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1. Introduction

The macroscopic behavior of randomly reinforced composite materials is studied herein. The material we have in mind 
is TexSol™ [1–3]. Contrary to the previous studies, in which the nonlocal aspect phenomenon is lost in the homogenization 
step, this paper aims to derive a homogeneous behavior with nonlocal effects.

We are interested in the macroscopic behavior of a random fiber structure whose reference configuration is the open 
subset of R3 O := Ô × (0, h), and base Ô := (0, l1) × (0, l2) ⊂ R2. We consider that there is no difference between R3

and the three-dimensional Euclidean physical spaces, equipped with an orthogonal basis denoted by (e1, e2, e3). For all 
x = (x1, x2, x3) of R3, x̂ stands for (x1, x2) and M3×3, M3×2 denotes the sets of 3 × 3 and 3 × 2 matrices, respectively. We 
denote by Ŷ the unit cell (0, 1)2 of R2 and by Y the unit cell (0, 1)3 of R3.

More precisely, for ε = 1
n (with n the number of fibers), considering the fibers Tε(ω) := εD(ω) × R with D(ω) :=⋃

i∈N D(ωi). D(.) are discs randomly distributed in R2 according to a stochastic process ω = (ωi)i∈N of R2 associated with 
a probability space (�, A, P), defined in [4]. We are seeking to determine the limit equivalent model in a variational sense.

For the macroscopic behavior of the structure (S) in Fig. 1, we study the behavior according to the variational energy 
functional Hε of � × Lp(O, R3) with value in R+ ∪ {+∞}

Hε(ω, u) =

⎧⎪⎨⎪⎩
εp

ˆ

O\Tε

f (∇u)dx +
ˆ

O∩Tε

g(∇u)dx if u ∈ W 1,p
�0

(O,R3)

+∞ else

The space W 1,p
�0

(O, R3) ) is the admissibility kinetic space of functions u in W 1,p(O, R3) such that u = 0 in the trace sense 
on the bounded �0 := Ô × {0}.
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Fig. 1. Randomly fibered structure (S).

The first integral, which we note Fε(ω, u), is the internal elastic energy in the matrix O\Tε , whose rigidity is of order εp . 
The second integral, denoted Gε(ω, u), stands for the internal mechanical energy Tε , of the set of parallel cylindrical fibers 
on O. Thus, Hε(ω, u) represents the total internal energy of the fibers and the matrix phase. We assume large deformations 
in the matrix and the fibers so that the strong and soft materials are hyperelastic (in this study, small deformations are 
assumed for fibers and large deformations for the matrix). Now, presuming that the two bodies are perfectly clamped and 
are subjected to an exterior loading L, we derive the problem (PHε ). We recall that the distribution of the cross-sections of 
the fibers is statistically homogeneous according to a stationary point process. The rigidity is very small order ≈ εp in the 
matrix O\Tε , while the stiffness is of order 1 in the fibers. The function u represents the mechanical displacement of the 
structure subjected to a given loading L give and we consider the zero displacement on the basis of the complete structure 
�0 := Ô × {0}.

We assume large deformations in the fibers and the matrix (see for example [3]) so that the solid materials are hyper-
elastic. Energy densities f and g are two quasi-convex functions defined on the space M3×3 and that meet the standard 
growth condition of order p > 1: there exist two positive reals α, β , such that ∀M, M ′ ∈ M3×3

α|M|p ≤ f (M) ≤ β(1 + |M|p) (1)

idem for g . Note that f automatically satisfies the Lipschitz property

| f (M) − f (M ′)| ≤ �|M − M ′|(1 + |M|p−1 + |M|p−1) (2)

with � > 0, idem pour g .
Further, we assume the existence of β ′ > 0, 0 < γ < p and of a positive homogeneous function of order p, written f ∞,p , 

such that for all M ∈ M3×3∣∣ f (M) − f ∞,p(M)
∣∣ ≤ β ′(1 + |M|p−γ ) (3)

From (3), (1) and (2), we deduce that f ∞,p verifies for all M ∈ M3×3

α|M|p ≤ f ∞,p(M) ≤ β|M|p (4)

and

| f ∞,p(M) − f ∞,p(M ′)| ≤ �|M − M ′|(|M|p−1 + |M|p−1) (5)

for all (M, M ′) ∈ M3×3 × M3×3.
In what follows, we assume that f ∞,p is a convex function. If we then assume that the two materials are perfectly 

bounded and subjected to a loading L, the displacement is a solution to problem (PHε )

(PHε ) inf

⎧⎨⎩Hε(ω, u) −
ˆ

O

L·u dx : u ∈ Lp(O,R3)

⎫⎬⎭
with L ∈ Lq(O, R3), q = p

p−1 .
Our objective is to study the variational problem PHε when ε tends toward 0 to obtain a simplified model and the 

deterministic behavior of a TexSol™ type material [1–3]. We would like to find the limit of the total energy of this material 
(like in the Hashin–Shtrikman method). This terminal is both deterministic and above all will be a nonlocal model of our 
material. More precisely, we proposed that the functional �-limit Hε be bounded by two nonlocal deterministic functionals. 
Indeed, we establish the following two estimates:

F −+G0 ≤ �- lim inf Hε(ω, .) ≤ � lim sup Hε(ω, u) ≤ F ++G0
0 e 0 e
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where F −
0 +

e
G0 and F +

0 +
e

G0 are epigraphic sums defined in Lp(O, R3) by

F −
0 +

e
G0 (u) := inf

w∈L p(O,R3)

(
F −

0 (u − w) + G0(w)
)

and

F +
0 +

e
G0 (u) := inf

w∈L p(O,R3)

(
F +

0 (u − w) + G0(w)
)

The nonlocal effects are taken into account by the internal variable w , which is derived from the homogenized displacement 
fields of the fibers. Now we can define the functionals G0, F −

0 and F +
0 :

G0(u) =

⎧⎪⎨⎪⎩
θ

ˆ

O

(g⊥)∗∗( ∂u

∂x3
)dx if u ∈ V 0

+∞ else

V 0 :=
{

u ∈ Lp(O,R3) : ∂u

∂x3
∈ Lp(O,R3), u(x̂,0) = 0 on Ô

}
The density g⊥ is defined for all ξ ∈R3 by:

g⊥(ξ) := inf
m∈M3×2

g (m, ξ)

with M3×2 the set 3 × 2-matrix, so (m, ξ) ∈ M3×3 for all ξ ∈ R3. We note h∗ the Legendre–Fenchel transform in R of the 
function h

h∗ (s) := sup {s.x − h (x) ; x ∈ R}
and h∗∗ is the Legendre–Fenchel transform of the function h∗ , and a classical property is that this function is convex.

The parameter θ ∈ (0, 1) is an asymptotic area fraction of fibers θ := ´
�

|Ŷ ∩ D(ω)| dP(ω), Ŷ = (0, 1)2.
We assume that:

F −
0 (u) =

ˆ

O

f −
0 (u)dx

where for all ξ ∈R3,

f −
0 (ξ) = sup

n∈N

˛ S−
nŶ

n2
(·, ξ)

the operator 
˛

is an inf-convolution as defined in [5], Remark 36, and Theorem VIII.40. Moreover, A �→ S−
A (ω, .) is a process 

such that its Legendre–Fenchel transform in R3 is a sub-additive process generated by Ŷ ⊂R2.

2. Definition of energy densities f −
0 and f +

0

A first step consists in defining a good space of probability; for this work; we can choose the probability space (�, A, P)

defined in [4].

2.1. The density f +
0

Note I the set (a, b) generated by (0, 1)2. For all Â in I and ξ ∈R3,

S+
Â
(ω, ξ) := inf

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ˆ

◦
Â×(0,1)\T (ω)

f ∞,p(∇w)dx̂ : w ∈ Adm+
A (ω, ξ)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
adm+

Â
(ω, ξ) :=

⎧⎪⎨⎪⎩w ∈ W 1,p
0

( ◦
Â ×(0,1) \ T (ω),R3) :

 

ˆ
w dx̂ = ξ

⎫⎪⎬⎪⎭

A×(0,1)
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where 
◦
Â is the interior of Â, T is the adherence of T and 

ffl
�

f dx := 1
|�|

´
�

f dx the average of f . We could take as I the set 
of all open intervals (a, b) generated by Ŷ that we still denote by I . In the following, the subadditivity condition becomes: 
for every I ∈ I such that there exists a finite family (I j) j∈ J disjoint interval I with |I \ ⋃

j∈ J I j | = 0,

S+
I (·) ≤

∑
j∈ J

S+
I j

(·)

The set � × Lp(O, R3) is equipped with product σ -algebra A ⊗ B, where B is a σ -algebra associated with the L p(O, R3)

norm. So it is easy to see that, for all Â fixed of I and ξ fixed in R3, ω �→ S+
Â
(ω, ξ) is measurable.

We can define the following density. For all ξ ∈ R3 fixed,

S+(., ξ) : I −→ L1(�,A,P)

Â �−→ S+
Â
(., ξ)

and for all ξ ∈ R3, Â ∈ I and all δ > 0 very small,

S+
Â
(ω, ξ) ≤ C(p)

δp
∣∣∣(Ŷ \ D(ω̄))2δ

∣∣∣ |ξ |p| Â| (6)

where C(p) is a positive constant depending on p.

Thus the limit lim
n→∞

S+
In

(ω, ξ)

|In| exists P-almost surely and

lim
n→∞

S+
In

(ξ,ω)

|In| = lim
n→∞

S+
[0,n[2(., ξ)

n2
= inf

m∈N∗

{
E
S+

[0,m[2(., ξ)

m2

}
where E is the mathematical expectancy. This limit will be called f +

0 (ξ).
To simplify the proof of the upper estimate of the �-limit, it will be convenient to introduce a new subadditive process 

A �→ S̃A converging toward the same limit F +
0 (ξ), where A varies in R3. Specifically, we note again I the set of open 

intervals (a, b) generated by Y = (0, 1)3, and we apply the Ackoglu–Krengel Theorem (see [6]) with N = 3 to the defined 
process for any A ∈ I and all ξ ∈R3 by

S̃A(ω, ξ) := inf

⎧⎪⎨⎪⎩
ˆ

A\T (ω)

f ∞,p(∇w)dx : w ∈ admA(ω, ξ)

⎫⎪⎬⎪⎭
admA(ω, ξ) :=

⎧⎨⎩w ∈ W 1,p
0

( ◦
A \T (ω),R3) :

 

A

w dx = ξ

⎫⎬⎭
Theorem 2.1. Let ξ ∈ R3 fixed, the function

S̃(., ξ) : I −→ L1(�,A,P)

A �−→ S̃A(., ξ)

is a subadditive process defined by (τz)z∈Z3 , such that τz(ω) = ω− ẑ, where z = (ẑ, z3). So for all (In)n∈N in I the limit lim
n→∞

S̃In (ω, ξ)

|In|
exists almost surely for all ω ∈ � and lim

n→∞
S̃In (ξ,ω)

|In| = f +
0 (ξ).

Proof. See in [7] the extension to the 3D case. �
In the periodic case, we have the following corollary.

Corollary 2.1. Suppose a periodic fiber distribution (that of a chessboard with a random position), then for all ξ ∈ R3 ,

f +
0 (ξ) = inf∗

S̃(0,n)2(ξ)

2
n∈N n
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with

S̃A(ξ) := inf

⎧⎨⎩
ˆ

A

f ∞,p(∇w)dx : w ∈ admA(ξ)

⎫⎬⎭
admA(ξ) :=

⎧⎨⎩w ∈ W 1,p
0

(
A \ T ,R3) :

 

A

w dx = ξ

⎫⎬⎭
and

f +
0 (ξ) = inf

⎧⎨⎩
ˆ

Y

( f ∞,p)(∇w)d ŷ : w ∈ W 1,p
# (Y ,R3),

ˆ

Y

w d ŷ = ξ, w = 0 on D

⎫⎬⎭
where W 1,p

# (Y , R3) is a Y -periodic function of W 1,p(Y , R3).

Proof. See [7]. �
Remark 2.1. We note here that in the periodic case, the energy density limit f +

0 (ξ) equals that obtained by Licht & Michaille 
[8].

The following result is due to estimation (6). The function f +
0 is a convex and p-order positively homogeneous function, 

satisfying the growth condition (4) with the same constant α, another constant β > 0, and the Lipschitz condition (5) with 
a constant L > 0 possibly different. From a mechanical point of view, in the elastic case, this energy density allows us to 
obtain the upper bound of the homogenized parameters.

2.2. The density definition f −
0

To obtain the “best” lower bound of �- lim inf Hε , we will build an upper process S− lower than S+ , such that the 
Fenchel–Moreau method works. For all Â ∈ I and all ξ ∈ R3, we define

S−
Â
(ω, ξ) = inf

⎧⎪⎨⎪⎩
ˆ

Â\D(ω)

f ∞,p(∇w,0)dx : w ∈ adm−
Â
(ξ)

⎫⎪⎬⎪⎭
with

adm−
Â
(ω, ξ) :=

⎧⎪⎨⎪⎩w ∈ W 1,p( Â,R3), w = 0 on D(ω),

 

Â

w dx = ξ

⎫⎪⎬⎪⎭
Note that this process S− is noted a subadditive process, which is due to the lack of a bound condition on Â . However, 

the Legendre–Fenchel transform is a subadditive process and verifies all conditions of the ergodic subadditive theorem [8]. 
From a mechanical point of view, in the elastic case, this energy density allows us to obtain the lower bound of the 
homogenized parameters.

Lemma 2.1. The Legendre–Fenchel transform of ξ �→ S−
Â

(ω,ξ)

| Â| (.) is defined for all ξ∗ in R3 by

(S−
Â

| Â|
)∗

(ξ∗) = inf

⎧⎪⎨⎪⎩ 1

| Â|
ˆ

Â\T

( f ∞,p)∗(σ ,0)dx : σ ∈ adm∗
Â
(ξ∗)

⎫⎪⎬⎪⎭
with

adm∗
Â
(ξ∗) :=

{
σ ∈ Lq( Â \ D,M3×2) : −divσ = ξ∗ in Â \ D, σ .ν = 0 on ∂ Â

}
and ν is a unit normal vector of ∂ Â.
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Proof. By definition of the Legendre–Fenchel transform,

(S Â

| Â|
)∗ (

ξ∗) = sup
ξ∈R

⎧⎪⎨⎪⎩ξ∗ · ξ − inf

⎧⎪⎨⎪⎩ 1

| Â|
ˆ

Â\D(ω)

f p,∞ (∇u) dx, u ∈ adm−
Â

(ω, ξ)

⎫⎪⎬⎪⎭
⎫⎪⎬⎪⎭

= sup
(ξ,u)∈R3×W 1,p

(
Â,R3

)
⎧⎪⎨⎪⎩ξ∗ · ξ −

⎧⎪⎨⎪⎩ 1

| Â|
ˆ

Â\D(ω)

f p,∞ (∇u) dx + I (ξ, u)

⎫⎪⎬⎪⎭
⎫⎪⎬⎪⎭ (7)

where

I (a, u) =
{

0 if u ∈ adm−
Â

(ω, ξ)

+∞ else

Let the variable ζ ∈ Lp
(

Â\T ,R3
)

, we have:

(S Â

| Â|
)∗ (

ξ∗) = sup
(ξ,ζ )∈R3×L p

(
Â\D(ω),R3

)
⎧⎪⎨⎪⎩ξ∗ · ξ +

ˆ

Â\T

0 : ζ dx −

⎧⎪⎨⎪⎩ 1

| Â|
ˆ

Â\D(ω)

f p,∞ (ζ ) dx + Ĩ (ξ, ζ )

⎫⎪⎬⎪⎭
⎫⎪⎬⎪⎭

where

Ĩ (ξ, ζ ) =
{

0 if ∃u ∈ adm−
Â

(ω, ξ) , ζ = ∇u in Y \D(ω)

+∞ else

So, 
(S Â

| Â|
)∗

(ξ∗) = (
J + Ĩ

)∗
(ξ∗,0), where J is a functional of R3 × Lp

(
Â\D(ω),R3

)
with

J (ξ, ζ ) = 1

| Â|
ˆ

Â\D(ω)

f p,∞ (ζ ) dx

Consequently (see Proposition 9.4.1 in [9]), 
(S Â

| Â|
)∗

is the following epigraphic sum:

(S Â

| Â|
)∗ (

ξ∗) =
(

J∗ +
c

Ĩ∗
)(

ξ∗,0
)

= inf
(b∗,z∗)∈R3×Lq

(
Â\D(ω),R3

) J∗ (
ξ∗ − b∗,−z∗) + Ĩ∗

(
b∗, z∗) (8)

Now, we will explain the functions I∗ and J∗ .

Ĩ∗
(
b∗, z∗) = sup

(b,z)∈R3×L p
(

Â\D(ω),R3
)
⎧⎪⎨⎪⎩b∗ · b +

ˆ

Â\D(ω)

z : z∗ dx − Ĩ (b, z)

⎫⎪⎬⎪⎭
= sup

(b,u)∈R3×adm−
Â
(ω,b)

⎧⎪⎨⎪⎩b∗ · b +
ˆ

Â\D(ω)

∇u : z∗ dx

⎫⎪⎬⎪⎭
= sup

(b,u)∈R3×adm−
Â
(ω,b)

⎧⎪⎨⎪⎩
ˆ

Â\D(ω)

u · b∗

| Â| dx −
ˆ

Â\D(ω)

u · div
(
z∗) dx

⎫⎪⎬⎪⎭
= K

(
b∗, z∗) (9)

where

K
(
b∗, z∗) =

{
0 if div (z∗) = b∗ in Â\D(ω),

+∞ else
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Moreover, it is easy to see that

J∗ (
c∗, z∗) = sup

(c,z)∈R3×L p
(

Â\D(ω),R3
)
⎧⎪⎨⎪⎩c∗ · c +

ˆ

Â\D(ω)

z∗ : z dx − 1

| Â|
ˆ

Â\D(ω)

f p,∞ (z) dx

⎫⎪⎬⎪⎭
so

J∗ (
c∗, z∗) =

⎧⎪⎪⎨⎪⎪⎩
1

| Â|
ˆ

Â\D(ω)

( f p,∞)∗
(
| Â|z∗) dx if c∗ = 0

+∞ else

(10)

We can conclude with (8), (9) and (10). �
Theorem 2.2. The process Â �→ inf

{´
Â\T f ∞,p(σ ,0)dx : σ ∈ adm∗

Â
(ξ∗)

}
is a sub-additive process defined by (τz)z∈Z2 . Therefore, for 

any regular family (In)n∈N of I , almost surely and for all ξ∗ ∈R3 , we have:

lim
n→+∞

(S−
In

|In|
)∗

(ω, ξ∗) = inf
n∈N∗

ˆ

�

(S−
(0,n)2

n2

)∗
(ω, ξ∗)dP(ω)

Proof. One easily verifies that all hypotheses of the subadditive Theorem [8] are satisfied. �
Corollary 2.2 (The definition of density f −

0 ). Almost surely and for all ξ ∈ R3 , we have for all regular family (In)n∈N of I

lim
n→+∞

S−
In

(ω, ξ)

|In| = sup
n∈N∗

(˛ S−
nŶ

n2

)
(ξ) (11)

with (˛ S−
nŶ

n2

)
(ξ) = inf

⎧⎨⎩
ˆ

�

S−
nŶ

(ω, X(ω))

n2
dP (ω) : X ∈ L1

P (�),

ˆ

�

X(ω)dP(ω) = ξ

⎫⎬⎭
we will note f −

0 (ξ) this limit. For all ξ ∈ R3

lim
n→+∞

(˛ S−
nŶ

n2

)
(ξ) = f −

0 (ξ) (12)

Proof of (11). The almost sure limit (11) is due to Theorem 2.2. Indeed, with this theorem and [10] we have for all ξ∗ ∈R3

lim
n→+∞

(S−
In

|In|
)∗

(ω, ξ∗) = inf
n∈N∗

ˆ

�

(S−
(0,n)2

n2

)∗
(ω, ξ∗)dP(ω)

= inf
n∈N∗

(˛ S−
nŶ

n2

)∗
(ξ∗)

=
(

sup
n∈N∗

˛ S−
nŶ

n2

)∗
(ξ∗)

Using the Mosco-convergence that gives the equivalence of a simple convergence of Legendre–Fenchel of processed h∗
n → h∗

and simple convergence hn → h, the proposal is essential for viewing, also demonstrating the limit (12)
Let ξ∗ ∈ R3, by definition of the limit f −

0 and of the Mosco-convergence, we have for all ω ∈ � the almost sure limit,

lim
n→+∞

( SnŶ

n2

)
(ω, ξ∗ =

(
f −
0

)∗
(ξ∗)

We now take the mathematical expectancy of this equality; using the dominated convergence theorem of Lebesgue, we get:

lim E
[( SnŶ

2

)
(ω, ξ∗)

]
= E

[(
f −
0

)∗
(ξ∗)

]
=

(
f −
0

)∗
(ξ∗) (13)
n→+∞ n
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Then by the theorem of M. Valadier [10], for all n ∈ N and for all ξ∗ ∈ R3,

E
[( SnŶ

n2

)
(ω, ξ∗)

]
=

(˛ S−
nŶ

n2

)∗
(ξ∗)

the equality (13) becomes

lim
n→+∞

(˛ S−
nŶ

n2

)∗
(ξ∗) =

(
f −
0

)∗
(ξ∗)

We can conclude with the Mosco-convergence argument. �
The energy density f −

0 is a convex and p-order positively homogeneous function, satisfying the growth condition (4)
with the same constant α, another constant β > 0, and the Lipschitz condition (5) with a constant � > 0, possibly different.

3. Variational bounds of the energy associated with structure (S)

Remember that we would like to establish the next frame of the �-Limit functional Hε . We need a compactness result 
giving us weak convergence in Lp(O, R3) suites of finite energy. We recall that this convergence sets the topology for which 
the functional terminal is Hε .

Proposition 3.1 (Compactness result). Let (uε)ε>0 be a sequence of W 1,p
�0

(O, R) such that supε>0

(
Hε(ω, uε) −

´
O L·uε dx

)
< +∞

for almost every ω ∈ �. Then, for almost every ω ∈ �, there exists a sub-sequence, and (u, v) ∈ L p(O, R3) × V 0 such that

(i) uε ⇀ u in Lp(O, R3);

(ii)

a(ω,
.

ε
)uε ⇀ v in Lp(O,R) (14)

a(ω,
.

ε
)
∂uε

∂x3
⇀

∂v

∂x3
in Lp(O,R) (15)

This result is already proven in [4].

4. Estimate of an upper bound

Proposition 4.1. Suppose a set �′ ∈ A with P(�′) such that (u, v) ∈ Lp(O, R3) × V 0 , and a sequence (uε(ω, .))ε>0 ∈ Lp(O, R3)

satisfying, for ω ∈ �,ˆ

O

f +
0 (u − 1

θ
v)dx + G0(

1

θ
v) = lim sup

ε→0
Hε(ω, uε(ω, .))

(uε(ω, .),a(ω,
.

ε
)uε(ω, .) ⇀⇀ (u, v) in Lp(O,R3) × V 0

So, we have almost surely

(�- lim sup Hε)(ω, u) ≤ F +
0 (u − 1

θ
v) + G0(

1

θ
v)

The homogenized energy density f +
0 depends on the statistical volume ratio θ and on the virtual displacement field v

due to fibers.

Proof. The demonstration involves three steps; let us remember that Fε(ω, .) is defined in Lp(O, R3) with

Fε(ω, u) =

⎧⎪⎨⎪⎩
εp

ˆ

O\Tε

f ∞,p(∇u)dx if u ∈ W 1,p
�0

(O,R)

+∞ else

Step 1. We suppose that (u, v) ∈ C1
c (O, R3) ×

(
C1

c (O, R3) ∩ V 0(O, R3)
)

; we prove that �′ with P(�′) = 1 such that for 

all ω ∈ �′ , there exists (uε(ω, .))ε>0 in Lp(O, R3) satisfying
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uε(ω, .),⇀⇀ (u, v) in Lp(O,R3) × V 0

lim
ε→0

Fε(ω, uε(ω, .)) =
ˆ

O

f +
0 (u − 1

θ
v)dx

lim
ε→0

Gε(ω, uε(ω, .)) = G0(
1

θ

∂v

∂x3
)

(16)

Let η ∈ Q+ (a positive rational number) and (Q i,η)i∈Iη a finite family of cubes R3 with diameter η in O such that∣∣∣O\
⋃
i∈Iη

Q i,η

∣∣∣ = 0.

We define zη := ∑
i∈Iη zi,η1Q i,η and zi,η = (u − 1

θ
v)(xi,η) where xi,η is arbitrarily chosen in Q i,η . It is clear that zη → u − 1

θ
v

in Lp(O, R3) when η → 0.
Let Ci,η,ε the upper cube I included in 1

ε Q i,η and wi,η,ε ∈ admCi,η,ε (ω, zi,η(xi,η)) a minimizer of S̃Ci,η,ε (ω, zi,η(xi,η))

extend to zero out of Ci,η,ε \ T (ω). Note (Ci,η,ε)ε a regular family of R3. With each cube Q = ]a, b[ ∈ R3, we associate the 
cube Q ′ := ]0, b[. Take the family (C ′

i,η,ε)ε . We have:

|Ci,η,ε|
|C ′

i,η,ε|
= |Ci,η,ε|∣∣∣ 1

ε Q i,η

∣∣∣ ×
∣∣Q i,η

∣∣∣∣∣Q ′
i,η

∣∣∣ ×
∣∣∣ 1
ε Q ′

i,η

∣∣∣
|C ′

i,η,ε|

It is easily seen that

lim
ε→0

|Ci,η,ε|∣∣∣ 1
ε Q i,η

∣∣∣ = lim
ε→0

|C ′
i,η,ε|∣∣∣ 1

ε Q ′
i,η

∣∣∣ = 1

so for ε very small 
|Ci,η,ε|
|C ′

i,η,ε|
≤ 2

∣∣Q i,η
∣∣∣∣∣Q ′

i,η

∣∣∣ . The family (C ′
i,η,ε)ε satisfies conditions (i′)–(iv′) of the subadditive theorem [11–13]. 

By Theorem 2.1,

lim
ε→0

S̃Ci,η,ε (ω, zi,η(xi,η))∣∣Ci,η,ε

∣∣ = lim
ε→0

1∣∣Ci,η,ε

∣∣
ˆ

Ci,η,ε\T (ω)

f ∞,p(∇wi,η,ε(ω, y))dy = f +
0 (zi,η(xi,η)) (17)

let ω ∈ �i,η with P(�i,η) = 1, note �′ := ⋂
η∈Q+

⋂
i∈Iη �i,η and fix ω ∈ �′ . With (17), we can write

ˆ

O

f +
0 (zη)dx =

∑
i∈Iη

∣∣Q i,η
∣∣ f +

0 (zi,η(xi,η))dx

= lim
ε→0

∑
i∈Iη

∣∣Q i,η
∣∣ 1∣∣Ci,η,ε

∣∣
ˆ

Ci,η,ε\T (ω)

f ∞,p(∇wi,η,ε(ω, y))dy

= lim
ε→0

∑
i∈Iη

∣∣∣ 1
ε Q i,η

∣∣∣
|Ci,η,ε|

ˆ

Q i,η\εT (ω)

f ∞,p(∇wi,η,ε(ω,
y

ε
))dy

= lim
ε→0

∑
i∈Iη

ˆ

Q i,η\Tε(ω)

f ∞,p(∇wi,η,ε(ω,
y

ε
))dy (18)

Indeed, limε→0

∣∣∣ 1
ε Q i,η

∣∣∣
|Ci,η,ε | = 1 and wi,η,ε = 0 out of Ci,ε,η \ T (ω).

Now we can define the function uη,ε by

uη,ε := (
1

θ
v + εξε,η(ω,

x̂

ε
)) +

∑
i∈Iη

wi,η,ε(ω,
x

ε
)1Q i,η (x)

where
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θ

ˆ

O

g⊥(
1

θ

∂u

∂x3
)dx = θ

ˆ

O

inf
ξ∈M3×2

g

(
ξ + 1

θ
∇̂u,

1

θ

∂u

∂x3

)
dx

≥ θ

ˆ

O

g

(
ξη + ∇̂u,

1

θ

∂u

∂x3

)
dx − η (19)

The measurability of x �→ ξη(x) is due to the coercivity of g and to the Measurability Theorem (see [5]). Also, from the 
density of C1

c (O, M3×2) in Lp(O, M3×2) and from the Lipschitz property of the convex function g , we can suppose that 
ξη ∈ C1

c (O, M3×2). So we note ξε,η := ερ(ω, .)ξη where ρ(ω, .) ∈ C1
c (R2, R2) and ρ(ω, ŷ) = ŷ for all ŷ ∈ D(ω).

It is easily seen that a(ω, .ε )uη,ε = a(ω, .ε )( 1
θ

v + εξε,η(ω, x̂
ε )). On the other hand,

lim
ε→0

a(ω,
.

ε
)uη,ε = v weakly in Lp(O,R3)

lim
η→0

lim
ε→0

uη,ε = 1

θ
v + u − 1

θ
v = u weakly in Lp(O,R3)

The first limit is a consequence of Proposition 5.3 in [14] (i.e. a(ω, .ε ) ⇀ θ ). To establish the second one, we only need to 
consider a wi,η,ε ∈ admCi,η,ε (ω, zi,η),

 

Q i,η

wi,η,ε(ω,
x

ε
)dx = 1

|Q i,η|
ˆ

εCi,η,ε

wi,η,ε(ω,
x

ε
)dx

= |Ci,η,ε|∣∣∣ 1
ε Q i,η

∣∣∣
 

Ci,η,ε

wi,η,ε(ω, x)dx

= |Ci,η,ε|∣∣∣ 1
ε Q i,η

∣∣∣ zi,η

Letting successively ε → 0 and η → 0, we obtain lim
η→0

lim
ε→0

uη,ε = u.

By the definition of uη,ε ,
ˆ

O

f +
0 (zδ,η)dx = lim

ε→0

∑
i∈Iη

ˆ

Q i,η\Tε(ω)

f ∞,p(∇wi,η,ε(ω,
x

ε
))dx

= lim
ε→0

ˆ

O\Tε(ω)

f ∞,p(∇uη,ε(ω,
x

ε
))dx = lim

ε→0
Fε(ω, uη,ε(ω, .)

When η → 0 and noticing that the function w �→ ´
O f +

0 (w) dx is continuous in Lp(O, R3), we obtain:
ˆ

O

f +
0 (u − 1

θ
v) = lim

η→0
lim
ε→O

Fε(ω, uη,ε(ω, .)) (20)

Thanks to (19)

lim
η→0

lim
ε→0

Gε(ω,a(ω,
.

ε
)uδ,η,ε) = θ

ˆ

O

(g⊥)∗∗(1

θ

∂v

∂x3
) (21)

Finally, a vector argument diagonalization yields:

(uε(ω, .),a(ω, .
ε )uε) ⇀⇀ (u, v) in Lp(O,R3) × V 0

limε→0 Fε(ω, uε(ω, .)) = ´
O f +

0 (u − 1
θ

v)dx

limε→0 Gε(ω, uε(ω, .)) = G0(
1
θ

∂v
∂x3

)

(22)

Step 2. The result of Step 1 is established assuming only (u, v) ∈ Lp(O, R3) ×
(
C1

c (O, R3) ∩ V 0(O, R3)
)

.

We construct a sequence (un(ω, ·), v) in C1
c (O, R3) ×

(
C1

c (O, R3) ∩ V 0(O, R3)
)

where un weakly converging to u in 

Lp(O, R3). After step 1, we can construct a sequence (uε,n)ε>0 that weakly converges to un , satisfying (16). We then obtain 
our result by diagonalization.
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Step 3. Now let us apply (22) for (u, vη) ∈ Lp(O, R3) × V 0, where vη is a minimizer sequence of H0(u), then there exits 
a sequence uε,η ∈ W 1,p

0 (O, R3) weakly converging to u in Lp(O, R3) such that

lim
ε→0

Hε(ω, uε,η(ω, .)) =
ˆ

O

f +
0 (u − 1

θ
v)dx + G0(

1

θ

∂v

∂x3
) + η

We end the proof by η → 0 and again using a diagonalization argument. �
5. Estimate of a lower bound

5.1. Estimation of the lower bound in the matrix

Proposition 5.1. For all (uε, 1O∩Tε uε) weakly converging (u, v) in Lp(O, R3) × V 0 with supε>0 Hε(ω, uε) < +∞, we have for 
almost every ω in �

F −
0 (u − 1

θ
v) ≤ lim

ε→0
inf Fε (ω, uε)

Proof. We can assume

lim
ε→0

inf Fε (ω, uε) < +∞ (23)

and with (3), Fε(ω, uε) = εp
ˆ

O\Tε

f ∞,p(∇uε) dx. The homogeneity of f ∞,p gives us:

lim inf
ε→0

εp
ˆ

O\Tε

f ∞,p(∇uε)dx = lim inf
ε→0

ˆ

O\Tε

f ∞,p(ε∇uε)dx

We want to show that, for all n ∈ N∗:

lim inf
ε→0

ˆ

O\Tε

f ∞,p (ε∇uε) dx ≥
ˆ

O

˛ S−
nŶ

n2

(
u − 1

θ
v
)

dx

Note Step(O) the set of step functions w = ∑
i∈I z∗

i 1Oi where (Oi)i∈I is a family included in cubes O such as |O \⋃
i∈I Oi | = 0 and z∗

i ∈ Q3. Furthermore Step(O) is a dense subspace of Lq(O, R3).

Consider w = ∑
i∈I z∗1Oi in Step(O); we establish n ∈ N∗ . Let σi,n a minimizer of 

(S−
nŶ

n2

)∗
(z∗

i ) which is extended by 0

in D ∩ nŶ . Then we extend by covariance the strain field σi,n in R2 \ D , meaning:

σ̄i,n(ω, x̂) := σi,n(τzω, x̂ − z) when x̂ ∈ nŶ + z, z ∈ nZ2

It is easy to see that σ̄i,n satisfies the covariance property: for all x̂ ∈ R2 and all z ∈ nZ2,

σ̄i,n(ω, x̂ + z) = σ̄i,n(τzω, x̂) (24)

and, σ̄i,n(ω, .) = 0 in D(ω). Thanks to the boundary conditions satisfied by σi,n , we have:

−div σ̄i,n = z∗
i on R2 \ D

From the generalization of Birkhoff’s ergodic theorem and from (24), we deduce for almost every ω ∈ �

ˆ

Oi\Tε

( f ∞,p)∗(σ̄i,n(ω,
x̂

ε
),0)dx =

ˆ

Oi

( f ∞,p)∗(σ̄i,n(ω,
x̂

ε
),0)dx → |Oi|E

 

nŶ

( f ∞,p)∗(σi,n,0)dx̂

when ε → 0, i.e., by definition of σi,n ,

ˆ

Oi\Tε

f ∞,p(σ̄i,n(ω,
x̂

ε
),0)dx → |Oi|E

(S−
nŶ

n2

)∗
(z∗

i ) (25)

Let �′′ = ⋃
z∗∈Q 3 �z where P (�z∗ ) = 1 and the set of sour probability with convergence (25) for z∗ ∈ Q3 fixed. Convergence 

(25) is valid for all ω in �′ . With the Fenchel inequality, for almost every x ∈ O\Tε
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f ∞,p(ε∇uε(x)) ≥ f ∞,p(ε∇uε(x))ϕi,δ(x)

≥ ε∇̂uε(x) : σ i,n(ω,
x̂

ε
)ϕi,δ(x) − ( f ∞,p)∗(σ i,n(ω,

x̂

ε
),0)ϕi,δ(x)

Summing for i ∈ I and integrating over O\Tε , we getˆ

O\Tε

f ∞,p(ε∇uε)dx ≥
∑
i∈I

( ˆ

O\Tε

ε∇uε : σ i,n(ω,
x̂

ε
)ϕi,δ dx −

ˆ

Oi

( f ∞,p)∗(σ i,n(ω,
x̂

ε
))dx

)
Integrating by parts the first terms of the right-hand side, and noting that

−ε div σ̄i,n(
.

ε
) = z∗

i in O \ Tε

we obtain:ˆ

O\Tε

f ∞,p (ε∇uε) dx ≥
∑
i∈I

( ˆ

O\Tε

uε · z∗
i ϕi,δ dx −

ˆ

O\Tε

εuε · σ̄i,n(
x̂

ε
)grad ϕi,δ dx

+
ˆ

∂Tε∩O
εuε.σi,n(

x̂

ε
)νϕi,δ dH2

)
−

∑
i∈I

ˆ

Oi

( f ∞,p)∗(σ̄i,n(ω,
x̂

ε
),0)dx (26)

where ν is the normal unit vector on T . We can now show that the second termˆ

O\Tε

εuε · σ̄i,n(
x̂

ε
)grad ϕi,δ dx

on the right-hand side of (26) almost surely approaches 0 when ε → 0. Indeed, the function 1O\Tε uε ⇀ u − v in Lp(O, R3). 
On the other hand,∣∣∣∣∣∣1

ε
Ô \

∑
z∈Iε

(nŶ + z)

∣∣∣∣∣∣ = 0

#(Iε) = |Ô|
n2ε2 and
ˆ

O\Tε

∣∣∣∣σ̄i,n(
x̂

ε
)

∣∣∣∣q

dx = hε2
ˆ

1
ε Ô\D

∣∣σ̄i,n(x̂)
∣∣q dx̂

≤
∑
z∈Iε

hε2
ˆ

nŶ +z\D

∣∣σ̄i,n(x̂)
∣∣q dx̂

=
∑
z∈Iε

hε2
ˆ

nŶ \D(τzω)

∣∣σ̄i,n(τzω, x̂)
∣∣q dx̂

= |Ô|
n2

1

#(Iε)

∑
z∈Iε

ˆ

nŶ \D(τzω)

∣∣σ̄i,n(τzω, x̂)
∣∣q dx̂

≤ C
1

#(Iε)

∑
z∈Iε

1

n2

ˆ

nY \T (τzω)

( f ∞,p)∗(σ̄i,n(τzω, y),0) y

= C
1

#(Iε)

∑
z∈Iε

(S−
nŶ

(τzω, .)

n2

)∗
(z∗

i ) (27)

from coercivity ( f ∞,p)∗ and from the fact that the constant C is positive and does not depend on Ô, we obtain (27). 
Moreover, thanks to Proposition 5.3 in [14] we have for almost every ω ∈ �

lim
ε→0

1

#(Iε)

∑
z∈Iε

(S−
nŶ

(τzω, .)

n2

)∗
(z∗

i ) = E
((S−

nŶ

n2

)∗
(z∗

i )
)

Thus, supε>0
´
O\T

∣∣∣σ̄i,n( x̂ )

∣∣∣q
dx < +∞, and the assertion is proved.
ε ε
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From (26) and (25), we obtain:

lim inf
ε→0

ˆ

O\Tε

f ∞,p (ε∇uε) dx ≥
∑
i∈I

ˆ

O

(u − v).z∗
i ϕi,δ dx −

∑
i∈I

|Oi|E
(S−

nŶ

n2

)∗
(z∗

i )

+
∑
i∈I

lim inf
ε→0

ˆ

∂Tε∩O
εuε.σ̄i,n(

x̂

ε
)νϕi,δ dH2 (28)

Considering the fact that the energy in the fibers is uniformly bounded, we now estimate the limit

lim inf
ε→0

ˆ

∂Tε∩O
εuε·σ̄i,n(

x̂

ε
)νϕi,δ dH2

Lemma 5.1.

lim inf
ε→0

ˆ

∂Tε∩O
εuε.σ̄i,n(

x̂

ε
)νϕi,δ dH2 =

ˆ

O

v
(
1 − |nŶ |

|nŶ ∩ D|
)
z∗

i ϕi,δ (29)

Proof. Consider the (random) inhomogeneous problem of Neumann defined in nŶ ∩ D by:⎧⎪⎨⎪⎩ − div
(|∇U |p−2∇U

) = (
1 − |nŶ |

|nŶ ∩ D|
)
z∗

i in nŶ ∩ D

|∇U |p−2∇U .ν = −σi,n.ν in ∂ D ∩ nŶ

(30)

Note that problem (30) is posed by the criterion of compatibility and is verified through

ˆ

∂ D∩nŶ

−σi,n·ν dH1 +
ˆ

D∩nŶ

(
1 − |nŶ |

|nŶ ∩ D|
)
z∗

i dx̂ = 0

i.e. ˆ

∂ D∩nŶ

−σi,n·ν dH1 + (|nŶ ∩ D| − |nŶ |)z∗
i = 0

Indeed, σi,n ∈ ãdm∗
nŶ

(z∗
i ), which means that

−divσi,n = z∗
i in nŶ \ D and σi,nμ = 0 on ∂nŶ

where μ is the outgoing normal vector ∂nŶ ; so, integrating over nŶ \ D and using Green’s formula,

−
ˆ

∂ D∩nŶ

σi,nμdH1 = |nŶ \ D|z∗
i = (|nŶ | − |nŶ ∩ D|)z∗

i

For further details, see [9], Chapter 15. So was proved the existence of at least one solution to problem (30).
Let ξi,η = ∇U , which is extended on D by covariance:

ξ̄i,n(ω, x̂) := ξi,n(τzω, x̂ − z) for x̂ ∈ nŶ + z, z ∈ nZ2

By problem (30) and Green’s formula,

ˆ

∂Tε∩O
εuε·σ̄i,n(

x̂

ε
)νϕi,δ dH2 =

ˆ

Tε∩O
ε∇̂uε : ξ̄i,n(

x̂

ε
)ϕi,δ dx −

ˆ

O∩Tε

εuε·ξ̄i,n(
x̂

ε
)gradϕi,δ dx

+
ˆ

uε

(
1 − |nŶ |

|nŶ ∩ D|
)
z∗

i ϕi,δ dx (31)
O∩Tε
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By repeating the arguments that led to estimate (27), we obtain, for almost every ω on �:
ˆ

Tε∩O

∣∣∣∣ξ̄i,n(ω,
x̂

ε
)

∣∣∣∣q

dx → E
( ˆ

nŶ ∩D

∣∣ξi,n(., x)
∣∣q dx

)

so that sup
ε>0

ˆ

Tε∩O

∣∣∣∣ξ̄i,n(ω,
x̂

ε
)

∣∣∣∣q

dx < +∞.

In addition, from sup
ε>0

Hε(ω, uε) < +∞, we deduce:

sup
ε>0

ˆ

Tε∩O
|∇uε|p dx < +∞

and Poincaré’s inequality leads to

sup
ε>0

ˆ

Tε∩O
|uε|p dx < +∞

The estimated values (29) are therefore obtained when ε → 0 in equality (31). �
Come back to (28), by result (29), we obtain

lim inf
ε→0

ˆ

O\Tε

f ∞,p (ε∇uε) dx ≥
∑
i∈I

ˆ

O

(u − v)·z∗
i ϕi,δ dx +

∑
i∈I

ˆ

O

v
(
1 − |nŶ |

|nŶ ∩ D|
)
z∗

i

−
∑
i∈I

|Oi|E
(S−

nŶ

n2

)∗
(z∗

i )

So, when δ → 0,

lim inf
ε→0

ˆ

O\Tε

f ∞,p (ε∇uε) dx ≥
ˆ

O

(u − |nŶ |
|nŶ ∩ D| v)·w dx −

ˆ

O

E
(S−

nŶ

n2

)∗
(w)dx (32)

The Valadier result (cf. [10]) gives the equality:

E
(S−

nŶ

n2

)∗ =
(˛ S−

nŶ

n2

)∗

from which, by passing on the functions Supremum w ∈ Step(O) in (32), we deduce

lim inf
ε→0

ˆ

O\Tε

f ∞,p (ε∇uε) dx ≥
ˆ

O

˛ S−
nY

n2

(
u − |nŶ |

|nŶ ∩ D| v
)

dx

Moreover, it is easy to show that 
¸ S−

nŶ
n2 is locally Lipschitz:∣∣∣∣∣

˛ S−
nŶ

n2
(ξ) −

˛ S−
nŶ

n2
(ξ ′)

∣∣∣∣∣ ≤ L′|ξ − ξ ′|(|ξ |p−1 + |ξ ′|p−1)

with L′ > 0, so

lim inf
ε→0

ˆ

O\Tε

f ∞,p (ε∇uε) dx ≥
ˆ

O

˛ S−
nŶ

n2

(
u − |nŶ |

|nŶ ∩ D| v
)

dx

≥
ˆ

O

˛ S−
nŶ

n2

(
u − 1

θ
v
)

dx − L′
∣∣∣∣∣ |nŶ |
|nŶ ∩ D| − 1

θ

∣∣∣∣∣ (( |nŶ |
|nŶ ∩ D|

)p−1 + (1

θ

)p−1
)

We obtain the final result when n ∈ N∗ goes to ∞, with Corollary 2.2 and ergodic theorem (cf. [6]). Indeed, for almost ω
in �
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lim
n→+∞

|nŶ ∩ D|
|nŶ | = lim

n→+∞
1

n2

∑
z∈In

|(Ŷ + z) ∩ D|

= lim
n→+∞

1

n2

∑
z∈In

|Ŷ ∩ D(τz(ω))| = E(|Ŷ ∩ D|) := θ �

6. The periodic case

It is located in the particular case where the sections of the fibers are distributed periodically, in the case of a random 
chessboard with #(ω0) = 1. We will show that this is an equality in particular cases.

We define the density f −
# and f +

# associated with f −
0 and f +

0

f −
# (ξ) = inf

⎧⎪⎨⎪⎩
ˆ

Ŷ

f ∞,p(∇w,0)dx : w ∈ adm−
#

⎫⎪⎬⎪⎭
f +
# (ξ) = inf

⎧⎪⎨⎪⎩
ˆ

Ŷ ×(0,1)

f ∞,p(∇w)dx : w ∈ adm+
#

⎫⎪⎬⎪⎭
with ξ ∈R3 and

adm−
# :=

⎧⎪⎨⎪⎩w ∈ W#(Ŷ ,R3) :
ˆ

Ŷ

w dx̂ = ξ, w = 0 in D

⎫⎪⎬⎪⎭
adm+

# :=
⎧⎨⎩w ∈ W#(Y ,R3) :

ˆ

Y

w dx = ξ, w = 0 in D

⎫⎬⎭
and we define the following functional energies for all u ∈ Lp(O, R3)

F −
# (u) =

ˆ

O

f −
# (u)dx, F +

# (u) =
ˆ

O

f +
# (u)dx

Energy G0 is defined as in the framework with the stochastic θ = |Ŷ ∩ D|.
We want to show:

i) f −
# = f −

0 = f +
# ,

ii) F −
# +

e
G0 ≤ �- lim inf Hε ≤ �- lim sup Hε ≤ F +

# +
e

G0.

Then the global energy (Hε)ε>0 �-converges to F −
# +

e
G0 = F +

# +
e

G0.

Proof i) It is clear that f −
# = f −

0 . For all ξ ∈R3 fixed, by Jensen’s inequality, f +
# (ξ) ≥ f −

# (ξ). On the other hand, for every 
function w ∈ adm−

# , the function w̃ is defined by w̃(x) := w(x̂) of w ∈ adm+
# with f +

# (ξ) ≤ f −
# (ξ).

Proof ii) The inequality F −
# +

e
G0 ≤ �- lim inf Hε is due to F −

0 +
e

G0 ≤ �- lim inf Hε(ω, .) (previous result), and to f −
# = f −

0 . 
Moreover, with the notation of the proof of Proposition 4.1, Step 1, let wi,η ∈ adm+

# satisfying

ˆ

Y

f ∞,p(∇wi,η)dx = f +
# (zi,η(xi,η))

extended by Y -periodicity. As

f ∞,p(∇wi,η(
y

ε
)) ⇀

ˆ
f ∞,p(∇wi,η)dx
Y
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σ(L1, L∞), we obtain the following inequality associated with (18)ˆ

O

f +
# (zη)dx = lim

ε→0

∑
i∈Iη

ˆ

Q i,η\Tε

f ∞,p(∇wi,η(
y

ε
))dy

Define the function uη,ε by

uη,ε(x) :== (
1

θ
v + εξε,η(

x̂

ε
)) +

∑
i∈Iη

wi,η(
x

ε
)1Q i,η (x)

where ξε,η is defined as in (19), with some clear modifications. This ends the proof as in the proof of Proposition 4.1 to 
obtain F −

# +
e

G0 ≤ �- lim inf Hε .

7. Conclusion

In this study, we obtained a deterministic and nonlocal model of a randomly reinforced material based on a homogeniza-
tion technique. From a mechanical perspective, in the elastic case, this energy density allows us to obtain upper and lower 
bounds of the homogenized parameters. This work is a first step; we will hereafter try to validate these results through 
an extensive numerical study, which will be presented in an upcoming paper in the dynamic case with an asymptotic area 
fraction of fibers θ(t) computed with dynamic covariance [15]. Last but not least, both terminals are identical in the case of 
a periodic distribution. Then, in the periodic case, given that both limits are identical, such results encourage us to continue 
our research.
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