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The stability of the flow of a dielectric fluid confined in a cylindrical annulus submitted 
to a radial temperature gradient and a radial electric field is investigated theoretically and 
experimentally. The radial temperature gradient induces a vertical Archimedean buoyancy 
and a radial dielectrophoretic buoyancy. These two forces intervene simultaneously in the 
destabilization of the flow, leading to the occurrence of four types of modes depending on 
the relative intensity of these two buoyancies and on the fluid’s properties: hydrodynamic 
and thermal modes that are axisymmetric and oscillatory, stationary columnar modes and 
electric modes which are stationary and non-axisymmetric modes. Experiments performed 
in a parabolic flight show the existence of non-axisymmetric modes that should be either 
columnar or helicoidal vortices.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The alternating electric field with high enough frequency coupled with the temperature gradient gives rise to a dielec-
trophoretic force that can generate convective flows in a dielectric fluid [1,2]. In particular, it was that the dielectrophoretic 
force can be used to increase the heat transport in cylindrical systems [3,4]. The generation of convective motions by the 
dielectrophoretic force has been successfully tested in the GEOFLOW experiments that were performed in the Fluid Sci-
ence Laboratory of the International Space Station where thermal convection patterns have been observed in a differentially 
rotating spherical shell submitted to a dielectrophoretic force [5,6]. Preliminary observations of the dielectrophoretic force 
effects in the cylindrical annulus were performed in parabolic flight experiments [7,8] where non-axisymmetric patterns 
were identified. The interest of the cylindrical annulus compared to spherical shells is the capacity of its implementations 
in the heat exchanger or in microfluidic systems. As the microgravity phase in parabolic flight experiments lasts only 22 s, 
it is necessary to perform an exhaustive investigation of the different effects of the control parameters of the flow systems 
in order to isolate the real contribution of the dielectrophoretic effect compared to the Archimedean buoyancy.
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Fig. 1. Schematic sketch of the setup. The inner cylinder is heated and the voltage is applied to it. The outer cylinder is cooled and connected to the ground.

The present work presents the results of the linear stability analysis of the fluid (silicone oil) inside a cylindrical annulus 
with an alternating high-frequency electric field and a radial temperature gradient together with flow patterns observed dur-
ing parabolic flight experiments. The paper is organized as follows: Section 2 describes the flow equations, and the results 
from linear stability analysis. Section 3 describes the experimental setup and the parabolic flight and presents preliminary 
experimental results realized in a recent parabolic flight campaign (October 2015). Discussion of the results and conclusion 
are addressed in sections 4 and 5.

2. Flow equations

We consider an incompressible dielectric fluid of density ρ , kinematic viscosity ν , thermal diffusivity κ and permittivity 
ε, confined between two concentric steady cylinders of length L and gap width d. The inner and outer cylinders of radii 
R1 and R2 = R1 + d are maintained at the temperatures T1 and T2 < T1, respectively (Fig. 1). A high alternating electric 
potential is applied to the inner cylinder, while the outer one is grounded, resulting in an inhomogeneous inward directed 
electric field �E . The temperature difference between the cylinders induces the stratification in the density ρ(T ) and in the 
permittivity ε(T ). The fluid density stratification in the Earth gravity field leads to the Archimedean buoyancy �F A = δρ�g , 
while the fluid permittivity stratification in the electric field leads to the dielectrophoretic force �Fd = �E2 �∇ε [9]. The di-
electrophoretic force dominates over the Coulomb force when the frequency of the electric field is very large compared to 
the inverse of the electric charge relaxation time τe = ε/σe, where σe is the electric conductivity [1]. In the Boussinesq 
approximation, all the fluid properties are assumed constant with respect to the temperature, except the density and per-
mittivity in the Archimedean and dielectrophoretic forces, where they are assumed to vary linearly with the temperature, 
i.e. ρ(T ) = ρ0 [1 − α (T − T2)] ; ε = ε2 [1 − e(T − T2)], where ρ0 and ε2 are the density and permittivity at the reference 
temperature T2.

The dielectrophoretic force can be written as follows [2]

�FDEP = �∇
(

ε2e�E2(T − T2)

2

)
− ρ α (T − T2) �ge (1)

The conservative term can lumped into the pressure gradient and has effects only in the case of the interface dynamics. The 
non-conservative term represents the dielectrophoretic buoyancy induced by the effective electric gravity field �ge given by:

�ge = �∇
(

e ε2 �E2

2αρ

)
(2)

The effective electric gravity represents the gradient of the electric energy stored in the capacitor. So a fluid particle is 
subject to a total gravity �G = �g + �ge.

Most of the time, the frequency of the electric potential is large enough compared to the inverses of the fluid character-
istic times τν = d2/ν and τκ = d2/κ so that only the time average dielectrophoretic buoyancy can affect the fluid motion. 
The electric contribution reduces to that of an effective static field.

In the following, we introduce the lengthscale d, the viscous diffusion timescale τν , the temperature is scaled by T1 − T2
and the electric potential is scaled by the root mean square electric potential at the outer cylinder V 0. The flow equations 
for the velocity field �u, the temperature θ , the electric potential φ are derived from the conservation laws of the mass, the 
momentum, the energy, and the charge. Written in dimensionless form, they read:
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�∇·�u = 0 (3)

∂ �u
∂t

+ �u· �∇�u = −�∇π + ��u + Grθ�ez − V 2
E

Pr
γeθ �ge (4)

∂θ

∂t
+ �u· �∇θ = 1

Pr
�θ (5)

�∇·
[
(1 − γeθ) �∇φ

]
= 0, �E = − �∇φ (6)

where Pr = ν/κ is the Prandtl number, Gr = α�T Gd3/(ν2) is the Grashof number (G = g in the gravity phase and G = 1.8 g
in the hypergravity phase), �T = T1 − T2, γa = α�T is the thermal expansion parameter, γe = ε�T is the thermoelectric 
parameter, V E = V 0/

√
ρνκ/ε2 is the dimensionless electric potential difference. The generalized pressure π is given by:

π = P

ρ
− e θ ε2 E2

2ρ
− 1

2

(
∂ε

∂ρ

)
θ

E2 (7)

The equation (6) stems from the Gauss law of the electric flux conservation in the dielectric fluid when the electric permit-
tivity varies with the temperature. The boundary conditions on the two cylinders read:

⎧⎨
⎩

�u = �0, θ = 1, φ = 1 at r = η/(1 − η)

�u = �0, θ = 0, φ = 0 at r = 1/(1 − η)

�u = �0, ∂θ/∂z = 0 ∂φ/∂z = 0 at z = 0 and �

(8)

where η = R1/R2 is the radius ratio and � = L/d is the aspect ratio.
The parabolic flight experiment was performed with an applied electric field during the whole parabolic flight; this 

means that the electric gravity was acting during the whole experiment. The gravity and hypergravity phases of the parabolic 
flight can be taken into account by a crude approximation that neglects the time dependence of the vertical gravity G .

2.1. Base state

In the case of infinite length cylindrical annulus (� → ∞), the system of equations governing the flow admits a stationary 
axisymmetric and axially invariant base state. The temperature and the axial velocity profile are given by [10]:

�(r) = ln [(1 − η)r]

ln(η)
(9)

W = Gr

Re

(
C

[
(1 − η)2 r2 − 1 + (1 − η)2 �

]
− r2 (1 − η)2 − η2

4 (1 − η)2
�

)
(10)

where the coefficient C is

C =
(
1 − η2

) (
1 − 3η2

) − 4η4 logη

16 (1 − η)2
[(

1 − η2
)2 + (

1 − η4
)

logη
] (11)

The radial temperature gradient induces an axial flow with velocity profile W (r) where the fluid flows upward near the hot 
surface and downward near the cold surface. The electric potential is obtained from the Gauss law (6) and reads

� = ln(1 − γe�)

ln(1 − γe)
(12)

The electric gravity of the base state is always centripetal when the temperature gradient is outward, while it can change 
the sign in the case of inward heating for large values of the radius ratio [2].

�ge,b = −g0 F (γe, η, r) �er, g0 = e ε2 V 2
0

ρ0 α (lnη)2 r3

F =
[

γe

ln (1 − γe)

]2 [
1 − γe

(
�(r)

�T
+ 1

lnη

)][
1 − γe

�(r)

�T

]−3

(13)

The generalized gravity is inclined in the meridional plane (r, z).
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2.2. Linear stability analysis

The stability of the base state is performed by adding an infinitesimal perturbation (u′, v ′, w ′, π′, θ ′, φ′) into the 
flow equations (3), (4), (5), (6) and neglecting second and higher order terms in perturbations. The invariance in 
the axial and azimuthal directions allow for the development of the perturbations into normal modes of the form 
(û, ̂v, ŵ, ̂π, θ̂ , φ̂) est+inϕ+ikz , where s is the complex growth rate, k is the axial wavenumber and n is the azimuthal mode 
number. The hatted quantities are complex amplitudes of perturbations that only depend on the radial coordinate. The 
resulting governing equations are given by:

0 =
(

D + 1

r

)
û + i n

r
v̂ + ikŵ (14)

sû =
(

� − 1

r2
− ikW

)
û − 2in

r2
v̂ − Dπ̂ − γe V 2

E

Pr

(
−θ̂Ge + ĝe,r�

)
(15)

sv̂ = 2in

r2
û +

(
� − 1

r2
− ikW

)
v̂ − in

r
π̂ − γe V 2

E

Pr
ĝe,ϕ� (16)

sŵ = (DW ) û + (� − ikW ) ŵ − ikπ̂ + Grθ̂ − γe V 2
E

Pr
ĝe,z� (17)

sθ̂ = − (D�) û +
(

1

Pr
� − ikW

)
θ̂ (18)

0 = −γe

[
D�D + 1

r
D� +

(
D2�

)]
θ̂ + [(1 − γe�)� − γe D�D] φ̂ (19)

where D = d/dr, and � = d2/dr2 + d/rdr − (n2/r2 + k2) is the Laplacian operator. The complex amplitude of perturbation 
electric gravity (ĝe,r, ̂ge,ϕ, ̂ge,z) has been introduced:

ĝe,r =
(

D�D2 + D2�D
)

φ̂ , ĝe,ϕ = i n

r
D�Dφ̂ , ĝe,z = i kD�Dφ̂ (20)

The boundary conditions for the amplitude of perturbations read:

û = v̂ = ŵ = Dû = θ̂ = φ̂ = 0 at r = η

1 − η
;

1

1 − η
(21)

Equations (14)–(19) and (21) are invariant by the operation (n, ̂v) → (−n, −v̂). It means that once the eigenvalue s and 
the corresponding eigenfunctions (û, ̂v, ŵ, ̂π, θ̂ , φ̂) are known for a given mode (n, k), the mode (−n, k) will give the same 
eigenvalue s with the eigenfunctions (û, −v̂, ŵ, ̂π, θ̂ , φ̂). The stability conditions for both modes are identical. The eigenvalue 
problem is discretized by a Chebyshev spectral collocation method and is solved by a QZ decomposition. To ensure the 
convergence of the computation, the highest order of the Chebyshev polynomials is set at 30.

The eigenvalue s = σ + i ω is computed for a given set of parameters (Pr, η, γe, Gr, V E , n, k). When the maximum value 
of the growth rate real part σ is equal to zero, we have got the marginal state. Marginal curves can be plotted in the plan 
(k, V E) or (k, Gr) for different azimuthal mode number n. The global minimum of these curves corresponds to the critical 
state denoted by (Grc, V Ec, nc, kc, ωc), where ωc is the critical frequency of vortex propagation. The total wavenumber of the 
critical mode qc gives the wavenumber measured along the transversal direction to the rolls at the median surface between 
the two electrodes, and is defined as:

qc =
√

k2 + k2
n where kn = 2 (1 − η)

1 + η
nc (22)

2.3. Critical parameters

The linear stability analysis was performed for the silicone oil AK5 with Pr = 64.6 and γa/γe = 1.01, in an infinite-length 
cylindrical annulus with radius ratio η = 0.5 in the natural gravity. For this flow configuration, Gr/γa = 228. In the absence 
of electric potential, we recover the critical modes in the form of oscillatory axisymmetric vortices of the thermal instability 
[10]. When the electric potential is applied to the flow system, the threshold remains constant until the potential reaches 
V E = 100 and then starts to decrease (Fig. 2a). The critical axial wavenumber and the critical frequency (Fig. 2b, d, e) are 
nearly independent of V E . This means that for this regime, the thermoelectric buoyancy plays a passive role. For V E =
V ∗

E = 425, the critical mode changes from an oscillatory axisymmetric mode to stationary columnar vortices with axis 
parallel to the cylindrical axis, i.e. kc = 0, nc 	= 0, ωc = 0. The threshold of this mode strongly decreases with the electric 
potential, but the azimuthal wavenumber is constant with respect to V E . For V E = V ∗∗

E = 3800, the columnar vortex mode 
disappears and the critical mode is formed of inclined stationary vortices corresponding to the electric mode obtained in 
zero-gravity conditions [2]. The axial wavenumber increases with V E before it saturates, while the azimuthal wavenumber 
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Fig. 2. Behavior of (a) the critical Grashof number, (b) the critical axial wavenumber, (c) the azimuthal wavenumber, (d) the critical total wavenumber, and 
(e) the critical frequency with the dimensionless electric potential.

is constant. For V E > V ∗∗
E , the critical Grashof number decreases and tends to zero for large values, i.e. V E >> V ∗∗

E . In this 
flow, there exist two codimension-2 points: the point V ∗

E , Gr∗ separating the thermal mode and the columnar vortex mode 
and the point V ∗∗

E , Gr∗∗ separating the columnar vortex mode and the electric mode. The thermal modes are due to the 
Archimedean buoyancy, while the electric modes are generated by the dielectrophoretic buoyancy. The columnar modes are 
the result of the interplay between the Archimedean and the dielectrophoretic buoyancies.

3. Experiment

3.1. Parabolic flight campaign

The parabolic flight is a cheap way to create a microgravity condition on Earth and it gives us the opportunity to 
investigate the fluid behavior in three different gravity conditions. Initially the plane flies at a constant altitude and velocity, 
it experiences a vertical gravity intensity of 1 g . The plane is then accelerated and pulled up during 20 s and the vertical 
gravity intensity increases up to 1.8 g . At the end of this phase, the planes’ nose is about 47◦ to the horizon. Then the 
engines are throttled and the plane stops to accelerate. The plane follows a parabolic trajectory to hold the microgravity 
phase, which lasts about 22 s. After the microgravity phase, a second hypergravity phase up to 1.8 g is experienced and the 
plane goes back to a steady, horizontal flight. The quality of the microgravity phase is about 10−2 g , which is sufficiently 
small to assume a purely radial gravity in the experiment. However, the duration of this phase remains too short for getting 
a steady convective state.

3.2. Experimental setup

The experiment cell consists of two concentric cylinders: the radius of the inner one is R1 = 5.1 mm and that of the 
outer one is R2 = 10.2 mm, the gap width is d = 5.1 mm and its length is L = 100 mm (Fig. 1). Thus, the radius ratio is 
η = 0.5, and the aspect ratio is � = 19.6. The properties of the working fluid (silicone oil Wacker AK5) inside the cylindrical 
annulus are given in Table 1. So the viscous diffusion is τν = 5.2 s, and the thermal diffusion time is τκ = Prτν = 336 s.

The inner cylinder is made of aluminum oxide (Al2O3) and coated with titanium nitride (TiN) to create a conductive 
layer. The applied ac-peak voltage is V peak (V 0 = √

2 V peak/2) with a frequency of 200 Hz corresponding to a period of 
T = 5 × 10−3 s, which is very small compared to the viscous diffusion time. Table 2 gives the correspondence between the 
applied electric tension V peak and the dimensionless electric potential V E . A heating cartridge with a temperature sensor is 
located inside the inner cylinder. The outer cylinder, made of aluminum (AlMgSi0.5) is connected to the ground potential 
and is cooled by a cooling fluid loop, which also uses AK5. The top and bottom lids are made of polymethylmethacrylate 



16 A. Meyer et al. / C. R. Mecanique 345 (2017) 11–20
Table 1
Properties of silicone oil AK5: εr = ε2/ε0 is the relative electric permittivity, ε0 is the permittivity of the vacuum. 
Property data are given by the manufacturer and have uncertainties, e.g., 10% for the kinematic viscosity.

ν (10−6 m2/s) ρ (kg/m3) α (10−3 K−1) εr e (10−3 K−1) Pr α/e

5.0 920 1.08 2.70 1.07 64.6 1.01

Table 2
The electrical dimensionless potential corresponding to different voltages V peak imposed at the inner cylinder.

4 kV 5 kV 6 kV 7 kV 8 kV 9 kV

V E 732 916 1099 1283 1466 1649

Fig. 3. The shadow image of the base flow in the vertical cell without applied electric field and with �T ≈ 10 K for (a) G = 1 g , (b) G = 1.8 g and (c) G = 0. 
These images have the same color scale.

(PMMA) to ensure thermal and electrical insulation. Since the inner cylinder is thin (1.85 mm) and has a good thermal 
conductivity, we considered that the temperature measured by the heating cartridge corresponds to the temperature of the 
inner cylinder. With this heating and cooling system it is possible to generate a temperature difference between the inner 
and outer cylinder of up to 12 K.

To visualize the flow pattern, a shadowgraph method was used. The cell is illuminated from the bottom by a LED with 
telecentric lighting. The light goes through the liquid in the cell and is refracted because of density gradients inside the 
fluid. When the temperature changes, the density and the refractive index of the fluid change, and the flow also changes. 
The image of the flow changes is captured with a camera, which is focused on the top of the cell. To enhance the contrast, 
a false color representation is used. Since the refractions are integrated over the height of the cell and the cell has a large 
height, it is impossible to make calculations with the obtained data. The shadowgraph method gives only the qualitative 
behavior of the convective flow.

In the base state of the flow when the heating system is active, but there is no additional force field other than the 
Earth gravitation; it can be expected that there is an upward flow at the heated inner cylinder and a downward flow at 
the cooled outer cylinder. Such a structure can be seen with this visualization method (Fig. 3a, b). The comparison of the 
flows between the gravity (1 g) and the hypergravity (1.8 g) phases with active heating, in the absence of the electric field, 
shows nearly no difference between the states (Fig. 3), whereas in the (μg-) phase (Fig. 3c), no flows can be observed. 
This observation corresponds to the almost homogeneous vertical temperature distribution during the last seconds of the 
μg-phase shown in Fig. 4.

3.3. Flow patterns

The temperature difference between both cylinders for all experimental runs was fixed at ∼10 K and the voltage was 
varied, but active the whole time. The temperature is measured on six positions at the inner surface of the outer cylinder 
(Fig. 4). The temperature sensor at the top of the cell (TS5) gives a temperature of about 22 ◦C, while the sensor at the 
bottom (TS0) of the cell gives the lowest value. The microgravity phase disrupts this natural thermal convection.

The application of the electric field modifies the structures in the flow (Fig. 5). While in 1g-condition, vortices start to 
form at V 0  4.24 kV, they are observed at V 0 = 3.54 kV under microgravity conditions. Due to the limited duration of 
the microgravity phase (�tμg ∼ 22 s), the flow does not have enough time to fully develop. Increasing the strength of the 
electric field increases the growth rate of vortices, i.e. it decreases the time needed for them to develop and their intensity. 
(Fig. 6). The comparison of the results from 1 g and μ g conditions at the same potential V 0 = 6.36 kV shows that there is 
still a big influence of the Earth gravity (Fig. 6).

Fig. 6 shows images of the perturbed state at different steps of a parabola where V 0 = 6.36 kV. The patterns observed 
at the end of the normal gravity phase (Fig. 6a) and at the end of the hypergravity phase (Fig. 6b) are similar. The shape of 



A. Meyer et al. / C. R. Mecanique 345 (2017) 11–20 17
Fig. 4. Vertical temperature distribution at the outer cylinder over one parabola without electric field. The solid line represents the gravity variation in time 
along the parabolic flight for 110 s.

Table 3
Critical dimensionless electric potential for the different states of gravity.

μg 1 g

V Ec Theory 473 479
Experiment 732 < V Ec < 916 916 < V Ec < 1099

the unstable mode is the same for both cases. The pattern observed at the first moment of the microgravity phase (Fig. 6c) 
is a consequence of the characteristic flow of the previous hypergravity phase. This initial condition progressively disappears 
during the first 10 s of the microgravity phase. After about 10 s of this phase, the perturbed flow related to the radial 
artificial gravity starts to grow.

4. Discussion

The linear stability analysis of the conduction regime, valid for an infinite-length cylinder, shows that, in a fluid with Pr =
64.6 inside a cylindrical annulus, the threshold is Grc = 775 and the critical thermal mode appears in form of oscillatory 
axisymmetric vortices. The temperature difference �T = 10 K with the chosen working fluid corresponds to Gr = 562 < Grc
for G = g and to Gr = 1011.6 > Grc for G = 1.8 g . Thus, in the g-phase, no instability would be expected, while it is 
expected for G = 1.8 g . In the microgravity phase, G = 0.01 g corresponds to Gr = 5.6 for our experimental setup. So when 
there is no applied electric potential (ge = 0), the instability of the flow is expected only in the hypergravity phase. The 
visualization by the shadowgraph technique does not allow for observation of axisymmetric patterns. In our experiment, 
the electric potential was always applied so that the effective gravity acting on the fluid had an electric component. If any 
structure is observed by shadowgraph, it should be either helicoidal or columnar vortices. Table 3 compares the critical 
values of the dimensionless electric potential for different states of the gravity from the linear stability analysis and the 
experiment.

However, the aspect ratio used in the experiment is relatively small to neglect the boundary layers from the endplates 
and to ensure the conduction regime of the base state which was assumed in the linear stability analysis. In fact, according 
de Vahl Davis and Thomas [11], the conduction regime is realized if Gr < 400�/Pr and the transition regime occurs when 
400�/Pr < Gr < 3000�/Pr; for Gr > 3000�/Pr, the flow is in the boundary layer regime. For our experimental conditions, 
the conduction regime exists for Gr < 121.4, the transition regime exists for 121.4 < Gr < 910.2, and the boundary regime 
for Gr > 910.2. Therefore, the comparison with the linear stability results is realistic only in the microgravity phase. More-
over, the time variation of the total gravity G was neglected. These comments appeal for direct numerical simulation of the 
flow equations to take into consideration the realistic base state and the time dependence of the total gravity.

The experiments were performed using the shadowgraph technique to visualize the flow patterns integrated over the 
whole height of the fluid. This technique does not allow us to obtain quantitative data. We have tested the back-oriented-
schlieren (BOS) technique, but it was not successful along the parabolic flight experiment. For the next parabolic flight 
campaign, a new set of experimental cells is under preparation with small height to face some of the problems of BOS.

5. Conclusion

The present work addresses the stability of a dielectric liquid with a high Prandtl number under a combined action of 
the Earth gravity and of an electric gravity. A theoretical analysis show that the resulting modes are either columnar or 
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Fig. 5. Patterns of the light intensity distribution diminished by the one of the basic state of the corresponding gravity phase (Fig. 3) for different gravity 
phases and different applied electric tension with �T ≈ 10 K. A disruption of the base flow occurs between 3.54 kV and 4.24 kV in 1 g , while it is earlier 
in microgravity.

electric modes. Experiments performed in a parabolic flight confirm the existence of non-axisymmetric modes. A further 
investigation is needed for a better description of this complex problem with realistic conditions, in particular the time 
dependence of gravity during the different phases of the parabolic flight.
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