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In this paper, an efficient and robust numerical method is proposed to solve non-
symmetric eigenvalue problems resulting from the spatial discretization with the finite 
element method of a vibroacoustic interior problem. The proposed method relies on a 
perturbation method. Finding the eigenvalues consists in determining zero values of a 
scalar that depends on angular frequency. Numerical tests show that the proposed method 
is not sensitive to poorly conditioned matrices resulting from the displacement–pressure 
formulation. Moreover, the computational times required with this method are lower than 
those needed with a classical technique such as, for example, the Arnoldi method.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The study of linear vibrations of fluid–solid interaction (FSI) problems is encountered in many industrial applications. In 
this paper, the considered FSI problem consists of an elastic solid filled with an inviscid and compressible non-weighting 
fluid. A variational principle based on a displacement (for the solid)–pressure (for the fluid) formulation is adopted. In this 
approach, spatially discretized equations lead to a non-symmetric eigenvalue problem. Moreover, the latter can be poorly 
conditioned, mainly due to large difference of magnitude between the fluid and the solid stiffness and mass matrices [1]. 
This poor conditioning can harm the convergence of classical eigensolvers and sometimes give inaccurate results. So, in this 
paper, a very basic numerical method is proposed to solve the non-symmetric and poorly conditioned eigenvalue problem 
associated with an interior vibroacoustic problem. This numerical method is based on a perturbation method and has been 
initially proposed in Ref. [2] to solve symmetric eigenvalue problems arising from elastic linear solid framework. The method 
consists in introducing a right-hand side (rhs) in the initial problem. This rhs is a scalar multiplied by a random vector. The 
objective is then to find the angular frequency value for which this scalar becomes null. Indeed, this null value indicates 
a solution to the initial problem (i.e. an eigenvalue). To find the null values of this scalar, unknowns of the problem (solid 
displacement, fluid pressure and the scalar) are searched as asymptotic expansions of the angular frequency. The resolution 
of a set of linear problems permits to build an analytical expression, whose roots can be numerically computed. From these 
roots, the eigenvalues of the vibroacoustic problem are determined.
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The present paper is organized as follows. The discretized non-symmetric eigenvalue problem to be solved is introduced 
in Section 2. Section 3 is devoted to the presentation of the proposed numerical algorithm. In Section 4, numerical tests, 
a deformable cavity filled with air or water, permit to show efficiency and accuracy of the proposed method.

2. Governing equations

In this study, the problem of an inviscid compressible fluid contained in an elastic solid is considered. Using the finite 
element method to discretize the variational 〈u–p〉 formulation, the following classical matrix system is obtained:([

Ks −C
0 Kf

]
− λ

[
Ms 0
ρfCt Mf

]) {
us
p

}
=

{
0
0

}
(1)

In this equation us and p are the solid displacement and the fluid pressure, respectively. The subscripts s and f stand for 
the solid and the fluid. The matrices K, M and C represent the stiffness matrix, the mass matrix and the coupling matrix 
due to the fluid–solid interaction. The scalar ρf is the fluid density. The eigenvalue λ is the square of the angular frequency 
(i.e. λ = ω2). Formally, the previous equation (1) can be written as the following generalized eigenvalue problem:

(K − λM) U = 0 (2)

where U is a mixed unknown vector containing the displacement of the solid, us , and the pressure, p, in the fluid. The 
previous system is non-symmetric due to the presence of the coupling matrix, C, in the mass and stiffness matrices, respec-
tively M and K. Moreover, as the previous system is poorly conditioned (see [1] for more details), numerical preconditioning 
is strongly encouraged to ensure convergence and accuracy of the solutions. In this study, with a classical eigensolver, 
ARPACK [6], a preconditioning technique should be added to find eigensolutions. On the contrary, with the proposed method 
based on perturbation technique, no preconditioning will be required to find accurate solutions.

3. The proposed method

The numerical method designed to solve the linear problem (2) has been initially proposed to solve eigenvalue problems 
arising from vibrations of elastic solids [2]. So, to solve the problem (2), the latter is modified by introducing a right-hand 
side μF where μ is an unknown scalar and F is a random load vector. The problem (2) then becomes:

(K − λM) U = μF (3)

As the number of unknowns is greater than the number of equations, the following orthogonality condition is chosen to be 
the additional equation:

〈U − V , V 〉 = 0 (4)

where 〈•,•〉 stands for the Euclidian scalar product of two vectors. The vector V is a known vector and will be clarified 
below.

Hence, according to Eq. (3), determining solutions (λ, V ) that satisfy the initial problem (2) consists in determining the 
values λ for which the scalar μ is equal to zero. A way to find these null values of μ is to compute the scalar μ for several 
discrete values of λ. This ‘direct’ method requires a lot of computations (i.e. a lot of matrix triangulations K) and then is not 
efficient in term of computational times. Instead of this ‘direct’ method, it is proposed to solve the problem (3) by using 
a perturbation method, λ being the perturbation parameter. At the end of the computations, an analytical expression of 
the scalar μ is then obtained. The determination of the value of λ for which the scalar μ is equal to zero should be then 
straightforward. In order to use the perturbation method, it is suggested to define the eigenvalue λ under the following 
form:

λ = λ0 + λ̂ (5)

where λ0 is the initial value. For the first step of the presented method, λ0 is chosen equal to zero. The problem (3) can be 
rewritten as:(

K − (λ0 + λ̂)M
)

U = μF (6)

The unknowns (U , μ) are then sought as an integro-power series with respect to the parameter λ̂:

{
U
μ

}
=

N∑
i=0

λ̂i
{

U i
μi

}
(7)

where N is the truncation order of the asymptotic expansions. Inserting Eq. (7) into equations (4) and (6) and balancing 
terms with identical powers of λ̂, a set of linear problems is obtained:
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order 0:{
(K − λ0M)U0 = μ0 F

〈U0, V 〉 = 〈V , V 〉 (8)

order 1 ≤ i ≤ N:{
(K − λ0M)Ui = μi F + MUi−1

〈Ui, V 〉 = 0
(9)

All linear problems (8) and (9) have the same operator and differ from their right-hand sides. So one single matrix triangu-
lation and (N + 1) backward and forward substitutions are required to compute all the unknowns (Ui , μi) of the polynomial 
approximation (7). At the end of the computation, asymptotic expansions are replaced by equivalent rational approxima-
tions, called Padé approximants [3,4],

XPadé, N(λ̂) − X0 =
N−1∑
k=1

R(N−1−k)(λ̂)

Q (N−1)(λ̂)
λ̂kXk (10)

where Rk , Q k are polynoms of degree k and X is a mixed vector containing the vector V and the scalar μ. This rational rep-
resentation permits to increase the validity range of the polynomial approximation. At the end of the computations, finding 
the couples (U , λ) that are solutions to the generalized eigenproblem (3) consists in determining the roots of numerators 
R(N−1−k) in rational approximations (10). These numerators are defined by the following expression:

R( J ) = 1 +
J∑

j=1

λ̂ jd j for 0 ≤ J ≤ N − 2 (11)

where the scalar coefficients d j are expressed as:

d1 = − α(N,N−1)

α(N−1,N−1)

and d j = − α(N,N− j)

α(N− j,N− j)
−

j−1∑
l=1

α(N−l,N− j)

α(N− j,N− j)
dl for 2 ≤ j ≤ N − 1 (12)

The coefficients α(I, J ) are determined by performing a modified Gram–Schmidt orthonormalization of the initial set of 
vectors XN . The denominator Q (N−1)(λ̂), which is the same as for the rational fraction (Eq. (10)), is computed in the same 
way as the numerators R(N−1−k) by using expressions (11) and (12).

The roots of the numerators, R(N−1−k) are denoted in the following by (λr ). Among all these roots, some of them do 
not lead to a solution to the initial problem (3). To check if a root, λr , gives a true and accurate eigenvalue, the following 
criterion is defined:(

tU r K U r − λr
tU r MU r

)
λr

≤ ε (13)

where U r is computed by introducing the root λr into Padé’s approximant (10). The parameter ε is an user parameter that 
specifies the quality of the numerical solutions. In this study, the value of ε is chosen equal to 10−8.

Once all the roots have been carried out for one step (i.e. for a given value of λ0), a new step of the method is done 
by defining a new value of the scalar λ0. In this work, the latter is computed in two ways. If during the previous step, 
a solution to the eigenvalue problem has been found, the root λr verifying the criterion (13), a new starting value λ0 is 
defined according to the following expression:

λ0 = 1.1 ∗ λr (14)

Otherwise, if no eigenvalue has been found, then the range of validity of the Padé approximants is estimated by using a 
criterion introduced in Ref. [5] and leading to a new initial value λ0.

Lastly, the method requires an additional condition (4) in which a vector V must be introduced. The first step of the 
current algorithm permits to define this vector. To get it, λ0 is considered to be null and the initial value of the scalar μ is 
arbitrarily chosen equal to one (μ = 1). Then, from equation (3), the vector V is obtained as a solution to:

KV = F (15)

4. Numerical results

To prove the efficiency of the proposed method, a steel cavity (linear elastic structure) is filled with an inviscid com-
pressible fluid (air or water). This example is issued from Ref. [7]. The geometric and material characteristics are given in 
Fig. 1. Finite element discretization uses linear quadrilateral elements both for the fluid and the structure. The solid element 
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Steel:
E = 1.44 1011 Pa
ν = 0.35
ρs = 7.7 103 kg·m−3

Properties of the air:
cf = 340 m·s−1

ρ f = 1 kg·m−3

Properties of water
cf = 1430 m·s−1

ρf = 1000 kg·m−3

Fig. 1. Geometry and mechanical properties for the steel cavity [7].

Table 1
Comparison of the first ten eigenvalues obtained with the proposed method (PM) and those given 
in Ref. [7].

Air Water

PM Reference [7] PM Reference [7]

676.926 664.121 654.159 641.837

1068.562 1068.129 2159.301 2116.398

1068.607 1068.152 3445.498 3201.475

1511.191 1510.589 3907.321 3804.124

2139.448 2136.102 4221.192 4211.62

2139.707 2136.240 4710.677 4687.927

2304.012 2258.686 5168.735 5155.246

2391.688 2388.418 5454.176 5385.805

2391.734 2388.539 6280.978 6239.332

3026.00 – 7597.443 –

has eight degrees of freedom (dofs) corresponding to two displacements and four nodes. The fluid element has four dofs 
(pressure at each node of the fluid element). Finally, the interface element has twelve dofs (eight for the solid displacement 
and four for the fluid pressure). In this study, Fig. 1, the finest mesh is composed of 2304 quadrilateral elements (1280 solid 
elements and 1024 for the fluid domain) leading to 2401 nodes (1312 solid nodes, 961 fluid nodes, and 128 nodes on the 
fluid–solid interface). Then the number of dofs for this mesh is close to 4000. The first ten eigenvalues obtained with the 
proposed method are reported in Table 1 and compared to values given in the work of Bermúdez and Rodríguez [7]. The 
results in this table show an excellent agreement. In Fig. 2, fluid and solid modes corresponding to the first four eigen-
frequencies given in Table 1 are presented. For the proposed method, the results given in Table 1 are obtained with a 
truncation order, parameter N in Eq. (7), equal to 15 and an accuracy parameter, ε in Eq. (13), chosen equal to 10−8. For 
these parameters, 37 continuation steps are required to compute the first ten eigenfrequencies for a cavity filled with air 
and 43 steps for a cavity filled with water. In Fig. 3, the evolution of the number of steps is plotted versus the trunca-
tion order to get the first ten eigenvalues (Table 1). The truncation order varies between 10 and 35, whereas the accuracy 
parameter is fixed at 10−8. This plot shows that the number of continuation steps is relatively constant regardless of the 
truncation order chosen. In fact, the key point of the proposed algorithm is the root computation of the numerator Rk of 
the Padé approximants (10). So, to get accurate values of these roots, two numerical methods are used [8]. The first one 
is Bairstow’s method and the second one consists in finding the eigenvalues of a matrix whose characteristic polynomial is 
the numerator of the Padé approximants (10). With these two techniques, accurate roots are found whatever the truncation 
order varying between 10 and 35. Nevertheless, the truncation order has an influence on the computational time required 
to obtain eigenvalues. Indeed, a truncation order equal to N requires a single matrix triangulation but (N + 1) backward and 
forward substitutions to compute the (N + 1) couples of unknowns (Ui, μi). So, the evolution of the computational time 
needed to get the ten first eigenvalues (given in Table 1) when the truncation order varies between 10 and 35 is plotted in 
Fig. 4. This plot shows that the lowest computational times is obtained for a truncation order close to 15. The performance 
of the present algorithm is now compared to a classical numerical method to compute the eigenvalues of a non-symmetric 
problem. In this study, the Arnoldi method is chosen by using the ARPACK solution [6]. Unfortunately, ARPACK is unable 
to compute the eigenvalues of the problem (2). Indeed, this problem is poorly conditioned due to the fact that compo-
nents of matrices Ms and ρfC

t are very large compared to entries in matrix Mf [1]. So, the generalized eigenvalue problem 
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Fig. 2. First four modes of the coupled system, fluid (air) pressure mode (a, c, e and g) and solid displacement mode (b, d, f and h).

(Eq. (1)) needs to be preconditioned to give fast and accurate eigenvalues. According to the analysis reported in Ref. [1], the 
preconditioned generalized eigenvalue problem to be solved with ARPACK is rewritten:

([
Ks −Ck

0 K̂f

]
− λ

[
Ms 0

ρfCt
m M̂f

]) {
us
p̂

}
=

{
0
0

}
(16)

with the following definitions:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

K̂f = a b Kf and M̂f = a b Mf

Ck = a C and Cm = b C

p̂ = 1
a p

a =
√ ‖Ks‖F and b =

√ ‖Ms‖F

(17)
‖Mf‖F ‖Kf‖F
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Fig. 3. Number of continuation steps of the proposed method versus truncation order to get the first ten eigenvalues shown in Table 1. Elastic cavity filled 
with air or water, 4000 dof.

Fig. 4. Evolution of the CPU times (s) versus truncation order to get the first ten eigenvalues shown in Table 1. Elastic cavity filled with air or water, 
4000 dof. Accuracy parameter ε is equal to 10−8.

where the symbol ‖K‖F stands for the Frobenius norm of the matrix K, defined by ‖K‖F =
√

n∑
i=1

n∑
j=1

|Kij|. A key feature of 

this study is that the proposed method gives accurate eigenvalues with or without preconditioned matrices. So, in Fig. 5, 
the computational times required to get the first ten eigenvalues of the numerical tests (Table 1) are plotted versus the 
number of unknowns (from 500 to 4000). These times are given for both numerical methods (ARPACK and the proposed 
numerical method). This figure shows that the proposed algorithm needs computational times lower than those required 
with ARPACK whatever the size of the problem. Hence, with the finest mesh and in the case of a cavity filled with air, the 
proposed algorithm demands a computational time four times lower than the ARPACK computational time.

5. Conclusion

In this paper, it is proposed to use a perturbation method to compute the eigenvalues of a vibroacoustic interior coupled 
problem. Eigenvalues are determined in analyzing the roots of the numerator of a fraction (Padé approximants). The pro-
posed method is easy to implement in a computational software because it only requires a linear solver and a subroutine to 
realize matrix–vector products. This algorithm is efficient even if two eigenvalues are very close to each other, which is the 
case when considering an elastic cavity filled with air. The proposed numerical method does not require the use of a pre-
conditioning technique, contrary to a classical eigensolver such as the Arnoldi method. The optimal truncation order for the 
polynomial approximation is close to 15 according to the analysis carried out in this study. The computational times needed 
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Fig. 5. Comparison of CPU times obtained with ARPACK and the proposed method to get the ten first eigenvalues (Table 1). Elastic cavity filled with air or 
water [7]. Parameters used for the proposed method are N = 15 and ε = 10−8.

with the proposed numerical method are lower than the ones required with the classical ARPACK solver. Nevertheless, the 
number of steps to get ten eigenvalues is relatively important (approximately 40 for the considered examples), leading to 
a great number of matrix triangulations. So, for a large-scale problem, involving several thousands of dofs, the presented 
algorithm can require too large computational times. Future works concern the use of reduced order models based on the 
perturbation method (recently proposed to analyze fluid bifurcation problems [9] and vibrations of plates [10]) to decrease 
computational times. Application of this kind of method to analyze vibrations of damped structures [11,12] are also in 
progress.
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