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Boundary-layer solutions to Banks’ problem for the flow induced by power-law stretching 
of a plate are obtained for two generalizations that include arbitrary transverse plate 
shearing motion. In one extension an arbitrary transverse shearing motion is the product 
of the power-law stretching. In the other extension the streamwise stretching coordinate is 
added to an arbitrary transverse shearing and together raised to the power of stretching. 
In addition we find that Banks’ power law stretching may be accompanied by orthogonal 
power-law shear. In all cases, the original boundary-value problem of Banks [1] is 
recovered. Results are illustrated with velocity profiles both at the plate and at fixed height 
in the fluid above the plate.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Central to this work are the papers by Crane [2] and Banks [1]. Crane [2] reported an exact solution to the Navier–Stokes 
equations for the flow generated by a linearly-stretching surface beneath a quiescent fluid. Banks [1] found a family of 
solutions for power-law stretching of a surface in the context of the boundary-layer approximation.

Flows induced by flat impermeable surfaces executing both stretching and shearing motions are the focus of this study. 
The Cartesian coordinate system (x, y, z) is used with corresponding velocities (u, v, w). Here x is the streamwise direction, 
y is the spanwise direction and z is the plate-normal coordinate. Problems for the flow induced by a plate undergoing 
linear stretching with an attendant linear shear flow have been discussed by Weidman [3]. He proved that uniform surface 
shear flow u(x, y, 0) = ay, v(x, y, 0) = 0 cannot exist without uniform transpiration w(x, y, z) = −W0. Solutions for certain 
linear combinations of plate stretching and shearing motions were shown to exist without transpiration, but the problem of 
orthogonal linear plate shearing motion u(x, y, 0) = a y, v(x, y, 0) = b x has no solution satisfying zero horizontal motion in 
the far field, even with uniform transpiration.

Recently Weidman [4] considered in all generality the problem of orthogonal linear stretching superposed onto orthogo-
nal linear shearing of a surface. It transpires that a certain relation between the orthogonal shearing motions is required for 
a similarity solution to exist. Weidman, et al. [5] considered the problem of flows induced by biaxial linear stretching and 
biaxial linear shearing of an impermeable surface in a uniformly rotating fluid system.

The current study generalizes the zero-pressure-gradient boundary-layer solutions for power-law stretching u = a xn re-
ported by Banks [1] to include two types of arbitrary transverse shearing motion α(y). In these flows, although v ≡ 0, 
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the flow is three-dimensional. It is further found that Banks’ power law stretching may be accompanied by an orthogonal 
power-law shearing of the plate for which the transverse velocity v is finite, thus rendering the flow fully three-dimensional. 
Consequently, the governing boundary layer equations are the equation of continuity

ux + v y + wz = 0 (1a)

the streamwise momentum equation

u ux + v u y + w uz = ν uzz (1b)

and the spanwise momentum equation

u vx + v v y + w vz = ν vzz (1c)

The presentation is as follows. A first generalization of Banks’ power-law stretching to include one form of arbitrary 
transverse plate shearing is presented in §2. This is followed by a second generalization in §3. In §4 we solve the problem 
of power-law stretching accompanied by an orthogonal power-law shearing motion of the plate. A summary and discussion 
of results are given in §5.

2. First extension of Banks’ problem

Here we modulate Banks’ power-law stretching by an arbitrary transverse shear α(y) with v = 0 in the form

u(x, y,0) = a xnα(y), w(x, y,0) = 0, u → 0, (z → ∞) (2)

The solution ansatz for the streamwise motion is taken as

u(x, y, η) = a xnα(y) f ′(η), η =
√

a

ν
μ(x)σ (y) z (3)

and the continuity equation (1a) gives the requisite form of the normal velocity, viz.

w(x, y, η) = −
√

aν α(y)

μ(x)σ (y)

[
nxn−1 f + xn μx

μ
(η f ′ − f )

]
(4)

Inserting the above velocity field into (1b) gives

μ2σ 2 f ′′′ +
[(

nxn−1 − xn μx

μ

)
f f ′′ − nxn−1 f ′ 2

]
α(y) = 0 (5)

in which it is clear that σ(y) = √
α(y) for similarity. Also, for the coefficient of the f f ′′ term, we require

xn μx

μ
= Knxn−1 (6)

and, after isolating f ′′′ , we set the coefficient of the f f ′′ term to unity to find

μ(x) = CxnK , K = n − 1

2 n
, C =

√
n + 1

2
(7)

This furnishes the boundary-value problem for an impermeable plate found by Banks [1], viz.

f ′′′ + f f ′′ − β f ′ 2 = 0, f (0) = 0, f ′(0) = 1, f ′(∞) = 0 (8)

where β = 2n/(n + 1) and we note that n is not required to be an integer. Banks [1] presented numerical solutions to this 
problem for many values of β in the range −1.9999 ≤ β ≤ 202.

In summary, the velocity field is

u(x, y, η) = a xn α(y) f ′(η), η =
√

a(n + 1)α(y)

2ν
x(n−1)/2z (9a)

w(x, y, η) = −
√

a ν(n + 1)α(y)

2
x(n−1)/2

[
f +

(
n − 1

n + 1

)
η f ′

]
(9b)

Note that although v ≡ 0, the flow is three-dimensional, since the two remaining velocities u and w depend on all three 
coordinates.

To see some transverse wall shear motions of this type, we select α(y) = y and choose a = 1 and n = 2 to obtain the 
wall motion
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Fig. 1. Transverse wall shear motions uw (x, y) = x2 y for the first extension of Banks’ problem plotted for x = {0, 1, 2, 3} over the range of the transverse 
coordinate as indicated.

Fig. 2a. Streamwise velocities u(x, y, η) for the first extension of Banks at the normalized position η = 1 above the plate plotted for x = {0, 1, 2, 3} over the 
range of the transverse coordinate as indicated.

u(x, y,0) ≡ uw(x, y) = x2 y (10)

Sample shear flows at x = {0, 1, 2, 3} are presented in Fig. 1 over the region 0 ≤ y ≤ 2.
To visualize how the flow evolves above the plate, we provide plots of the u(x, y) and w(x, y) velocities for the same 

parameters a = 1, n = 2 and α(y) = y as in Fig. 1. The chosen value n = 2 gives β = 4/3 for evaluation of Banks’s equa-
tion (8). The value η = 1.0 above the plate is chosen. At this position we find f (1) = 0.613845 and f ′(1) = 0.348382, which 
gives the following horizontal velocities calculated from Eqs. (9a), (9b)

u(x, y) = 0.348382 x2 y,
w(x, y)√

3ν/2
= −0.729973 x1/2 y1/2 (11)

in which the vertical velocity has been appropriately normalized. The results for the streamwise velocity u(x, y) as a func-
tion of y at the same fixed values x = {0, 1, 2, 3} as in Fig. 1 are shown in Fig. 2a. Comparable results for the vertical velocity 
are displayed in Fig. 2b.

A comparison of results in Fig. 2a with the wall motion uw(x, y) in Fig. 1 shows the streamwise velocities decrease with 
height above the plate, as expected to satisfy the far field condition f ′(∞) = 0. The results in Fig. 2b show that the induced 
velocity above the plate is negative, as expected in order for the flow to not separate from the plate.

3. Second extension of Banks’ problem

In this problem, we posit a second generalization of Banks’ power-law stretching with v = 0 in the form

u(x, y,0) = a[x + α(y)]n, w(x, y,0) = 0, u → 0, (z → ∞) (12)
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Fig. 2b. Normalized vertical velocities w(x, y, η) for the first extension of Banks at the normalized position η = 1 above the plate plotted for x = {0, 1, 2, 3}
over the range of the transverse coordinate as indicated.

so the appropriate ansatz is now

u(x, y, η) = a[x + α(y)]n f ′(η), η = μ(x, y) z (13)

The continuity equation (1a) then provides the plate-normal velocity

w(x, y, η) = −
[

n a[x + α(y)]n−1

μ
f + a[x + α(y)]n μx

μ2
(η f ′ − f )

]
(14)

Inserting this velocity field into (1b) gives

n a[x + α(y)]n−1 f ′ 2 + a

[
[x + α(y)]n μx

μ
− n[x + α(y)]n−1

]
f f ′′ = νμ2 f ′′′ (15)

The coefficient of the f f ′′ term and similarity require

μ(x, y) = C[x + α(y)]nK (n), K =
(

n − 1

2 n

)
(16)

Inserting this result into (15) and isolating the highest derivative gives

f ′′′ + n a

ν C2

[
(1 − K ) f f ′′ − f ′ 2

]
= 0 (17)

Setting the coefficient of f f ′′ to unity then gives

C =
√

a(n + 1)

2ν
(18)

which renders (17) in the form

f ′′′ + f f ′′ − β f ′ 2 = 0, β = 2n

n + 1
(19a)

to be solved with impermeable plate and far-field conditions

f (0) = 0, f ′(0) = 1, f ′(∞) = 0 (19b)

which is again recognized as the problem of Banks [1].
In summary, the velocity field is

u(x, y, η) = a[x + α(y)]n f ′(η), η =
√

a(n + 1)

2ν
[x + α(y)](n−1)/2z (20a)

w(x, y, η) = −
√

a ν [x + α(y)](n−1)/2 (
(n + 1) f + (n − 1)η f ′) (20b)
2(n + 1)



P. Weidman / C. R. Mecanique 345 (2017) 169–176 173
Fig. 3. Transverse wall shear motions uw (x, y) = (x + y)n for the second extension of Banks’ problem plotted for x = {0, 1, 2, 3} over the range of the 
transverse coordinate as indicated.

Fig. 4a. Streamwise velocities u(x, y, η) for the second extension of Banks at the normalized position η = 1 above the plate plotted for x = {0, 1, 2, 3} over 
the range of the transverse coordinate as indicated.

As with the first extension of Banks in §2, the flow is three-dimensional since the velocities u and w depend on all three 
coordinates.

To view sample transverse wall shear motions of this type we choose α(y) = y, a = 1 and n = 2 to obtain the wall 
motion

u(x, y,0) ≡ uw(x, y) = (x + y)2 (21)

and plot results at x = {0, 1, 2, 3} in Fig. 3 over the region 0 ≤ y ≤ 2.
To see how the flow evolves above the plate, we provide plots of the u(x, y) and w(x, y) velocities for the same pa-

rameters a = 1, n = 2 and α(y) = y as in Fig. 3. The value η = 1.0 above the plate is chosen and again β = 4/3 in Banks’ 
equation (19). Again f (1) = 0.613845 and f ′(1) = 0.348382 which gives the following horizontal velocities calculated from 
Eq. (20)

u(x, y) = 0.348382 (x + y)2,
w(x, y)√

ν/6
= −2.189917 (x + y)1/2 (22)

in which the vertical velocity has been appropriately normalized. The results for the streamwise velocity u(x, y) as a func-
tion of y at the same fixed values x = {0, 1, 2, 3} as in Fig. 3 are shown in Fig. 4a. Comparable results for the vertical velocity 
are displayed in Fig. 4b.

Again Fig. 4a shows that the streamwise velocities decrease with height above the plate to satisfy the far field condition 
f ′(∞) = 0. The results in Fig. 4b show that the induced velocity above the plate is negative, as expected.
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Fig. 4b. Normalized vertical velocities w(x, y, η) for the second extension of Banks at the normalized position η = 1 above the plate plotted for x =
{0, 1, 2, 3} over the range of the transverse coordinate as indicated.

4. Third extension of Banks’ problem

A similarity solution also exists for a plate where an orthogonal power-law shearing motion is added to the streamwise 
power-law stretching motion, provided that the exponents are equal. In this case the plate motion is

u(x, y,0) = a xn, v(x, y,0) = bxn, w(x, y,0) = 0 (23)

Inserting the solution ansatz

u(x, y, η) = a xn f ′(η), v(x, y, η) = bxn g′(η) η =
√

a

ν
μ(x) z (24)

into the continuity equation (1a) provides the plate-normal velocity

w(x, y, η) = −
√

aν

μ

[
nxn−1 f + xn μx

μ
(η f ′ − f )

]
(25)

Using these velocities the x-momentum equation (1b) takes the form

μ2 f ′′′ +
(

nxn−1 − xn μx

μ

)
f f ′′ − nxn−1 f ′ 2 = 0 (26)

and for similarity one must have

μx

μ
= K

n

x
⇒ μ(x) = CxKn (27)

for some constants K and C . The momentum equation (26) may now be written

f ′′′ +
(

n(1 − K )xn−1

C2x2Kn

)
f f ′′ −

(
nxn−1

C2x2Kn

)
f ′ 2 = 0 (28)

Setting the coefficient of f f ′′ to unity requires

K = n − 1

2n
, C =

√
n + 1

2
(29)

thus rendering (28) as the problem of Banks [1], viz.

f ′′′ + f f ′′ −
(

2n

n + 1

)
f ′ 2 = 0, f (0) = 0, f ′(0) = 1, f ′(∞) = 0 (30)

Turning to the y-momentum equation (1c) with μ(x) now determined, one readily finds the governing equation for the 
transverse motion

g′′′ + f g′′ −
(

2n
)

f ′g′ = 0, g(0) = 0, g′(0) = 1, g′(∞) = 0 (31)

n + 1
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Since the boundary conditions for (30) and (31) are identical, it is clear that the solution to (31) is given by g(η) = f (η). 
Consequently, the power-law stretching of Banks [1]

u(x, η) = a xn f ′(η), η =
√

a(n + 1)

2ν
x(n−1)/2z (32a)

admits the concomitant orthogonal shear flow

v(x, η) = bxn f ′(η) (32b)

for arbitrary shear strength b.

5. Discussion and conclusion

Three new solutions to Banks’ problem on the flow induced by the power-law plate stretching motion u(x, 0) = a xn in 
a quiescent fluid are found which include some form of transverse plate shearing motion or an orthogonal shearing of the 
plate. In all cases the problem reduces to that of Banks [1], independent of the additional shearing motions imposed. In the 
first extension for two-dimensional flow, v ≡ 0 and solutions are found for plate motions of the form

u(x, y,0) = a xnα(y), w(x, y,0) = 0 (33)

for arbitrary α(y). Sample transverse plate motions for α(y) = y, a = 1 and n = 2 are plotted in Fig. 1. Also, sample velocities 
u(x, y, η) and w(x, y, η) are plotted as a function of the transverse coordinate at the nondimensional height η = 1 above 
the plate for fixed values of the streamwise coordinate in Figs. 2a, 2b.

In the second extension, solutions are found for plate motions of the form

u(x, y,0) = a[x + α(y)]n, w(x, y,0) = 0 (34)

for arbitrary α(y). Sample transverse plate motions for α(y) = y, a = 1 and n = 2 are plotted in Fig. 3. Sample velocities 
u(x, y, η) and w(x, y, η) are also plotted as a function of the transverse coordinate at the nondimensional height η = 1
above the plate for fixed values of the streamwise coordinate in Figs. 4a, 4b.

The third extension corresponds to three-dimensional flow with orthogonal power-law shearing concomitant with the 
power-law stretching; these have plate motions

u(x, y,0) = a xn, v(x, y,0) = b xn, w(x, y,0) = 0 (35)

for arbitrary stretching strengths a and b. Here the vertical variation of flow is determined directly by the Banks [1] solution.
As a fourth possibility, plate motions of the form

u(x, y,0) = a xn + α(y), w(x, y,0) = 0 (36a)

for which the similarity ansatz taken as

u(x, y, η) = (a xn + α(y)) f ′(η), η = μ(x, y)z (36b)

were posited, but no self-similar solutions were found for the following reason. Although setting the coefficient of f f ′′ to 
unity gives μ(x, y) = C(a xn + α(y))K for some constants C and K , when one looks at the coefficient of f ′ 2 one finds the 
condition for similarity is given by

xn−1 = (a xn + α(y))2K (37)

which is possible only if α(y) = 0. Other scenarios were tried, but it appears that (33) and (34) are the only plate motions 
for which an arbitrary transverse shearing motion of the plate may be added to the power-law stretching.

An interesting feature of (34) exists for positive integer values of the stretching exponent n. Denoting Banks’ solutions 
as Bn , viz.

Bn = a xn (38)

then all plate motions of the form (34) are linear combinations of these power-law stretching solutions. For example, taking 
n = 3 gives the plate motion

u(x, y,0) = a[x + α(y)]3

= a[x3 + 3 x2 α(y) + 3 xα(y)2 + α(y)3]
= B3 + 3 B2 α(y) + 3 B1 α(y)2 + B0 α(y)3

(39)

The following observation for a linearly stretching surface is noted. The exponent n = 1 corresponding to β = 1 reduces 
Banks’ equation (8) to the linear stretching problem of Crane [2], with solution f (η) = 1 −e−η being an exact solution to the 
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Navier–Stokes equation. However, the inclusion of arbitrary transverse plate shearing α(y) in Eqs. (2) and (12) precludes an 
exact solution to the Navier–Stokes equation; only through the use of the boundary-layer formulation is a similarity solution 
possible.

It is of interest to compare the transverse shearing generalizations of Banks’ problem with the nonlinear sheared plate 
solutions reported in Section 3 of Weidman [3]. In that study, there was no streamwise stretching of any kind, only nonlinear 
streamwise shearing. Those solutions were admissible only with the superposition of uniform suction at the surface of the 
plate. In the present study, solutions are found for which no suction needs to be applied.

In conclusion, it should be noted that the generalizations (33) and (34) of Banks’ power-law stretching to include ar-
bitrary transverse shearing of a plate are only possible because the flow, although three dimensional with u(x, y, η) and 
w(x, y, η), has no transverse velocity component. As noted by a referee, the imposition of transverse variations of boundary 
conditions uniquely serves the mathematical purpose of defining new self-similarity variables η(x, y) that account, when 
possible for this dependence on the transverse coordinate y. In the two generalized extensions of Banks’ power-law stretch-
ing solution, a dilation and translation of the y-solution slices, both proportional to the transverse coordinate y, permit the 
two new extension found in this study.
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