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Starting from the 3D Signorini problem for a family of elastic elliptic shells, we justify that 
the obstacle problem of an elastic elliptic membrane is the right approximation posed in a 
2D domain, when the thickness tends to zero. Specifically, we provide convergence results 
in the scaled and de-scaled formulations.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In the last decade, asymptotic methods have been used to derive and justify contact models for beams and plates and, 
recently, in [1,2] the authors obtained the first results in the justification of obstacle problems as the two-dimensional 
limit of unilateral frictionless contact problems for the particular case of shallow shells. Additionally, the rigid foundation/
obstacle was assumed to be a plane. More recently, in [3], we developed the formal asymptotic analysis of the problem for 
general elastic shells in frictionless contact with a rigid foundation, without the previously indicated restrictions. From the 
work in [3], a classification of different limit problems arose, depending upon the geometry of the middle surface and the 
region where the Dirichlet condition was placed. This classification is the natural extension of what was found by Ciarlet, 
Sánchez-Palencia et al. in their works for the case without contact, namely, membranes and flexural shells (see [4] and 
references therein). This Note aims at justifying rigorously that the obstacle problem of an elastic elliptic membrane is the 
right two-dimensional approximation of the three-dimensional Signorini problem for a family of elastic elliptic shells, when 
the thickness tends to zero.

2. The three-dimensional Signorini contact problem for elastic shells: variational formulation in curvilinear coordinates

Let ω be a domain of R2, with a Lipschitz-continuous boundary γ = ∂ω. Let y = (yα) be a generic point of its closure 
ω̄ and let ∂α denote the partial derivative with respect to yα . Let θ ∈ C2(ω̄; R3) be an injective mapping such that the two 
vectors aα(y) := ∂αθ(y) are linearly independent. These vectors form the covariant basis of the tangent plane to the surface 
S := θ(ω̄) at the point θ(y). We can consider the two vectors aα(y) of the same tangent plane defined by the relations 
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aα(y) · aβ(y) = δα
β , which constitute its contravariant basis. We define a3(y) = a3(y) := a1(y)∧a2(y)

|a1(y)∧a2(y)| the unit normal vector 
to S at the point θ(y), where ∧ denotes the vector product in R3. We can define the first fundamental form, given as 
the metric tensor, in covariant or contravariant components, respectively, by aαβ := aα · aβ , aαβ := aα · aβ . Here and in 
what follows, Greek indices take their values in the set {1, 2}, whereas Latin indices do it in the set {1, 2, 3}. The second 
fundamental form, given as the curvature tensor, in covariant or mixed components, respectively, is given by bαβ := a3 ·∂βaα , 
bβ
α := aβσ · bσα , and the Christoffel symbols of the surface S as 	σ

αβ := aσ · ∂βaα . The area element along S is 
√

a dy where 
a := det(aαβ).

We define the three-dimensional domain 
ε := ω × (−ε, ε) and its boundary 	ε = ∂
ε . We also define the following 
parts of the boundary, 	ε+ := ω × {ε}, 	ε

C := ω × {−ε}, 	ε
0 := γ × [−ε, ε]. Let xε = (xε

i ) be a generic point of 
̄ε and let ∂ε
i

denote the partial derivative with respect to xε
i . Note that xε

α = yα and ∂ε
α = ∂α . Let � : 
̄ε → R

3 be the mapping defined 
by

�(xε) := θ(y) + xε
3a3(y) ∀xε = (y, xε

3) = (y1, y2, xε
3) ∈ 
̄ε (1)

In [4, Th. 3.1-1], it is shown that if the injective mapping θ : ω̄ → R
3 is smooth enough, the mapping � : 
̄ε → R

3 is 
also injective for 0 < ε < ε0 small enough and the vectors gε

i (xε) := ∂ε
i �(xε) are linearly independent. Therefore, the 

three vectors gε
i (xε) form the covariant basis at the point �(xε), and g i,ε(xε), defined by the relations g i,ε · gε

j = δi
j , form 

the contravariant basis at the point �(xε). The covariant and contravariant components of the metric tensor are defined, 
respectively, as gε

i j := gε
i · gε

j , gij,ε := g i,ε · g j,ε , and Christoffel symbols as 	p,ε
i j := g p,ε · ∂ε

i gε
j . The volume element in 

the set �(
̄ε) is 
√

gε dxε and the surface element in �(	ε) is 
√

gε d	ε , where gε := det(gε
i j). Let nε(xε) denote the 

unit outward normal vector on xε ∈ 	ε and n̂ε
(x̂ε

) the unit outward normal vector on x̂ε = �(xε) ∈ �(	ε). It is verified 
that (see, [5, p. 41]) n̂ε

(x̂ε
) = Cof(∇�(xε))nε(xε)

| Cof(∇�(xε))nε(xε)| . We are particularly interested in the normal components of vectors on 
�(	ε

C). Recall that on 	ε
C , it is verified that nε = (0, 0, −1). Also, note that from (1), we deduce that gε

3 = g3,ε = a3, and 
therefore g33,ε = |g3,ε| = 1. These arguments imply that, in particular, n̂ε

(x̂ε
) = −g3(xε) = −a3(y), where x̂ε = �(xε) and 

xε = (y, −ε) ∈ 	ε
C . Now, for a field v̂ε defined in �(
̄ε), where the Cartesian basis is denoted by {êi}3

i=1, we define its 
covariant curvilinear coordinates (vε

i ) in 
̄ε as v̂ε
(x̂ε

) = v̂ε
i (x̂ε

)êi =: vε
i (xε)g i,ε(xε) with x̂ε = �(xε). Therefore, on 	ε

C , we 
have:

v̂n := v̂ε · n̂ε = (v̂ε
i n̂i,ε) = (v̂ε

i êi
) · (−g3) = (vε

i g i,ε) · (−g3) = −vε
3

Also, since vε
i ni,ε = −vε

3 on 	ε
C , it is verified in particular that v̂n = (v̂ε

i n̂i,ε) = vε
i ni,ε = −vε

3.
We assume that �(
̄ε) is a natural state of a shell made of an elastic material, which is homogeneous and isotropic, so 

that the material is characterized by its Lamé coefficients λ ≥ 0, μ > 0. We assume that these constants are independent 
of ε. We also assume that the shell is subjected to a boundary condition of place; in particular, the displacements field 
vanishes on �(	ε

0), this is, the whole lateral face of the shell. Further, under the effect of applied volume forces of density 
f̂
ε = ( f̂ i,ε) acting in �(
ε) and tractions of density ĥ

ε = (ĥi,ε) acting upon �(	ε+), the elastic shell is deformed and may 
enter in contact with a rigid foundation, which, initially, is at a known distance sε measured along the direction of n̂ε on 
�(	ε

C). For simplicity, we take sε = 0 in the following.
We deduce that the unilateral contact condition v̂n ≤ 0 in the well-known definition of the set of admissible dis-

placements in Cartesian coordinates is equivalent to vε
3 ≥ 0 in curvilinear coordinates. Therefore, let us define the set of 

admissible unknowns as follows:

K (
ε) = {vε = (vε
i ) ∈ V (
ε); vε

3 ≥ 0 on 	ε
C}

where V (
ε) = {vε = (vε
i ) ∈ [H1(
ε)]3; vε = 0 on 	ε

0} is a real Hilbert space with the induced inner product of [H1(
ε)]3. 
The corresponding norm is denoted by || · ||1,
ε . Note that K (
ε) is a non-empty, closed and convex subset of V (
ε). 
We now give in contravariant components the volume forces f i,ε(xε)gε

i (xε), and tractions hi,ε(xε)gε
i (xε)

√
gε(xε)d	ε . With 

these definitions, it is straightforward to derive the variational formulation of the Signorini problem in curvilinear coordi-
nates:

Problem 2.1. Find uε = (uε
i ) : 
ε → R

3 such that

uε ∈ K (
ε),

∫

ε

Aijkl,εeε
k||l(uε)(eε

i|| j(vε) − eε
i|| j(uε))

√
gε dxε

≥
∫

ε

f i,ε(vε
i − uε

i )
√

gε dxε +
∫
	ε+

hi,ε(vε
i − uε

i )
√

gε d	ε ∀vε ∈ K (
ε)
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where the functions Aijkl,ε = A jikl,ε = Akli j,ε ∈ C1(
̄ε), defined by Aijkl,ε := λgij,ε gkl,ε + μ(gik,ε g jl,ε + gil,ε g jk,ε) represent 
the contravariant components of the three-dimensional elasticity tensor, and the functions eε

i|| j(vε) = eε
j||i(vε) ∈ L2(
ε) are 

defined for all vε ∈ [H1(
ε)]3 by eε
i|| j(vε) := 1

2 (∂ε
j vε

i + ∂ε
i vε

j ) − 	
p,ε
i j vε

p , and ∂ε
i denotes the partial derivative with respect 

to xε
i . In [4, Th. 1.8-1] it is shown the uniform ellipticity of Aijkl,ε for ε > 0 small enough. Moreover, in [4, Th. 1.7-4] a Korn 

inequality is provided. We can cast Problem 2.1 in the framework of the elliptic variational inequalities theory and conclude 
the existence and uniqueness of a solution uε ∈ K (
ε).

3. The scaled three-dimensional shell Signorini contact problem

For convenience, we consider a reference domain independent of the small parameter ε. Hence, let us define the three-
dimensional domain 
 := ω × (−1, 1) and its boundary 	 = ∂
. We also define the following parts of the boundary, 
	+ := ω × {1}, 	C := ω × {−1}, 	0 := γ × [−1, 1]. Let x = (x1, x2, x3) be a generic point in 
̄ and consider the notation 
∂i for the partial derivative with respect to xi . We define the projection map πε : 
̄ −→ 
̄ε , such that πε(x) = xε = (xε

i ) =
(xε

1, xε
2, x

ε
3) = (x1, x2, εx3) ∈ 
̄ε , hence, ∂ε

α = ∂α and ∂ε
3 = 1

ε ∂3. We consider the scaled unknown and the scaled vector fields 
uε

i (xε) =: ui(ε)(x) and vε
i (xε) =: vi(x) for all x ∈ 
̄, xε = πε(x) ∈ 
̄ε . Also, we define the scaled versions of other functions: 

	
p
i j(ε)(x) := 	

p,ε
i j (xε), g(ε)(x) := gε(xε), Aijkl(ε)(x) := Aijkl,ε(xε) and the scaled linearized strains (ei|| j(ε)(v)) ∈ L2(
), which 

we also denote as (ei|| j(ε; v)), defined by

eα||β(ε; v) := 1

2
(∂β vα + ∂α vβ) − 	

p
αβ(ε)v p

eα||3(ε; v) := 1

2
(

1

ε
∂3 vα + ∂α v3) − 	

p
α3(ε)v p, e3||3(ε; v) := 1

ε
∂3 v3

Note that with these definitions, it is verified that eε
i|| j(vε)(πε(x)) = ei|| j(ε; v)(x) for all x ∈ 
. In [4, Th. 3.3-2], it is shown 

the uniform positive definiteness of Aijkl(ε) with respect to x ∈ 
̄ and ε, 0 < ε ≤ ε0. Moreover, the limits Aijkl(0) are 
found and shown independent of the transversal variable x3. Further, in [4, Th. 3.3-1], the limits of the scaled Christoffel 
symbols are given and shown independent of x3 as well. Besides, g(ε) = a + O (ε). Following the insight given by the formal 
asymptotic analysis developed in [3], we define f ε = ( f i,ε)(xε) =: f (ε) = ( f i)(x), independent of ε and hε = (hi,ε)(xε) =:
h(ε) = ε(hi(ε))(x). The scaled variational problem can then be written as follows.

Problem 3.1. Find u(ε) : 
 −→R
3 such that

u(ε) ∈ K (
) := {v = (vi) ∈ V (
); v3 ≥ 0 on 	C}∫



Aijkl(ε)ek||l(ε; u(ε))(ei|| j(ε; v) − ei|| j(ε; u(ε)))
√

g(ε) dx

≥
∫



f i(vi − ui(ε))
√

g(ε) dx +
∫
	+

hi(vi − ui(ε))
√

g(ε) d	 ∀v ∈ K (
)

where V (
) = {v = (vi) ∈ [H1(
)]3; v = 0 on 	0} is a Hilbert space.

4. Asymptotic analysis. Convergence results for the elliptic case

We recall the two-dimensional variational formulation of the obstacle problem for an elastic membrane shell, as was 
derived from the formal asymptotic study made in [3]. For the case of elliptic membranes, the right space where the 
problem is well posed is V M(ω) := H1

0(ω) × H1
0(ω) × L2(ω). Therefore, we have the following.

Problem 4.1. Find ξ : ω −→ R
3 such that

ξ ∈ K M(ω) := {η = (ηi) ∈ V M(ω); η3 ≥ 0 in ω}∫
ω

aαβστ γστ (ξ)γαβ(η − ξ)
√

a dy ≥
∫
ω

pi(ηi − ξi)
√

a dy ∀η = (ηi) ∈ K (ω)

where, pi := ∫ 1
−1 f i dx3 +hi+ , with hi+ = hi(·, +1). Also, aαβστ := 4λμ

λ+2μaαβaστ +2μ(aασ aβτ +aατ aβσ ) is the two-dimensional 
fourth-order elasticity tensor, and given η = (ηi) ∈ [H1(ω)]3, then γαβ(η) := 1

2 (∂βηα + ∂αηβ) − 	σ
αβησ − bαβη3 denotes the 

covariant components of the linearized change of metric tensor associated with a displacement field ηi ai of the surface S .
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For this type of membranes, it is verified the following two-dimensional Korn inequality (see, for example, [4, Th. 2.7-3]): 
there exists a constant cM = cM(ω, θ) such that(∑

α

||ηα ||21,ω + ||η3||20,ω

)1/2

≤ cM

⎛
⎝∑

α,β

||γαβ(η)||20,ω

⎞
⎠

1/2

∀η ∈ V M(ω) (2)

As a consequence, Problem 4.1 is well posed and it has existence and uniqueness of solution (see [3]). Now, we present 
here the main result of this paper, namely that the solution u(ε) of the scaled three-dimensional Problem 3.1 converges, as 
ε tends to zero, towards a limit u independent of the transversal variable. Moreover, this limit can be identified with the 
solution ξ of Problem 4.1, posed over the set ω.

Theorem 4.2. Assume that θ ∈ C3(ω̄; R3). Consider a family of elastic elliptic shells with thickness 2ε approaching zero and with each 
having the same elliptic middle surface S = θ(ω̄). For all ε, 0 < ε ≤ ε0 , let u(ε) be the solution to the associated three-dimensional 
scaled Problem 3.1. Then, there exist functions uα ∈ H1(
) satisfying uα = 0 on γ × [−1, 1] and a function u3 ∈ L2(
), such that

(1) uα(ε) → uα in H1(
) and u3(ε) → u3 in L2(
) when ε → 0,
(2) u := (ui) is independent of the transversal variable x3.

Furthermore, the average ū := 1

2

1∫
−1

u dx3 verifies Problem 4.1.

The proof of this result will be published in a forthcoming paper [6]. In this Note, we describe the main steps of it for 
the case when no traction is applied (the inclusion of traction needs the definition of a trace in X(
) := {v ∈ L2(
); ∂3 v ∈
L2(
)}).

(i) We show that the norms |ei|| j(ε)|0,
, ||uα(ε)||1,
 , and |u3(ε)|0,
 are bounded independently of ε, 0 < ε ≤ ε1 < ε0 . Conse-
quently, there exists a subsequence, also denoted (u(ε))ε>0 , and functions ei|| j ∈ L2(
), uα ∈ H1(
), satisfying uα = 0 on 	0 , 
and u3 ∈ L2(
), such that ei|| j(ε) ⇀ ei|| j in L2(
), uα(ε) ⇀ uα in H1(
), hence uα(ε) → uα in L2(
), and u3(ε) ⇀ u3 in 
L2(
):
to do this, we take v = 2u(ε) and v = 0 in Problem 3.1. Then we combine the use of a convenient Korn inequality 
(see [4, Th. 4.3-1]), only valid for the elliptic shells case, the ellipticity of Aijkl(ε) and Cauchy–Schwartz inequalities.

(ii) The limits of the scaled unknown, ui , found in step (i) are independent of x3:
to do this, we combine the use of the definitions of ei||3(ε) with the convergences of the various scaled functions and 
the results in the previous step.

(iii) The limits ei|| j found in (i) are independent of the variable x3. Moreover, they are related with the limits u := (ui) by

eα||β = γαβ(u) := 1

2
(∂αuβ + ∂βuα) − 	σ

αβuσ − bαβu3, eα||3 = 0

e3||3 = − λ

λ + 2μ
aαβeα||β (3)

We take particular cases of test functions v ∈ K (
) in Problem 3.1, expand the resulting terms and use the results of 
the calculus of variations. It is important to notice that to find (3), from inequalities, the following abstract lemma had 
to be derived (see also [3]).

Lemma 4.3. Let ω be a domain in R2 with boundary γ , let 
 = ω × (−1, 1), and let g ∈ Lp(
), p > 1, be a function such that∫



g∂3 v dx ≥ 0, for all v ∈ C∞(
̄) with v = 0 on γ × [−1,1]

and v ≥ 0 in 
. Then g = 0 a.e. in 
.

(iv) The function ū = (ūi) satisfies the two-dimensional variational Problem 4.1 with pi := ∫ 1
−1 f i dx3 . In particular, since the 

solution to this problem is unique, the convergences on (i) are verified for all the family (u(ε))ε>0 . We also show that 
ū = (ūi) ∈ K M(ω).
We take v independent of x3 and pass to the limit in Problem 3.1 by having in mind the results of the previous steps. 
Besides, the property that

lim inf
ε→0

∫



Aijkl(ε)ek||l(ε)ei|| j(ε)
√

g(ε) dx ≥
∫



Aijkl(0)ek||lei|| j
√

a dx

is needed.
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For the second part, we have to show that since u3(ε) ≥ 0 a.e. on 	C, u3(ε) ⇀ u3 in L2(
) and ∂3u3(ε) → 0 in L2(
), 
then u3 ≥ 0 a.e. in 
.

(v) The weak convergences ei|| j(ε) ⇀ ei|| j in L2(
) are, in fact, strong.
To do this, we define the quantity

�(ε) :=
∫



Aijkl(ε)(ek||l(ε) − ek||l)(ei|| j(ε) − ei|| j)
√

g(ε) dx

=
∫



f iui(ε)
√

g(ε) dx −
∫



Aijkl(ε)(2ek||l(ε) − ek||l)ei|| j

√
g(ε) dx

and show that �(ε) ≥ C
∑

i, j |ei|| j(ε) − ei|| j|20,
 , C > 0, and that limε→0 �(ε) = 0.
(vi) The family of averages (ū(ε))ε>0 converges strongly to ū (when ε → 0) in V M(ω), that is,

ūα(ε) → ūα in H1(ω), ū3(ε) → ū3 in L2(ω)

We combine steps (iii) and (v) with [4, Th. 4.2-1] (part(d)) to show that γαβ(ū(ε)) → γαβ(ū), and then use (2).
(vii) The convergence u3(ε) ⇀ u3 in L2(
) is, in fact, strong.

Since ∂3u3(ε) = εe3||3(ε) → 0 and since ū3(ε) → ū3 in L2(ω) (step (vi)), the conclusion follows from [4, Th. 4.2-1]
(part(c)).

(viii) The convergences uα(ε) → uα are strong in H1(
):
This part is based on the use of the classical Korn inequality in Cartesian coordinates in V (
) for u′(ε) =
(u1(ε), u2(ε), 0), u′ = (u1, u2, 0). We want to show that |ei j(u′(ε) − ei j(u′)|0,
 → 0. To do that we combine relations 
of ei j(u(ε)) with ei|| j(u(ε)) and a Lemma of J.-L. Lions.

5. Conclusions

It remains to prove a result analogous to the previous theorem, but in terms of de-scaled unknowns. The scalings in 
Section 3 suggest the de-scalings ξε

i (y) = ξi(y) for all y ∈ ω̄. The convergences uα(ε) → uα in H1(
) and u3(ε) → u3 in 
L2(
) from Theorem 4.2 and [4, Th. 4.2-1] together lead to the following convergences.

Theorem 5.1. Let uε = (uε
i ) ∈ K (
ε) and ξε = (ξε

i ) ∈ K M(ω) denote for each ε > 0 the solutions to the three-dimensional Prob-
lem 2.1 and the de-scaled version of two-dimensional Problem 4.1, respectively. Then we have that ξε

α = ξα , and thus ξε
αaα = ξαaα in 

H1(ω) for all ε > 0, and

1

2ε

ε∫
−ε

uε
α gα,ε dxε

3 → ξαaα in H1(ω) as ε → 0

Also, ξε
3 = ξ3 , and thus ξε

3 a3 = ξ3a3 in L2(ω) for all ε > 0 and

1

2ε

ε∫
−ε

uε
3 g3,ε dxε

3 → ξ3a3 in L2(ω) as ε → 0

As a conclusion, we have found and mathematically justified an obstacle model for elastic elliptic membranes. To this end, 
we used the insight provided by the asymptotic expansion method (presented in our previous work [3]) and we have 
justified this approach by obtaining convergence theorems. Let us notice that in the process we have shown that the limit 
of contact problems (with the conditions on the boundary) is an obstacle problem (with the conditions in the domain).
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