.

In the recent years, a great deal of research is carried out to extend topology optimization for elastic materials to the 
structures subject to multiple load cases (as in [11]). A review of those works is given in [12]. We can cite, for example, the 
work of Diaz and Bendse [13], who have extended the homogenization algorithm to MLCs. The majority of the algorithms 
for multiple loading cases can be solved by considering a weighted function on each load case as an objective function. 
Xie and Steven [14] extend the Evolutionary Structural Optimization to the MLC by considering a step-by-step optimization 
process. They took into account two different criteria for optimization: the extreme stress criterion and the weighted average 
criterion. Different results may be obtained by using one or the other.

On the other hand, as their maturity has been reached, an extension of the elastic approaches of topology optimization 
to elastoplastic analyses is expected. However, the high computational demands prevent this extension.

On the contrary, when only the information about the limit stress field is of interest, direct methods of limit analysis 
present an adequate alternative for plastic collapse analysis. Indeed, lower computational efforts are required to determine 
limit states in terms of stress field solutions.

Direct Method of Limit Analysis for plastic topology Design (LADM) is proposed and formulated in [15] and [16] for the 
minimum weight of continuum structures subject to a specified admissible loading.

The continuous topology design presented in [16] associates the optimization problem with direct limit analysis and 
treats them in a single mathematical programming problem. This allows the same order of magnitude of computational de-
mand as a single static limit analysis problem. The microscopic approach [16] is used to formulate the design problem, and 
continuous material densities represent the design variables. The generated mathematical problem is a conic programming 
problem that presents interesting convergence properties, and prevents the difficulties that are commonly encountered in 
nonconvex elastic and elastoplastic topology design problems. Therefore, big problems can be treated in a relatively accept-
able CPU time. Another consequence of convexity is the uniqueness of the optimum value and the fact that any optimum 
solution obtained is a global one. Moreover, by combining variable material densities with direct limit analysis, no numerical 
difficulties arise when densities vanish. So, we do not need to impose a finite lower bound on the density, as in continuum 
elastic design, to avoid singularities.

The presented work in [17] extends this method to the discrete, or black and white, topology design problem by applying 
a penalization scheme to the continuous one. The generated problem becomes non-convex, so it is treated by solving a 
sequence of continuous design problems. For the illustrative considered examples (taken from the literature), a comparison 
of the results of this method with those obtained by the elastic design methods shows (for the examples treated until now) 
a good agreement among the generated topologies, although there are large differences in the material behavior and the 
type of analysis. Moreover, it is shown that no checkerboard patterns appear with the direct methods of limit analysis for 
plastic topology design.

Throughout this work, based on [16] and [17], we will exploit the features of the LADM method to write a formulation 
that can give optimum topologies for a domain subject to multiple loading cases.
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The outstanding feature of the formulation, largely similar to that of LADM problem, is that it considers a unique mathe-
matical formulation to treat all loading cases. After a brief presentation of the LADM, the new formulation is proposed. The 
procedure is discussed and tested on the long cantilever beam problem.

2. The static method of limit analysis

Historically, the work of Lysmer in 1970 [18] was at the origin of the numerical static method of limit analysis (LA). 
This author proposed a formulation with the final problem coming under linear optimization. Later, Pastor and Turgeman 
([19] and [20]) proposed an improvement of the numerical treatment of the static method. Since then, and for more than 
forty years, many research have participated in the development of the numerical static and kinematic approaches of limit 
analysis [21–28]...

The aim of the static Limit Analysis (LA) method is to determine the stress field at the limit state. Assume a mechanical 
domain �, composed of rigid, perfectly plastic materials, as defined in [29,30]; a stress field σ is said to be statically 
admissible (SA) if the field fulfills the equilibrium equations, and if stress boundary conditions and stress vector continuity 
are satisfied.

This stress field is said plastically admissible if the plasticity criterion of the material f (σ ) satisfies f (σ ) � 0. A stress 
field σ is said to be “admissible” if it is both statically and plastically admissible.

A loading system Q = Q (σ ) ∈R
n (with n components of Q , called loading parameters) is said to be admissible when it 

is in equilibrium with a statically admissible stress field σ .
The limit analysis problem relative to the ith loading parameter can be written as an optimization problem for an 

admissible stress field σ :

Q lim = (Q 1, ..., λ0 Q i, ..., Q n)

λ0 = max{λ , Q (σ ) = (Q 1, ..., λQ i, ..., Q n)}
(1)

By solving the optimization problem, a solution to the limit analysis problem is found, and the resulting loading Q (σ )

is a limit loading of the mechanical domain with respect to the loading component Q i .
The numerical plane strain formulation of the static limit analysis problem is described in [20]. The domain � is dis-

cretized into triangular finite elements characterized by a linear stress field in x and y, where (x, y) represent the global 
reference frame. Across inter element interfaces, the stress field can be discontinuous (with respect to the stress vector 
continuity of the SA condition). The Tresca criterion, used in this work, can be written as:

f (σ ) =
√

(σx − σy)2 + (2τxy)2 − 2s � 0 (2)

or equivalently as:

S(σ ) =
√(

σx − σy

2

)2

+ τ 2
xy � s (3)

where s denotes the shear strength, or cohesion, of the material.
Introducing a change of variables such that the stress vector σ is defined by the components (σx+σy)

2 , (σx−σy)

2 and τxy

denoted as σ+ , σ− and τ , respectively, the plasticity criterion can be written directly in the conic form s �
√

σ 2− + τ 2. The 
numerical optimization problem, expressing the static limit analysis problem, can thus be written as a conic programming 
problem in the form:

λ0 = max λ

Q (σ ) = (Q 1, ..., λQ i, ..., Q n)

S(σ ) ≤ s,

σ S A

(4)

and can, therefore, be solved using the conic programming code mosek [31] as in [28,32,33].

3. Formulation of the topology optimization problem

A domain �0 of unit thickness, made out of a Tresca material having a shear strength s̄ and a density ρ̄ = 1, subjected 
to a loading system Q = (Q 1, ..., Q i, ..., Q n), is considered.

The goal of topology optimization is to find the structural configuration included in the domain �0 achieving a mini-
mum amount of material while maintaining a statically and plastically admissible stress field associated with the specified 
loading Q .

If continuous optimization consists in determining the densities in each element with acceptance of an intermediate 
value between the maximum of density and the void, the discrete optimization consists in determining whether each 
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element in the designed domain should be solid or void, and whether the density of the material should eventually converge 
to one of the limiting values of density (0 and 1) by penalizing intermediate values.

3.1. The continuous design problem formulation

As explained in [16] and [17], in the continuous design formulation, the “amount” of material represented by the density 
ρ of a fictitious material is allowed to continuously span in the interval [0, 1].

The shear strength s is chosen as a function of density for the intermediate material:

s(ρ) = ρ s̄ (5)

The condition that allows (with the plasticity criterion) the stress field to bring the stress tensor to zero when the density 
vanishes is expressed as follows:

−Kρ ≤ σ+ ≤ Kρ (6)

where K is a constant sufficiently large that the constraint tends to be activated near zero density only.
Premultiplying the objective by the real shear strength s̄, redefining the constant K as K s̄ and substituting s for ρ s̄, the 

optimum design problem can be written in the form (Eqs. (7)), where the shear strengths replace the densities with design 
variables:

min
∫
�0

s d�

s.t. Q (σ ) = (Q 1, ..., Q i, ..., Q n),

S(σ ) ≤ s,

σ S A

0 ≤ s ≤ s̄

−K s ≤ σ+ ≤ K s

(7)

3.2. The discrete problem formulation

The technique used to drive the densities to the limits 0 and 1 is the penalization of intermediate densities employed 
in [17], where the penalization is performed by replacing the linear cost term ρ by the power law ρ1/2. This leads to the 
following problem:

min
∫
�0

ρ1/2 d�

s.t. Q (σ ) = (Q 1, ..., Q i, ..., Q n),

S(σ ) ≤ s,

σ S A

0 ≤ s ≤ s̄

−K s ≤ σ+ ≤ K s

(8)

This optimization problem is not a convex one and can not be solved directly using M O S E K . To solve it, an iterative 
method is considered. It consists in solving a sequence of conic problems where the objective is a linear approximation of 
the power-law function. In each cycle, the problem to be solved is formed by the same constraints as in problem (8), and 

the cost function can be written as 
∫
�0

cρ∗ρ d�, where cρ∗ = (ρ∗)( 1
2 −1) and ρ∗ denotes the solution of the preceding cycle. 

The resulting problem differs from the problem (7) only in the cost coefficients, and is solved using the code M O S E K .

4. Formulation for multiple loading cases

The basic idea of this approach is to write all generated mathematical optimization problems of all loading cases in a 
single mathematical problem that can be directly solved. Thus, the resulting topology will be valid for each of the loading 
cases.

Since the considered mechanical domain � is unique, the final density distribution must be the same in all loading 
cases. This is obtained by imposing the same density for each element in all loading cases (adding the equation ρ = ρ j for 
all loading cases j). Taking into account Eq. (5), we can also impose the same shear strength (as in Eq. (9)). As result, the 
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objective of the optimization problem, i.e. the weight of the domain, has the same value for the different loading cases. And 
the continuous optimum design problem may be written as:

min
∫
�0

s d�

s.t. ∀ j ∈ [1, ...,nc]
Q (σ ) = (Q 1 j, ..., Q ij, ..., Q nj),

S(σ j) ≤ s,

σ j S A

0 ≤ s j ≤ s̄

−K s j ≤ σ j+ ≤ K s j

s j = s

(9)

where nc is the number of loading cases.
The optimum design problem can be simplified in the following alternative form:

min
∫
�0

s d�

s.t. ∀ j ∈ [1, ...,nc]
Q (σ ) = (Q 1 j, ..., Q ij, ..., Q nj),

S(σ j) ≤ s,

σ j S A

0 ≤ s ≤ s̄

−K s ≤ σ j+ ≤ K s

(10)

Since the generated mathematical problem retains the convex character, the continuous optimal solution obtained in 
multiple loading cases is a global one.

Considering similar changes for the continuous design formulation, the final discrete optimization problem can be written 
as follows:

min
∫
�0

ρ1/2 d�

s.t. ∀ j ∈ [1, ...,nc]
Q (σ ) = (Q 1 j, ..., Q ij, ..., Q nj),

S(σ j) ≤ s,

σ j S A

0 ≤ s ≤ s̄

−K s ≤ σ j+ ≤ K s

(11)

5. Numerical examples

In this section, the proposed method for plastic topology optimization with multiple loading cases is tested through two 
examples of topology design problems based on the long cantilever beam. These tests are performed essentially to show 
the difference in the generated topology between the cases of one load, the maximum value of the density in each element 
of the mesh of these cases, and the multiple loading cases.

The finite-element meshes are all uniform. The rectangular design domain is divided into nx × ny elementary rectangles. 
Each one is divided into four triangular elements separated by the two diagonals. Before proceeding with the design, the 
limit load for the full density domain is determined since it represents an upper bound on the specified limit loads, for 
which the topology optimization problem is feasible. That is why the applied load is not larger than the limit one corre-
sponding to the fully dense domain. All problems are solved with version 6 of M O S E K code using an Intel Core i5 processor 
(2.4 GHz). The continuous design problem presents the initial step for all the algorithms presented next.

As reported in [16], the K factor must be chosen in the range between 3 and 40 and is chosen equal to 10 for all the 
simulations.
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Fig. 1. Definition of loading cases 1 and 2.

Fig. 2. Continuous topology of loading cases 1 and 2.

5.1. Two loading cases

In this section, the long cantilever beam problem (Fig. 1) with tangent centered load is treated for the first loading 
case. For the second loading case, the problem is defined in the same figure and the load is a centered normal one. The 
geometrical dimensions of the problem are L = 1 m and b = 0.05 m. For a shear strength s̄ = 1 kPa and using a mesh with 
160 × 80 × 4 = 51, 200 elements, the limit analysis carried out for the full density domain yields a limit load F̄ = 0.050 kN
in 39 s of CPU time for the first loading case and F̄ = 0.248 kN in 46 s of CPU time for the second case.

The applied load is chosen equal to 0.04 kN for case 1 and equal to 0.2 kN for the second case. Using a 160 × 80 × 4 =
51, 200 elements mesh, the topology of the initial step (continuous design) is represented in Fig. 2. After 30 iterations, the 
resulting design is shown in Fig. 3; the obtained optimum weight, cost and CPU of the continuous and discrete problem for 
each case are reported in Tables 1 and 2. As noted in [17], the converged solution in the discrete topology is not perfectly 
a 0–1 design.

One of the possible topologies that can be used for both loading cases is obtained by considering the maximum value of 
the density in each element of the mesh. This topology can be used as a reference (and labeled R-Topology) to compare our 
new technique. The new technique is used to simulate the optimal topology (called C-topology) that can be used with both 
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Fig. 3. Discrete topology of loading cases 1 and 2.

Table 1
Results for the continuous topology for two loading cases.

Optimal weight Accuracy CPU (s)

Case 1 0.4626 1.8·10−08 88
Case 2 0.4055 2.0·10−08 82
Cases 1 and 2 (C-Topology) 0.5319 2.8·10−08 716

Table 2
Results after 30 iterations for two loading cases.

Optimal cost Optimal weight Accuracy CPU (s)

Case 1 0.5791 0.4919 6.7·10−07 112
Case 2 0.4933 0.4195 4.7·10−09 103
Cases 1 and 2 (C-Topology) 1.2848 0,5573 7.7·10−08 546

Fig. 4. Continuous topology of the two cases loading problem.

the first and the second loading cases; the optimal cost and weight are reported in Table 1 for continuous topology and in 
Table 2 for the discrete topology.

The weight of the R-topology is 0.7316 for the continuous topology and 0.8770 for the discrete one. This represents more 
than 50% of extra weight relative to the C-topology for discrete topology. The R-topology and C-Topology are represented 
in Figs. 4 and 5. In both cases, discrete and continuous, we can clearly see that our method was able to generate a new 
topology, different from that of each loading case, with an optimal weight lower than that of R-topology.



732 Z. Kammoun / C. R. Mecanique 344 (2016) 725–735
Fig. 5. Discrete topology of the two cases loading problem.

Fig. 6. Third loading case.

5.2. Three loading cases

In this section, a third loading case is considered. It is defined in Fig. 6 with a vertical load applied to the free end of 
the bottom of the beam, for the same shear strength and the same mesh as cases 1 and 2. The limit analysis for this third 
case is conducted for the full density in the domain. A limit load F̄ = 0.0485 kN is obtained in 30 s of CPU time.
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Table 3
Results for case 3, and for the problem with three cases after 30 iterations.

Optimal cost Optimal weight Accuracy CPU (s)

Case 3 continuous 0.4676 0.4676 3.9·10−09 66
Case 3 discrete 0.5899 0.4983 1.3·10−06 81
3 Cases continuous (C-Topology) 1.6192 0,5397 7.7·10−08 2692
3 Cases discrete (C-Topology) 1.9398 0,5674 1.3·10−07 3327

Fig. 7. Topology of the three loading cases problem.

The applied load is chosen equal to 0.04 kN for case 3, using the same 51, 200-element mesh. Table 3 presents the 
obtained results for this case. The obtained topology for the continuous and the discrete design is represented in Fig. 6. The 
latter presents a completely different topology than those of cases 1 and 2.

The consideration of three loading cases at the same time, through our algorithm, enables a single topology (Fig. 7), 
which will support the load in all three cases. The obtained weight and cost are illustrated in Table 3. The weight of the 
R-topology is 0.76732 for the continuous topology and 1.0241 for the discrete one. This represents more than 80% of extra 
weight relative to the C-topology for discrete topology.

As expected, the CPU time of one iteration does not vary linearly with the problem’s size. In fact, the CPU times of the 
three loading cases are equal to 5 times the CPU times of the two loading cases considered at the same time, and it is 25 
times that of a single loading case. Meanwhile, the variable number grows linearly with the number of loading cases: it 
shifts from 665,600 variables for the single loading case to the double for the two loading cases and the triple for the three 
loading cases.

In return, we obtained a new topology, with a slightly higher weight than that of each individual case, which can be 
used in each one of the considered loading cases.

Fig. 8 shows the convergence of the total weight of the discrete solution along the iterative process. The initial iteration, 
or iteration 0, coincides with the solution of the continuous design. It is clear that the solution converges quickly for all 
the problems shown in this paper. Moreover, the convergence speed is almost the same for the individual problems and 
the problems dealing with multiple loading cases. It is finally noted that the number of iterations simulated in the iterative 
process is much higher than the required number of iterations for convergence.

6. Conclusion

A topology optimization algorithm based on limit analysis topology optimization has been developed to determine the 
optimal topology of a domain subjected to multiple loading cases. With this topology design, which integrates the optimiza-
tion problem with direct limit analysis, we were able to consider multiple loading cases in one mathematical programming 
problem. Thus, a single iteration allows obtaining the continuous topology structure subject to several loading cases.

An iterative procedure identical to that conventionally used in topology optimization by limit analysis was adapted to 
obtain the discrete topology. The formulation is developed in plane strain using Tresca materials and is illustrated by the 
example of a cantilever beam subjected to two- and three loading cases.

The topologies obtained for two- and three loading cases are different from those obtained for each single case. The 
optimum weight of the obtained topology with multiple loading cases is slightly higher than that of the isolated case. 
However, it is always less than the case where the maximum of densities at each point is considered.
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Fig. 8. Iteration history of weight.

The approach developed for multiple loading cases retains the main characteristics of the LADM, as the nonexistence of 
the checkerboard problem. We also note that the preservation of convexity for the continuous problem ensures the globality 
of the optimal solution. On the other hand, for discrete problems, we observe that a small number of iterations is necessary 
to converge, and that the isolated cases and multiple loading cases are within the same range of convergence rate.
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