Homogenization of random attractors for reaction-diffusion systems ${ }^{\text {N/ }}$

Homogénéisation des attracteurs aléatoires pour les systèmes d'équations de réaction-diffusion

Kuanysh A. Bekmaganbetov ${ }^{\text {a }}$, Gregory A. Chechkin ${ }^{\text {b,*, }}$, Vladimir V. Chepyzhov ${ }^{\text {c,d }}$
${ }^{a}$ M.V. Lomonosov Moscow State University, Kazakhstan Branch, Kazhymukan st. 11, Astana, 010010, Kazakhstan
${ }^{\mathrm{b}}$ Department of Differential Equations, Faculty of Mechanics and Mathematics, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
${ }^{\text {c }}$ Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow 127994, Russia
${ }^{\text {d }}$ National Research University Higher School of Economics, Moscow 101000, Russia

ARTICLE INFO

Article history:

Received 10 October 2016
Accepted 24 October 2016
Available online 4 November 2016

Keywords:

Reaction-diffusion systems
Attractors
Homogenization
Random functions

Mots-clés :

Systèmes de réaction-diffusion
Attracteurs
Homogénéisation
Fonctions aléatoires

Abstract

We consider reaction-diffusion systems with randomly oscillating terms. We construct the deterministic homogenized reaction-diffusion system and prove that the trajectory attractors of the initial systems converge to the trajectory attractors of the homogenized systems. © 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

R É S U M É

Nous considérons les systèmes d'équations de réaction-diffusion avec termes aléatoirement oscillants. Nous construisons le système homogénéisé déterministe d'équations et prouvons que les attracteurs trajectoires des systèmes initiaux convergent vers les attracteurs trajectoires des systèmes d'équations homogénéisées.
© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In this paper, we study an asymptotic behavior of attractors of the reaction-diffusion systems with randomly oscillating terms. To study such a phenomenon, we apply the homogenization method (cf., for example, [1-7], for the random case

[^0]

Fig. 1. Thomas' cyclically symmetric attractor (Model: Clint Sprott) and a 4-spiral strange attractor exhibited by the modified Chua's circuit (Model: M.A. Aziz Alaoui).
cf., for instance, [8-11]), as well as a delicate analysis of trajectory and global attractors (see, for example, [12-14] and references therein), see Fig. 1.

In this paper, we prove that the trajectory attractor $\mathfrak{A}_{\varepsilon}$ of the autonomous reaction-diffusion system with a randomly oscillating term converges almost surely as $\varepsilon \rightarrow 0$ to the trajectory attractor $\overline{\mathfrak{A}}$ of the homogenized reaction-diffusion system in an appropriate functional space.

2. Homogenization

Assume that $(\Omega, \mathcal{B}, \mu)$ is a probability space, i.e. the set Ω is endowed with a σ-algebra \mathcal{B} of its subsets and a σ-additive nonnegative measure μ on \mathcal{B} such that $\mu(\Omega)=1$.

We consider the system of reaction-diffusion equations with randomly oscillating terms of the form

$$
\begin{equation*}
\partial_{t} u=a \Delta u-b\left(x, \frac{x}{\varepsilon}, \omega\right) f(u)+g\left(x, \frac{x}{\varepsilon}, \omega\right),\left.u\right|_{\partial D}=0 \tag{1}
\end{equation*}
$$

where $x \in D \Subset \mathbb{R}^{n}, u=\left(u^{1}, \ldots, u^{N}\right), f=\left(f^{1}, \ldots, f^{N}\right)$, and $g=\left(g^{1}, \ldots, g^{N}\right)$. Here a is an $N \times N$ matrix with positive symmetric part and $b(x, z, \omega) \in C\left(D \times \mathbb{R}^{N} \times \Omega\right)$ is a real positive function. The Laplace operator $\Delta:=\partial_{x_{1}}^{2}+\ldots+\partial_{x_{n}}^{2}$ acts in x-space.

We note that all the results can be extended to the systems with nonlinear terms of the form $\sum_{j=1}^{m} b_{j}\left(x, \frac{x}{\varepsilon}, \omega\right) f_{j}(u)$, where b_{j} are positively defined matrices and $f_{j}(u)$ are vector functions. For brevity, we consider the case $m=1$ and $b_{1}\left(x, \frac{x}{\varepsilon}, \omega\right)=b\left(x, \frac{x}{\varepsilon}, \omega\right) I$, where I is the identity matrix and b is a real function.

For the sake of simplicity, we assume that the vector function $f(v) \in C\left(\mathbb{R}^{N} ; \mathbb{R}^{N}\right)$ satisfies the following inequalities:

$$
\begin{equation*}
f(v) \cdot v \geq \gamma|v|^{p}-C,|f(v)| \leq C_{1}\left(|v|^{p-1}+1\right), p \geq 2 \tag{2}
\end{equation*}
$$

Notice that we do not assume that the function $f(v)$ satisfies the Lipschitz condition with respect to v.
Assume that $T_{\xi}, \xi \in \mathbb{R}^{n}$, is an ergodic dynamical system. The function $b\left(x, \frac{x}{\varepsilon}, \omega\right)$ and the vector function $g\left(x, \frac{x}{\varepsilon}, \omega\right)$ are statistically homogeneous, i.e. $b(x, \xi, \omega)=\mathbf{B}\left(x, T_{\xi} \omega\right)$ and $g(x, \xi, \omega)=\mathbf{G}\left(x, T_{\xi} \omega\right)$, where $\mathbf{B}: D \times \Omega \rightarrow \mathbb{R}$ and $\mathbf{G}: D \times \Omega \rightarrow \mathbb{R}^{N}$ are measurable.

We also assume that $b(x, z, \omega) \in C_{b}(\bar{D} \times \mathbb{R} \times \Omega)$ and

$$
\begin{equation*}
\beta_{1} \geq b(x, z, \omega) \geq \beta_{0}>0, \forall x \in D, z \in \mathbb{R}^{n}, \omega \in \Omega \tag{3}
\end{equation*}
$$

the function $b\left(x, \frac{x}{\varepsilon}, \omega\right)$ has the average $b^{\text {hom }}(x)=\mathbb{E}(\mathbf{B})(x)$ as $\varepsilon \rightarrow 0+$ in $L_{\infty, * w}(D)$, that is, almost surely

$$
\begin{equation*}
\int_{D} b\left(x, \frac{x}{\varepsilon}, \omega\right) \varphi(x) \mathrm{d} x \rightarrow \int_{D} b^{\text {hom }}(x) \varphi(x) \mathrm{d} x(\varepsilon \rightarrow 0+) \tag{4}
\end{equation*}
$$

for any function $\varphi \in L_{1}(D)$. For the vector function $g\left(x, \frac{x}{\varepsilon}, \omega\right)$, we assume that it has the average $g^{\text {hom }}(x)=\mathbb{E}(\mathbf{G})(x)$ in the space $V^{\prime}=\left(H^{-1}(D)\right)^{N}$:

$$
g\left(x, \frac{x}{\varepsilon}, \omega\right) \rightharpoonup g^{\text {hom }}(x)(\varepsilon \rightarrow 0+) \text { weakly in } V^{\prime}
$$

that is, almost surely

$$
\begin{equation*}
\left\langle g\left(x, \frac{x}{\varepsilon}, \omega\right), \varphi(x)\right\rangle \rightarrow\left\langle g^{\text {hom }}(x), \varphi(x)\right\rangle(\varepsilon \rightarrow 0+) \tag{5}
\end{equation*}
$$

for any $\varphi \in V=\left(H_{0}^{1}(D)\right)^{N}$. In particular, the following functions are available:

$$
g\left(x, \frac{x}{\varepsilon}, \omega\right)=g_{0}\left(x, \frac{x}{\varepsilon}, \omega\right)+\sum_{i=1}^{n} \partial_{x_{i}} g_{i}\left(x, \frac{x}{\varepsilon}, \omega\right)
$$

where the functions $g_{i}\left(x, \frac{x}{\varepsilon}, \omega\right)$ have the averages $g_{i}^{\text {hom }}(x) \in\left(L_{2}(D)\right)^{N}$ in $H=\left(L_{2}(D)\right)^{N}$ and almost surely

$$
\left\langle g_{i}\left(x, \frac{x}{\varepsilon}, \omega\right), \varphi(x)\right\rangle \rightarrow\left\langle g_{i}^{\text {hom }}(x), \varphi(x)\right\rangle(\varepsilon \rightarrow 0+) \forall \varphi \in H, i=1, \ldots, n
$$

We note that the H-norms of the functions $\partial_{x_{i}} g_{i}\left(x, \frac{x}{\varepsilon}, \omega\right)=g_{i x_{i}}\left(x, \frac{x}{\varepsilon}, \omega\right)+\frac{1}{\varepsilon} g_{i z_{i}}\left(x, \frac{x}{\varepsilon}, \omega\right)$ can tend to infinity as $\varepsilon \rightarrow 0+$. These functions are bounded in the space V^{\prime} only.

As in $[15,13]$ we study weak solutions (trajectories) of the system (1), that is, the functions $u(x, t) \in L_{\infty}^{\text {loc }}\left(\mathbb{R}_{+} ; H\right) \cap$ $L_{2}^{\text {loc }}\left(\mathbb{R}_{+} ; V\right) \cap L_{p}^{\text {loc }}\left(\mathbb{R}_{+} ;\left(L_{p}(D)\right)^{N}\right)$ that satisfy (1) in the sense of distributions of the space $D^{\prime}\left(\mathbb{R}_{+} ;\left(H^{-r}(D)\right)^{N}\right)$, where $r=\max \{1, n(1 / 2-1 / p)\}$ (the number r is defined by the corresponding Sobolev embedding theorem). For every $u_{0} \in H$, there exists at least one weak solution $u(x, t)$ of the system (1) such that $u(0)=u_{0}$ (see [12,15,13]). This solution is not necessarily unique because we do not assume the Lipschitz condition for $f(v)$ with respect to v. We denote by $\mathcal{K}_{\varepsilon}^{+}$the set of all weak solutions to the system (1).

Consider the translation semigroup $\{T(h)\}$ acting on the trajectory space $\mathcal{K}_{\varepsilon}^{+}$by the formula $T(h) u(x, t)=u(x, t+h)$ for $h \geq 0$.

We study the trajectory attractor $\mathfrak{A}_{\varepsilon}$ of the system (1), which, by definition, coincides with the global $\left(\mathcal{F}_{+}^{b}, \Theta_{+}^{\text {loc }}\right)$ attractor of the translation semigroup $\{T(h)\}$ acting on $\mathcal{K}_{\varepsilon}^{+}$(see [12-14]). Here we denote

$$
\begin{aligned}
& \Theta_{+}^{\mathrm{loc}}=L_{\infty, * w}^{\mathrm{loc}}\left(\mathbb{R}_{+} ; H\right) \cap L_{2, w}^{\mathrm{loc}}\left(\mathbb{R}_{+} ; V\right) \cap L_{p, w}^{\mathrm{loc}}\left(\mathbb{R}_{+} ;\left(L_{p}(D)\right)^{N}\right) \\
& \cap\left\{v \mid \partial_{t} v \in L_{q, w}^{\text {loc }}\left(\mathbb{R}_{+} ;\left(H^{-r}(D)\right)^{N}\right)\right\} \\
& \mathcal{F}_{+}^{b}=L_{\infty}^{b}\left(\mathbb{R}_{+} ; H\right) \cap L_{2}^{b}\left(\mathbb{R}_{+} ; V\right) \cap L_{p}^{b}\left(\mathbb{R}_{+} ;\left(L_{p}(D)\right)^{N}\right) \\
& \cap\left\{v \mid \partial_{t} v \in L_{q}^{b}\left(\mathbb{R}_{+} ;\left(H^{-r}(D)\right)^{N}\right)\right\}
\end{aligned}
$$

Recall that $\Theta_{+}^{\text {loc }}$ is the local weak topology, which is determined by the weak and $*$-weak convergence of sequences $\left\{v_{m}\right\}$ and $\left\{\partial_{t} v_{m}\right\}$ in the corresponding spaces. The trajectory space $\mathcal{K}_{\varepsilon}^{+}$is supplied with topology $\Theta_{+}^{\text {loc }}$. The Banach space \mathcal{F}_{+}^{b} is used to define bounded sets in $\mathcal{K}_{\varepsilon}^{+}$.

By $\mathcal{K}_{\varepsilon}$, we denote the kernel of the system (1) that is the set of all complete solutions (complete trajectories) $u(x, t)$ defined for all $t \in \mathbb{R}$ that are bounded in the space \mathcal{F}^{b}, where

$$
\begin{aligned}
\mathcal{F}^{b}=L_{\infty}^{b}(\mathbb{R} ; H) & \cap L_{2}^{b}(\mathbb{R} ; V) \cap L_{p}^{b}\left(\mathbb{R} ;\left(L_{p}(D)\right)^{N}\right) \cap \\
& \cap\left\{v \mid \partial_{t} v \in L_{q}^{b}\left(\mathbb{R} ;\left(H^{-r}(D)\right)^{N}\right)\right\}
\end{aligned}
$$

Proposition 2.1. Under conditions (2), (4), and (5), the system (1) has the trajectory attractors $\mathfrak{A}_{\varepsilon}$ in the topology $\Theta_{+}^{\text {loc }}$. The set $\mathfrak{A}_{\varepsilon}$ is almost surely uniformly (w.r.t. $\varepsilon \in(0,1)$) bounded in \mathcal{F}_{+}^{b} and compact in $\Theta_{+}^{\text {loc }}$. Moreover,

$$
\begin{equation*}
\mathfrak{A}_{\varepsilon}=\Pi_{+} \mathcal{K}_{\varepsilon} \tag{6}
\end{equation*}
$$

the kernel $\mathcal{K}_{\varepsilon}$ is non-empty, uniformly (w.r.t. $\varepsilon \in(0,1)$) bounded in \mathcal{F}^{b} and compact in the topology $\Theta^{\text {loc }}$, where

$$
\begin{aligned}
\Theta^{\mathrm{loc}}=L_{\infty, * w}^{\mathrm{loc}}(\mathbb{R} ; H) & \cap L_{2, w}^{\mathrm{loc}}(\mathbb{R} ; V) \cap L_{p, w}^{\mathrm{loc}}\left(\mathbb{R} ;\left(L_{p}(D)\right)^{N}\right) \cap \\
& \cap\left\{v \mid \partial_{t} v \in L_{q, w}^{\mathrm{loc}}\left(\mathbb{R} ;\left(H^{-r}(D)\right)^{N}\right)\right\}
\end{aligned}
$$

The proof of this proposition almost coincides with the proof given in [13] for a deterministic case.
Recall that $\Theta_{+}^{\text {loc }} \subset L_{2}^{\text {loc }}\left(\mathbb{R}_{+} ;\left(H^{1-\delta}(D)\right)^{N}\right), 0<\delta \leq 1$, and therefore the trajectory attractor $\mathfrak{A}_{\varepsilon}$ attracts bounded sets of trajectories of the system (1) in the local strong topology of the space $L_{2}^{\text {loc }}\left(\mathbb{R}_{+} ;\left(H^{1-\delta}(D)\right)^{N}\right)$.

Along with the random system (1), we consider the averaged deterministic system

$$
\begin{equation*}
\partial_{t} \bar{u}=a \Delta \bar{u}-b^{\mathrm{hom}}(x) f(\bar{u})+g^{\mathrm{hom}}(x),\left.\bar{u}\right|_{\partial D}=0 \tag{7}
\end{equation*}
$$

Clearly system (7) also has a trajectory attractor $\overline{\mathfrak{A}}$ in the trajectory space $\overline{\mathcal{K}}^{+}$corresponding to the system (7) and

$$
\overline{\mathfrak{A}}=\Pi_{+} \overline{\mathcal{K}}
$$

where $\overline{\mathcal{K}}$ is the kernel of system (7) in \mathcal{F}^{b}. The set $\overline{\mathfrak{A}}$ is bounded in \mathcal{F}_{+}^{b} and compact in $\Theta_{+}^{\text {loc }}$.
The following statement holds true.
Theorem 2.1. The following limit holds almost surely in the topology $\Theta_{+}^{\text {loc }}$

$$
\begin{equation*}
\mathfrak{A}_{\varepsilon} \rightarrow \overline{\mathfrak{A}} \text { as } \varepsilon \rightarrow 0+ \tag{8}
\end{equation*}
$$

Moreover, almost surely

$$
\begin{equation*}
\mathcal{K}_{\varepsilon} \rightarrow \overline{\mathcal{K}} \text { as } \varepsilon \rightarrow 0+\text { in } \Theta^{\mathrm{loc}} \tag{9}
\end{equation*}
$$

Proof. It is clear that (9) implies (8). Therefore it is sufficient to prove (9), that is, for every neighborhood $\mathcal{O}(\overline{\mathcal{K}})$ in $\Theta^{\text {loc }}$, there exists $\varepsilon_{1}=\varepsilon_{1}(\mathcal{O})>0$ such that almost surely

$$
\begin{equation*}
\mathcal{K}_{\varepsilon} \subset \mathcal{O}(\overline{\mathcal{K}}) \text { for } \varepsilon<\varepsilon_{1} \tag{10}
\end{equation*}
$$

Suppose that (10) is not true. Consider the corresponding subset $\Omega^{\prime} \subset \Omega$ with $\mu\left(\Omega^{\prime}\right)>0$ and (10) does not hold for all $\omega \in \Omega^{\prime}$. Then, for each $\omega \in \Omega^{\prime}$, there exists a neighborhood $\mathcal{O}^{\prime}(\overline{\mathcal{K}})$ in $\Theta^{\text {loc }}$, a sequence $\varepsilon_{n} \rightarrow 0+(n \rightarrow \infty)$, and a sequence $u_{\varepsilon_{n}}(\cdot)=u_{\varepsilon_{n}}(\omega, t) \in \mathcal{K}_{\varepsilon_{n}}$ such that

$$
\begin{equation*}
u_{\varepsilon_{n}} \notin \mathcal{O}^{\prime}(\overline{\mathcal{K}}) \text { for all } n \in \mathbb{N}, \omega \in \Omega^{\prime} \tag{11}
\end{equation*}
$$

For each $\omega \in \Omega^{\prime}$, the function $u_{\varepsilon_{n}}(t), t \in \mathbb{R}$ is the solution to the system

$$
\begin{equation*}
\partial_{t} u_{\varepsilon_{n}}=a \Delta u_{\varepsilon_{n}}-b\left(x, \frac{x}{\varepsilon_{n}}, \omega\right) f\left(u_{\varepsilon_{n}}\right)+g\left(x, \frac{x}{\varepsilon_{n}}, \omega\right),\left.u_{\varepsilon_{n}}\right|_{\partial D}=0 \tag{12}
\end{equation*}
$$

on the entire time axis $t \in \mathbb{R}$. Moreover, the sequence $\left\{u_{\varepsilon_{n}}(t)\right\}$ is bounded in \mathcal{F}^{b} for each $\omega \in \Omega^{\prime}$, that is,

$$
\begin{gather*}
\left\|u_{\varepsilon_{n}}\right\|_{\mathcal{F}^{b}}=\sup _{t \in \mathbb{R}}\left\|u_{\varepsilon_{n}}(t)\right\|_{H}+ \\
\sup _{t \in \mathbb{R}}\left(\int_{t}^{t+1}\left\|u_{\varepsilon_{n}}(s)\right\|_{V}^{2} \mathrm{~d} s\right)^{1 / 2}+\sup _{t \in \mathbb{R}}\left(\int_{t}^{t+1}\left\|u_{\varepsilon_{n}}(s)\right\|_{L_{p}}^{p} \mathrm{~d} s\right)^{1 / p}+ \tag{13}\\
\sup _{t \in \mathbb{R}}\left(\int_{t}^{t+1}\left\|\partial_{t} u_{\varepsilon_{n}}(s)\right\|_{H^{-r}}^{q} \mathrm{~d} s\right)^{1 / q} \leq C \text { for all } n \in \mathbb{N}
\end{gather*}
$$

Here, the constant C is independent of n. Hence there exists a subsequence $\left\{u_{\varepsilon_{n}^{\prime}}(t)\right\} \subset\left\{u_{\varepsilon_{n}}(t)\right\}$ that we label the same, such that

$$
\begin{equation*}
u_{\varepsilon_{n}}(t) \rightarrow \bar{u}(t) \text { as } n \rightarrow \infty \text { in } \Theta^{\mathrm{loc}} \tag{14}
\end{equation*}
$$

where $\bar{u}(\cdot) \in \mathcal{F}^{b}$ and $\bar{u}(t)$ satisfies (13) with the same constant C. In detail we have that $u_{\varepsilon_{n}}(t) \rightharpoonup \bar{u}(t)(n \rightarrow \infty)$ weakly in $L_{2, w}^{\text {loc }}(\mathbb{R} ; V)$, weakly in $L_{p, w}^{\text {loc }}\left(\mathbb{R} ;\left(L_{p}(D)\right)^{N}\right)$, *-weakly in $L_{\infty, * w}^{\text {loc }}\left(\mathbb{R}_{+} ; H\right)$ and $\partial_{t} u_{\varepsilon_{n}}(t) \rightharpoonup \partial_{t} \bar{u}(t)(n \rightarrow \infty)$ weakly in $L_{q, w}^{\text {loc }}\left(\mathbb{R} ;\left(H^{-r}(D)\right)^{N}\right)$. We claim that $\bar{u}(\cdot) \in \overline{\mathcal{K}}$. We have already proved that $\|\bar{u}\|_{\mathcal{F}^{b}} \leq C$. So we have to establish that $\bar{u}(t)$ is a weak solution to (7). Using (13) and (5), we obtain that

$$
\begin{equation*}
\partial_{t} u_{\varepsilon_{n}}-a \Delta u_{\varepsilon_{n}}-g\left(x, \frac{x}{\varepsilon_{n}}, \omega\right) \rightarrow \partial_{t} \bar{u}-a \Delta \bar{u}-g^{\text {hom }}(x) \text { as } n \rightarrow \infty \tag{15}
\end{equation*}
$$

in the space $D^{\prime}\left(\mathbb{R} ;\left(H^{-r}(D)\right)^{N}\right)$ because the derivative operators ∂_{t} and Δ are continuous in the space of distributions. Let us prove that

$$
\begin{equation*}
b\left(x, \frac{x}{\varepsilon_{n}}\right) f\left(u_{\varepsilon_{n}}\right) \rightharpoonup b^{\text {hom }}(x) f(\bar{u}) \text { as } n \rightarrow \infty \tag{16}
\end{equation*}
$$

weakly in $L_{q, w}^{\text {loc }}\left(\mathbb{R} ;\left(L_{q}(D)\right)^{N}\right)$. We fix an arbitrary number $M>0$. The sequence $\left\{u_{\varepsilon_{n}}(t)\right\}$ is bounded in $L_{p}(]-M, M\left[;\left(L_{p}(D)\right)^{N}\right)$ (see (13)). Hence by (2), the sequence $\left\{f\left(u_{\varepsilon_{n}}(t)\right)\right\}$ is bounded in $L_{q}(]-M, M\left[;\left(L_{q}(D)\right)^{N}\right)$. Since $\left\{u_{\varepsilon_{n}}(t)\right\}$ is bounded in $L_{2}(]-M, M\left[;\left(H_{0}^{1}(D)\right)^{N}\right)$ and $\left\{\partial_{t} u_{\varepsilon_{n}}(t)\right\}$ is bounded in $L_{q}(]-M, M\left[;\left(H^{-r}(D)\right)^{N}\right)$, we can assume that $u_{\varepsilon_{n}}(t) \rightarrow \bar{u}(t)$ as $n \rightarrow \infty$ strongly in $L_{2}(]-M, M\left[;\left(L_{2}(D)\right)^{N}\right)=L_{2}(D \times]-M, M[)^{N}$ and therefore

$$
\left.u_{\varepsilon_{n}}(x, t) \rightarrow \bar{u}(x, t) \text { as } n \rightarrow \infty \text { a.e. in }(x, t) \in D \times\right]-M, M[
$$

Since the function $f(v)$ is continuous with respect to $v \in \mathbb{R}^{N}$, we conclude that

$$
\begin{equation*}
\left.f\left(u_{\varepsilon_{n}}(x, t)\right) \rightarrow f(\bar{u}(x, t)) \text { as } n \rightarrow \infty \text { a.e. in }(x, t) \in D \times\right]-M, M[\tag{17}
\end{equation*}
$$

We have

$$
\begin{align*}
& b\left(x, \frac{x}{\varepsilon_{n}}, \omega\right) f\left(u_{\varepsilon_{n}}\right)-b^{\mathrm{hom}}(x) f(\bar{u})= \\
& b\left(x, \frac{x}{\varepsilon_{n}}, \omega\right)\left(f\left(u_{\varepsilon_{n}}\right)-f(\bar{u})\right)+\left(b\left(x, \frac{x}{\varepsilon_{n}}, \omega\right)-b^{\mathrm{hom}}(x)\right) f(\bar{u}) \tag{18}
\end{align*}
$$

Let us show that both summands in the right-hand side of (18) converge to zero as $n \rightarrow \infty$ weakly in $L_{q}(]-M, M\left[;\left(L_{q}(D)\right)^{N}\right)=\left(L_{q}(D \times]-M, M[)\right)^{N}$. The sequence $b\left(x, \frac{x}{\varepsilon_{n}}, \omega\right)\left(f\left(u_{\varepsilon_{n}}\right)-f(\bar{u})\right)$ tends to zero as $n \rightarrow \infty$ almost everywhere in $(x, t) \in D \times]-M, M\left[\right.$ (see (17)) and is bounded in the space $\left(L_{q}(D \times]-M, M[)\right)^{N}$ (see (3)). Therefore Lemma 1.3 from [16, Chapter 1, Section 1] implies that

$$
b\left(x, \frac{x}{\varepsilon_{n}}, \omega\right)\left(f\left(u_{\varepsilon_{n}}\right)-f(\bar{u})\right) \rightharpoonup 0 \text { as } n \rightarrow \infty
$$

weakly in $\left(L_{q}(D \times]-M, M[)\right)^{N}$. The sequence $\left(b\left(x, \frac{x}{\varepsilon_{n}}, \omega\right)-b^{\text {hom }}(x)\right) f(\bar{u})$ also approaches zero as $n \rightarrow \infty$ weakly in $\left(L_{q}(D \times]-M, M[)\right)^{N}$ because, by our assumption, $b\left(x, \frac{x}{\varepsilon_{n}}, \omega\right) \rightharpoonup b^{\text {hom }}(x)$ as $n \rightarrow \infty *$-weakly in the space $L_{\infty, * w}(]-M, M[$; $\left.L_{2}(D)\right)$ and $f(\bar{u}) \in\left(L_{q}(D \times]-M, M[)\right)^{N}$. We have proved (16). Using (15) and (16) we pass to the limit in the equation (12) as $n \rightarrow \infty$ in the space $D^{\prime}\left(\mathbb{R}_{+} ;\left(H^{-r}(D)\right)^{N}\right)$ and we obtain that the function $\bar{u}(x, t)$ satisfies the equation

$$
\partial_{t} \bar{u}=a \Delta \bar{u}-b^{\text {hom }}(x) f(\bar{u})+g^{\text {hom }}(x),\left.\bar{u}\right|_{\partial D}=0, t \in \mathbb{R}
$$

Consequently, $\bar{u} \in \overline{\mathcal{K}}$. We have proved above that $u_{\varepsilon_{n}}(t) \rightarrow \bar{u}(t)$ as $n \rightarrow \infty$ in $\Theta^{\text {loc }}$ for each $\omega \in \Omega^{\prime}$. The hypotheses $u_{\varepsilon_{n}}(t) \notin$ $\mathcal{O}^{\prime}(\overline{\mathcal{K}})$ implies that $\bar{u} \notin \mathcal{O}^{\prime}(\overline{\mathcal{K}})$ and moreover $\bar{u} \notin \overline{\mathcal{K}}$ for all $\omega \in \Omega^{\prime}$. We have arrived to the contradiction. The theorem is proved.

Corollary 2.2. For every $0<\delta \leq 1$ and for any $M>0$ almost surely

$$
\operatorname{dist}_{L_{2}\left([0, M] ; H^{1-\delta}\right)}\left(\Pi_{0, M} \mathfrak{A}_{\varepsilon}, \Pi_{0, M} \overline{\mathfrak{A}}\right) \rightarrow 0(\varepsilon \rightarrow 0+)
$$

Here $\operatorname{dist}_{\mathcal{M}}(X, Y):=\sup _{x \in X} \operatorname{dist}_{\mathcal{M}}(x, Y)$ denotes the Hausdorff semidistance from a set X to a set Y in a metric space \mathcal{M}.

Remark 2.1. The analogous theorem holds for random non-autonomous reaction-diffusion systems of the form (1) that contain the terms $b\left(x, \frac{t}{\varepsilon}, t, \omega\right)$ and $g\left(x, \frac{t}{\varepsilon}, t, \omega\right)$ having the uniform averages in time as $\varepsilon \rightarrow 0+$.

In conclusion, we briefly consider the reaction-diffusion systems for which the uniqueness theorem of the Cauchy problem takes place. It is sufficient to assume that the nonlinear term $f(u)$ in the equation (1) satisfies the condition

$$
\begin{equation*}
\left(f\left(v_{1}\right)-f\left(v_{2}\right), v_{1}-v_{2}\right) \geq-C_{2}\left|v_{1}-v_{2}\right|^{2} \text { for all } v_{1}, v_{2} \in \mathbb{R}^{N} \tag{19}
\end{equation*}
$$

where $C_{2} \geq 0$ (see [13]). In this case, the limit in (8) holds in a stronger topology

$$
\begin{aligned}
\Theta_{+}^{\mathrm{loc}, 1}=L_{\infty, * w}^{\mathrm{loc}}\left(\mathbb{R}_{+} ;\left(H_{0}^{1}(D)\right)^{N}\right) & \cap L_{2, w}^{\operatorname{loc}}\left(\mathbb{R}_{+} ;\left(H^{2}(D)\right)^{N}\right) \cap L_{p, w}^{\operatorname{loc}}\left(\mathbb{R}_{+} ;\left(L_{p}(D)\right)^{N}\right) \\
& \cap\left\{v \mid \partial_{t} v \in L_{q, w}^{\operatorname{loc}}\left(\mathbb{R}_{+} ;\left(L_{q}(D)\right)^{N}\right)\right\}
\end{aligned}
$$

In particular,

$$
\begin{align*}
\operatorname{dist}_{L_{2}\left([0, M] ; H^{2-\delta}\right)}\left(\Pi_{0, M} \mathfrak{A}_{\varepsilon}, \Pi_{0, M} \overline{\mathfrak{A}}\right) \rightarrow 0(\varepsilon \rightarrow 0+) \\
\operatorname{dist}_{C\left([0, M] ; H^{1-\delta}\right)}\left(\Pi_{0, M} \mathfrak{A}_{\varepsilon}, \Pi_{0, M} \overline{\mathfrak{A}}\right) \rightarrow 0(\varepsilon \rightarrow 0+) \forall M>0(0<\delta \leq 1) \tag{20}
\end{align*}
$$

In [15] and [13] it was proved that if (19) holds, then equations (1) and (7) generate the semigroups $\{S(t)\}$ and $\{\bar{S}(t)\}$ in $H=\left(L_{2}(D)\right)^{N}$, which have the global attractors $\mathcal{A}_{\varepsilon}$ and $\overline{\mathcal{A}}$ bounded in the space $\left(H_{0}^{1}(D)\right)^{N}$ (see also [12,14]). We clearly have:

$$
\mathcal{A}_{\varepsilon}=\left\{u(0) \mid u \in \mathfrak{A}_{\varepsilon}\right\}, \overline{\mathcal{A}}=\{u(0) \mid u \in \overline{\mathfrak{A}}\}
$$

Convergence (20) implies the following assertion.

Corollary 2.3. The following limit almost surely holds:

$$
\begin{equation*}
\left.\left.\operatorname{dist}_{H^{1-\delta}}\left(\mathcal{A}_{\varepsilon}, \overline{\mathcal{A}}\right) \rightarrow 0(\varepsilon \rightarrow 0+) \forall \delta \in\right] 0,1\right] \tag{21}
\end{equation*}
$$

References

[1] V.A. Marchenko, E.Ya. Khruslov, Boundary Value Problems in Domains with Fine-Grain Boundary, Naukova Dumka, Kiev, 1974 (in Russian).
[2] A. Bensoussan, J.-L. Lions, G. Papanicolau, Asymptotic Analysis for Periodic Structures, North-Holland, Amsterdam, 1978.
[3] N.S. Bakhvalov, G.P. Panasenko, Averaging Processes in Periodic Media, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1989.
[4] E. Sánchez-Palencia, Homogenization Techniques for Composite Media, Springer-Verlag, Berlin, etc., 1987.
[5] V.V. Jikov, S.M. Kozlov, O.A. Oleinik, Homogenization of Differential Operators and Integral Functionals, Springer-Verlag, Berlin, etc., 1994.
[6] V.A. Marchenko, E.Ya. Khruslov, Homogenization of Partial Differential Equations, Birkhäuser, Boston, MA, USA, 2006.
[7] G.A. Chechkin, A.L. Piatnitski, A.S. Shamaev, Homogenization, Methods and Applications, American Mathematical Society, Providence, RI, USA, 2007.
[8] G.A. Chechkin, T.P. Chechkina, C. D’Apice, U. De Maio, Homogenization in domains randomly perforated along the boundary, Discrete Contin. Dyn. Syst., Ser. B 12 (4) (2009) 713-730.
[9] Y. Amirat, O. Bodart, G.A. Chechkin, A.L. Piatnitski, Boundary homogenization in domains with randomly oscillating boundary, Stoch. Process. Appl. 121 (1) (2011) 1-23.
[10] G.A. Chechkin, C. D’Apice, U. De Maio, A.L. Piatnitski, On the rate of convergence of solutions in domain with random multilevel oscillating boundary, Asymptot. Anal. 87 (1-2) (2014) 1-28.
[11] G.A. Chechkin, T.P. Chechkina, T.S. Ratiu, M.S. Romanov, Nematodynamics and random homogenization, Appl. Anal. 95 (10) (2016) $2243-2253$.
[12] A.V. Babin, M.I. Vishik, Attractors of Evolution Equations, North-Holland, Amsterdam, 1992, Nauka, Moscow, 1989.
[13] V.V. Chepyzhov, M.I. Vishik, Attractors for Equations of Mathematical Physics, American Mathematical Soc., Providence, RI, USA, 2002.
[14] R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematics Series, vol. 68, Springer-Verlag, New York, 1988.
[15] V.V. Chepyzhov, M.I. Vishik, Trajectory attractors for reaction-diffusion systems, Topol. Methods Nonlinear Anal. 7 (1) (1996) 49-76.
[16] J.-L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, Dunod, Gauthier-Villars, Paris, 1969.

[^0]: th GAC and VVC were partially supported by RFBR grants 15-01-07920 and 14-01-00346. KAB was partially supported by the Committee of Science of the Ministry of Education and Science of the Republic of Kazakhstan (CS MES RK) no. 0816/GF4.

 * Corresponding author.

 E-mail addresses: bekmaganbetov-ka@yandex.ru (K.A. Bekmaganbetov), chechkin@mech.math.msu.su (G.A. Chechkin), chep@iitp.ru (V.V. Chepyzhov).
 http://dx.doi.org/10.1016/j.crme.2016.10.015
 1631-0721/© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

