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In this paper, we propose a new explicit analytical formula of the critical buckling load 
of double-walled carbon nanotubes (DWCNT) under axial compression. This formula takes 
into account van der Waals interactions between adjacent tubes and the effect of terms 
involving tube radii differences generally neglected in the derived expressions of the critical 
buckling load published in the literature. The elastic multiple Donnell shells continuum 
approach is employed for modelling the multi-walled carbon nanotubes. The validation of 
the proposed formula is made by comparison with a numerical solution. The influence of 
the neglected terms is also studied.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Cet article a pour objectif la proposition d’une formule analytique explicite de la charge 
critique de flambage des nantubes de carbone à double parois (DWCNT) soumis à une 
compression axiale. Cette formule prend en compte les interactions de van der Waals 
entre les tubes adjacents et l’influence des rayons, généralement negligée dans les formules 
donnant la charge critique de flambage publiées dans la littérature. L’approche continue des 
coques multiples de Donnell est utilisée pour la modélisation des nanotubes de carbone 
multi-parois. La validation de la formule proposée est faite par une comparaison avec une 
solution numérique. L’effet des termes négligés a aussi été étudié.
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1. Introduction

Carbon nanotubes are tubular carbon molecules of diameters of a few tens of nanometers and of a length of several 
microns. These ultra-fine tubular carbon structures exhibit superior mechanical, electronic and thermal properties and have 
potential applications in nano-technology and nano-electronics. Since their discovery by Iijima in 1991 [1], carbon nanotubes 
have led to several innovations in nano-technology and caused profound impacts on almost all existing industries ranging 
from medicine, agriculture, environment and biotechnology to information technology, aeronautics, and energy. The perfor-
mance of the new materials based on carbon nanotubes depends essentially on their outstanding mechanical properties.

Several research studies have been conducted to determine these properties in order to better understand their various 
static and dynamic behaviors such as rupture, vibration, wave propagation, and in particular their buckling behavior.

In view of their high aspect ratio and their very thin hollow cylindrical geometry, buckling of carbon nanotubes has 
become a very important attractive topic of research in the community of scientists who are interested in studying the 
instability phenomena of carbon nanotubes.

Buckling analysis of carbon nanotubes, observed in recent works, is performed using two methods: molecular dynamics 
simulations (classical molecular dynamics tight molecular dynamics and ab initio) and methods based on continuous models 
of beams, shells and truss of the continuum media mechanics. The applicability of continuum mechanics for analyzing 
the mechanical behavior of carbon nanotubes (CNTs) has been suggested in 1996 by Yakobson et al. [2]. Since this date, 
great efforts have been devoted, using the continuum mechanics approaches [3–6], to explore and simulate the buckling 
instability of single and multi-walled carbon nanotubes. The buckling of carbon nanotubes with single or multi walls axially 
compressed has been the subject of many works [7–13] based on mono- or multi-Euler–Bernoulli or Timoshenko beams 
[14] and Donnell or Sanders cylindrical circular-shell elastic continuum models [15–17].

The beam continuum model is valid for slender long CNTs. The buckling in this case is global. However, when the CNTs 
are short and have large diameters, their buckling is local and their modelling is better using shell continuum approaches. 
During the last recent years, buckling of double-walled carbon nanotubes (DWCNTs) under axial compression with simply 
supported ends is intensively studied using Donnell’s cylindrical continuum shell model, taking into account van der Walls 
forces between the layers [7,11,12,18–20].

Analytical formulae for the buckling load of DWCNTs have been derived in the literature. These proposed formulae are 
based on approximations consisting in neglecting the terms involving the difference between the radii of the inner and 
outer tubes. Furthermore, the critical buckling load is always obtained numerically [7,11,12,18].

The aim of this paper is to propose a new explicit analytical formula for the critical buckling load of DWCNTs under 
axial compression for fixed aspect ratios without any assumption on radii tubes. This expression is obtained using Donnell’s 
cylindrical continuum model taking into account the van der Waals interaction. The critical buckling load is derived by an 
analytical minimization procedure. A comparison with numerical result is performed to validate the proposed formula. The 
effect of omitting terms on the critical buckling load is also investigated.

2. Basic equations

Thin-shell theories based on continuum mechanics have been successfully applied to predict several mechanical proper-
ties of single and multi-walled carbon nanotubes (SWCNTs, DWCNTs). The Donnell elastic shell models have been applied 
to single-walled and multi-walled carbon nanotubes [7,8,18,19,21–25].

2.1. Donnell’s cylindrical elastic shell continuum model

Consider an axially compressed buckling of a single circular cylindrical elastic shell of radius R , thickness h, Young’s 
modulus E and Poisson’s ratio ν . The equilibrium equation of the shell is given by [3,4,26–28]:

k2�2 w − ρ
N y

Eh
− 1

Eh

(
Nx

∂2 w

∂x2
+ 2Nxy

∂2 w

∂x∂ y
+ N y

∂2 w

∂ y2

)
− p

Eh
= 0 (1)

where k2 = D/Eh; with D = Eh3/12(1 − ν2) is the bending stiffness of the shell, ρ = 1/R is the curvature, w is the radial 
displacement of the middle area, Nx = K (εxx +νεyy) is the axial membrane force, N y = K (εyy +νεxx) is the circumferential 
membrane force, Nxy = K (1 − ν)εxy is the shear membrane force, p is the total radial pressure, εxx , εyy and εxy are the 
strains, x and y denote the axial and circumferential coordinates of the shell respectively, w(x, y) is the radial displacement 

of the middle surface of the shell along the normal direction, �2(.) =
(

∂2(.)

∂x2 + ∂2(.)

∂ y2

)2
is the bi-Laplacian operator and 

K = Eh/(1 − ν2).
To investigate the possible existence of adjacent equilibrium configurations, we use the adjacent equilibrium criterion [3,

29]. We examine the two adjacent configurations represented by the displacements before and after increments, as follows:
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⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

u = u0 + ub , v = v0 + vb

w = w0 + wb , Nx = Nx0 + Nxb

N y = N y0 + N yb , Nxy = Nxy0 + Nxyb

p = p0 + pb

(2)

where the index 0 indicates the pre-buckling quantities and the index b indicates those of post-buckling. The pre-buckling 
solution (u0, v0, w0, Nx0, N y0, Nxy0) verifies the following equation [29–33]:

k2�2 w0 − ρ
N y0

Eh
− 1

Eh

(
Nx0

∂2 w0

∂x2
+ 2Nxy0

∂2 w0

∂x∂ y
+ N y0

∂2 w0

∂ y2

)
− p0

Eh
= 0 (3)

We remark that (w0 = 0, N y0 = −p0/ρ) is a solution to Eq. (3). According to the shell theory, the membrane forces Nxb , 
N yb and Nxyb are connected to the stress function � by the following relations [29]:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Nxb = Eh
∂2�

∂ y2

N yb = Eh
∂2�

∂x2

Nxyb = −Eh
∂2�

∂x∂ y

(4)

Inserting Eqs. (2) and (4) in Eq. (1) and neglecting the terms of second order in index b, we obtain the following equation:

k2�2 wb − ρ
∂2�

∂x2
− 1

Eh

(
Nx0

∂2 wb

∂x2
+ 2Nxy0

∂2 wb

∂x∂ y
+ N y0

∂2 wb

∂ y2

)
− pb

Eh
= 0 (5)

The stress function �(x, y) verifies the following compatibility condition [29]:

�2� + ρ
∂2 wb

∂x2
= 0 (6)

If the shear membrane forces are neglected (Nxy0 = 0), the equations (5) and (6) are reduced to:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

k2�2 wb − ρ
∂2�

∂x2
− Nx0

Eh

∂2 wb

∂ y2
− N y0

Eh

∂2 wb

∂ y2
− pb

Eh
= 0

�2� + ρ
∂2 wb

∂x2
= 0

(7)

As Nx0 = P , P is the axial compression and denoting by F = N y0 the circumferential membrane force, the system (7) giving 
the Donnell equations becomes:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
k2�2 wb − ρ

∂2�

∂x2
− λ

∂2 wb

∂ y2
− F

Eh

∂2 wb

∂ y2
− pb

Eh
= 0

�2� + ρ
∂2 wb

∂x2
= 0

(8)

where λ = P/Eh is the load parameter.

2.2. Donnell’s multiple-shell continuum model

Consider a multi-walled carbon nanotubes (MWCNT), consisting of N tubes of radius R j ( j = 1, ..., N), length L, same 
thickness h, Young’s modulus E , Poisson’s ratio ν , subjected to an axial compression P . The walls of adjacent tubes interact 
through van der Waals forces as shown in Fig. 1. The modelling of MWCNT is performed by the use of continuum Donnell 
concentric multi-shells. Each tube j ( j = 1, ..., N) is modeled by an elastic homogeneous and isotropic circular cylindrical 
shell of length L, thickness h, radius R j , Young’s modulus E , and Poisson’s ratio ν , coupled by van der Waals interaction. 
Let us note by ui(x, θ), vi(x, θ) and wi(x, θ) the components of the displacement vector, x the axial coordinate and θ the 
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Fig. 1. Multi-Walled Carbone NanoTubes (MWCNT) under axial compression.

circumferential coordinate. Within Donnell’s theory and if the pre-buckling rotations are neglected, the transverse displace-
ments wi(x, θ) and the corresponding additional stress functions � j(x, θ) of MWCNT are solutions to the following 2N
coupled linear equations system [2,13,21].⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
k2�2

j w j − λ
∂2 w j

∂x2
− ρ j

∂2φ j

∂x2
− F vdw

j

Eh
= 0

�2
j φ j + ρ j

∂2 w j

∂x2
= 0

j = 1, ..., N (9)

where ρ j = 1
R j

is the curvature of jth tube, �2
j =

(
∂2

∂x2 + 1
R2

j

∂2

∂θ2

)2

is the bi-Laplacian operator, φ j is the stress function of 

jth tube. The van der Waals force F vdw
j is expressed by:

F vdw
j = F j

R2
j

∂2 w j

∂θ2
− p j (10)

with F j are the forces by length unit in the circumferential direction of jth tube prior buckling and p j is the pressure due 
to van der Waals interaction between layers of MWCNT given by [13]:

p j = w j

N∑
k=1

c jk −
N∑

k=1

c jk wk (11)

The van der Waals coefficients c jk are given by He et al. [13]:

c jk = −
[

1001πεσ 12

3a4
E13

jk − 1120πεσ 6

9a4
E7

jk

]
Rk (12)

where the coefficient a is the C–C bond, ε is the depth of Lennard–Jones potential, σ is a parameter being determined by 
the equilibrium distance [34] and Em

jk is the elliptic integrals expressed as:

Es
jk = 1

(R j + Rk)
s

π
2∫

0

dθ

(1 − K jk cos2(θ))s/2
Rk (13)

with s is an integer and K jk = 4R j Rk

(R j+Rk)
2 .

Using the cylindrical coordinates (x, θ) with y = R jθ and taking into account Eqs. (10) and (11), the system (9) can be 
written in the following form:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

k2�2
j w j + λ

∂2 w j

∂x2
− 1

Eh

(
F j

R2
j

∂2 w j

∂θ2
−

(
w j

N∑
k=1

c jk −
N∑

k=1

c jk wk

))
= 0

�2
j φ j + ρ j

∂2 w j
2

= 0

j = 1, ..., N (14)
∂x
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The solution to the problem (14) is sought in the following form [6,30,31,33,35,36]:⎧⎪⎪⎨
⎪⎪⎩

w j(x, θ) = A j exp(i
mπ

L
x) cos(nθ) + cc

φ j(x, θ) = D j exp(i
mπ

L
x) cos(nθ) + cc

j = 1, ..., N (15)

where m and n are respectively the axial and circumferential half wavenumbers of the jth tube, A j and D j are arbitrary 
complex constants and cc denotes the complex conjugate. The expression (15) indicates that the carbon nanotubes have 
buckling modes with sinusoidal wave pattern both in the axial and circumferential directions. The substitution of (15) into 
(14) leads to the following equations:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
k2

(
p2 + q2

j

)2
A j − λp2 A j + ρ j p2 D j − 1

Eh

(
−q2

j F j A j + A j

N∑
k=1

c jk Ak

)
= 0

(
p2 + q2

j

)2
D j − ρ j p2 A j = 0

j = 1, ..., N (16)

The second equation of (16) gives:

D j = ρ j p2(
p2 + q2

j

)2
A j (17)

where p and q j are defined by:

p = mπ
L

, q j = n

R j
, j = 1, ..., N (18)

By inserting equation (17) into first equation of equation (16), we obtain the following homogeneous matrix system:

(
k2[B]p4 − λ[I]p2 + [R] + 1

Eh
[C]

)
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

A1
A2
.

.

.

AN

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0
0
.

.

.

0

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(19)

where [I] is the unit matrix, the matrices [B], [R] and [C] are defined by:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Bij = (
1 + β2

i

)2
δ

j
i

Ri j = (
1 + β2

i

)2
δ

j
i

Ci j = −ci j +
[

Fiq2
i + ∑N

k �=i cik

]
δi j

i, j = 1,2,3, ..., N (20)

with δi j is a Kronecker symbol and the coefficients β j ( j = 1, ..., N) are the aspect ratios defined by:

β j = nL

mπR j
(21)

The equation (21) allows us to write β j+1 = (
R j/R j+1

)
β j . The coupled system of N equations (19) and N unknowns 

(A1, A2, ..., AN) has a nonzero solution if and only if:

det

(
k2[B]p4 − λ[I]p2 + [R] + 1

Eh
[C]

)
= 0 (22)

The expression of the determinant (22) is a polynomial of degree N in λ. Its resolution gives the buckling loads λ and the 
smallest value is the critical buckling load noted by λcr .

The next section is devoted to derivation of an explicit analytical expression of the critical buckling load λcr of a double-
walled carbon nanotube (DWCNT) in terms of its mechanical and geometrical characteristics.
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3. Buckling analysis of double-walled carbon nanotubes (DWCNTs)

3.1. Buckling load λ

In the case of a double-walled carbon nanotube (DWCNT) (N = 2), the expression of the buckling loads λ as a function 
of β1, β2, ρ1, ρ2, c12 and c21 is easily deduced from the characteristic equation (22) and can be written as follows:

λ = 1

2p2

(
(α1 + α2) ±

√
(α1 − α2)

2 + 4c12c21

(Eh)2

)
(23)

where α1 and α2 are given by:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

α1 = k2
(

1 + β2
1

)2
p4 − β2

1 F1

Eh
p2 + ρ2

1(
1 + β2

1

)2
− c12

Eh

α2 = k2
(

1 + β2
2

)2
p4 − β2

2 F2

Eh
p2 + ρ2

2(
1 + β2

2

)2
− c21

Eh

(24)

The smallest value of the buckling loads λ in (23) is obtained by taking the negative sign in the expression (23) because of 
the following relation:(

(α1 + α2) −
√

(α1 − α2)
2 + 4c12c21

(Eh)2

)
> 0 (25)

and in view of the relations

α1 > − c12

Eh
, α2 > − c21

Eh
(26)

where

c12 < 0 , c21 < 0 , (α1 + α2)
2 − (α1 − α2)

2 = 4α1α2 >
4c12c21

(Eh)2
(27)

Let us note that the most formulae published in the literature [8,9] are simplified expressions. They are derived by assuming 
all terms involving the ratio (R2 − R1)/R1 are very small and they are neglected in the expression (30). Let us introduce a 
set of coefficients ai (i = 1, ..., 10) defined by:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1 = k2
((

1 + β2
1

)2 +
(

1 + β2
2

)2
)

, a2 = ρ2
1(

1 + β2
1

)2
+ ρ2

2(
1 + β2

2

)2
− c12 + c21

Eh

a3 = k2
((

1 + β2
1

)2 −
(

1 + β2
2

)2
)

, a4 = ρ2
1(

1 + β2
1

)2
− ρ2

2(
1 + β2

2

)2
− c12 − c21

Eh

a5 = 2 a3 a4 + a2
8 , a6 = a2

4 + 4 c12 c21

(Eh)2

a7 = 1

Eh

(
β2

1 F1 + β2
2 F2

)
, a8 = 1

Eh

(
β2

1 F1 − β2
2 F2

)

a9 = 2 a3 a8 , a10 = 2 a4 a8

(28)

We remark that β1 = n
pR1

and β2 = n
pR2

then β2
1 F1 =

(
n
p

)2 (
F1
R1

)2
and β2

2 F2 =
(

n
p

)2 (
F2
R2

)2
. As 

(
F1
R1

)2 =
(

F2
R2

)2 = constant, 
then: ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

a7 = 2

Eh
β2

1 F1 , a5 = 2a3a4

a8 = 0 , a9 = 0

a = 0

(29)
10
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Taking into account the definition of the coefficients in (29) and the fact of β2
1 F1 = β2

2 F2 (see [13]), we can write the 
expression of the buckling loads (23) in terms of the axial wave number p as follows:

λ = 1

2p2

(
a1 p4 + a2 −

√(
a2

3 p8 + a5 p4 + a6
)) + a7

2
(30)

We can also rewrite the expression (23) according to m and n (λ = λ(m, n)). Let us note that the critical buckling load is 
generally determined by searching numerically the values of m and n, which gives the minimal value of the critical load λ

as in [8,13]. We propose in the next section an explicit analytical expression of the critical buckling load for fixed aspect 
ratio β1 and β2 using a theoretical minimization with respect to axial number wave p. In this study, we consider that the 
buckling load is given according to β1, β2 and p (λ = λ(β1, β2, p)). A comparison of the obtained analytical solution with 
the numerical solution computed by the minimization procedure with respect to integer numbers m and n will be also 
presented.

3.2. Determination of the critical buckling load of the double-walled carbon nanotubes

The critical buckling load λcr is obtained by minimizing the expression of the buckling loads λ(β1, β2, p) given by the 
equation (30) with respect to the axial wave number p for fixed aspect ratio β1 and β2:

∂λ(β1, β2, p)

∂ p
|β1 or β2fixed = 0 (31)

Equation (31) leads to the following polynomial of degree 16 in p, that we can rewrite in the form of a polynomial of 
degree 4 in � by putting � = p4:

b4�
4 + b3�

3 + b2�
2 + b1� + b0 = 0 (32)

where the coefficients bi (i = 0, 1, 2, 3, 4) are given by:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

b0 = a6(a
2
2 − a6) , b1 = a2

2a5 − 2a1a2a6

b2 = a2
2a2

3 − 2a1a2a5 + a2
1a6 + 2a2

3a6 , b3 = a2
1a5 − 2a1a2a2

3

b4 = a2
1a2

3 − a4
3

(33)

To access the critical buckling load of a double-walled carbon nanotube, we must find the roots of the polynomial (32). The 
only real root of equation (32) (more details are given in the appendix) is given by:

pcr =
(

B

2 (u − A)
− b3

4b4

) 1
4

(34)

where

A = −3

8

b2
3

b2
4

+ b2

b4
, B = 1

8

b3
3

b3
4

− 1

2

b2b3

b2
4

+ b1

b4
, u = A

3
+ 3

√√√√− D0

2
+

√
D2

0

4
+ D3

1

27
+ 3

√√√√− D0

2
−

√
D2

0

4
+ D3

1

27
(35)

with

D0 = − 2

27
A3 + 3

8
AC − B2 , D1 = −

(
A2

3
+ 4C

)
, C = − 3

256

b4
3

b4
4

+ b2b2
3

16b3
4

− b1b3

4b2
4

+ b0

b4
(36)

Finally the proposed critical buckling load λcr of double-walled carbon nanotubes (DWCNT), taking into account van der 
Waals interactions is expressed by the following explicit analytical formula:

λcr = λ(p = pcr) = 1

2p2
cr

(
a1 p4

cr + a2 −
√(

a2
3 p8

cr + a5 p4
cr + a6

)) + a7

2
(37)

where the axial wave number pcr is given by Eq. (34).
To our knowledge, there is no explicit analytical formula of the form (37) in the literature. Furthermore, this expression 

has been obtained without the assumption on the radius of tubes, that is to say the terms containing (R2 − R1) /R1 are 
not neglected in the formula (37). This approximation (R1 ≈ R2) has been adopted in [7] by assuming that these terms are 
small and their effects are negligible.

Let us note that the most formulae published in the literature [8,13] are simplified expressions. They are derived by 
assuming that all terms involving the ratio R1−R2 are very small and that they are neglected in the expression (30). This 
R1
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Fig. 2. Buckling loads λ versus (m,n) for equal and different radii.

simplification is based by assuming ρ1 = ρ2. As a consequence, we have q1 = q2, β1 = β2 and F1 = F2. Adopting this 
simplification, the expressions of coefficients ai (i = 1, ..., 7) given by (28) are reduced to:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1 = 2k2
(

1 + β2
1

)2
, a2 = 2

ρ2
1(

1 + β2
1

)2
− c12 + c21

Eh

a3 = 0 , a4 = − c12 − c21

Eh

a5 = 0 , a6 =
(

c12 + c21

Eh

)2

a7 = −β2
1 F1

Eh

(38)

Inserting (38) in (30) gives the following simplified expression:

λ = 1

2p2

(
a1 p4 + a2 − √

a6

)
+ a7

2
(39)

which is identical to the expression given by the formula given in [13], when the forces in the circumferential direction 
p1 = − Nθ

R1
and p2 = − Nθ

R2
prior to buckling are equal to zero and putting ρ1 = ρ2 = 1

R2
, p = mπ

L , q1 = q2 = n
R2

, β1 = β2 = q2
p .

The analytical minimization of (39) gives the following critical buckling load:

λcr =
√

a1
(
a2 − √

a6
) + a7

2
(40)

where a1, a2, a6 and a7 are given by (38). This expression (40) is a particular case of the proposed formula (37) in this 
work.

4. Numerical comparison and discussion

Numerical results are presented in this section for validating the proposed analytical expression of the critical buckling 
load of double-walled carbon nanotubes (DWCNT) under axial compression. We adopt the same data used in [37]. The 
considered experimental values of tubes radii R1 and R2 are: 0.45 nm ≤ R1 ≤ 1 nm, 1.5 nm ≤ R2 ≤ 5.4 nm. In numerical 
tests, we choose the following numerical values: R1 = 1 nm, R2 = 1.5 nm, L/R2 = 10, E = 1.7 TPa, ν = 0.34, h = 0.075 nm, 
c12 = −9.9187 × 1019 N/m3, c21 = (R1/R2) c12, F1 = 0 and for F1 different from zero. The numerical validation consists 
in comparing the obtained result by minimization of the expression (30) with the new analytical formula given by the 
equation (37).

The buckling loads λ(m, n), given by Eq. (30), are plotted in Fig. 2 versus the half wave numbers (m, n) in the axial and 
circumferential directions. Fig. 2a illustrates the case used in [7,38], and we represent in Fig. 2b the buckling loads for R1
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Fig. 3. Numerical and analytical solution versus the ratio (R2 − R1) /R1.

different from R2. The critical buckling load λcr is obtained by searching numerically the minimal value of the buckling 
loads λ(m, n) given by Eq. (30).

These results show that the approximate formula given in Ru [8], in which the terms involving the ratio (R2 − R1)/R1
are omitted, gives a higher critical buckling load.

To validate the proposed formula of the critical buckling load for fixed values of aspect ratios β1 and β2, we consider the 
values of aspect ratios given by β1 = 0.37 and β2 = 0.24. These values are equivalent to the critical values (m = 26, n = 2)

of the numerical test as shown in Fig. 2b.
The analytical solution λcr = 0.036 of critical buckling loads obtained by using formula (37) is equal to the minimal value 

of the buckling load of the curve given by solving numerically the equation (30) as shown in Fig. 2. On the other hand, the 
numerical and analytical half wave numbers m in axial direction are equal to 26. Consequently, this result validates the 
proposed analytical formula for double-walled carbon nanotubes (DWCNT).

In Fig. 3a, we give the critical buckling load of double-walled carbon nanotubes (DWCNT) estimated numerically using 
Eq. (30) and that analytically computed by the proposed formula (37) versus the ratio (R2 − R1) /R1. It is clear that the 
critical load decreases for increasing values of the ratio (R2 − R1) /R1. In addition, when the force by length unit F1 in the 
circumferential direction is considered (F1 �= 0), the Donnell cylindrical circular shell elastic continuum models give small 
values for the critical buckling load. Fig. 3b presents the wave number pcr in the axial direction versus the ratio; the wave 
number pcr and the axial half wavenumbers m are not affected by the force F1. One observe that, in the cylindrical Donnell 
shell models where L >> R2, the forces by length unit in the circumferential direction are affected in their directions. 
Figs. 3a and 3b show that the two solutions obtained numerically and by the proposed formula are in good agreement. 
According to experimental data [24], the smallest experimental value of the ratio (R2 − R1) /R1 is equal to 0.5, then the 
approximation (R2 − R1) /R1 ≈ 0 is not reasonable.

In the following, we will analyze the critical buckling load parameter λcr under the effect of aspect ratio β1 for three 
values of the force F1 (F1 = 0, 10−5 × Eh, 2.10−5 × Eh). In Fig. 4, the analytical formula of the critical buckling load 
parameter λcr is given for various forces versus the aspect ratio β1 compared to the numerical critical buckling load pa-
rameter. It is seen that critical load buckling presents a minimum for F1 = 0, 10−5 × Eh and decreases monotonically from 
F1 = 2.10−5 × Eh. The comparison of the proposed analytical formula (37) and of the minimized expression (30) varying 
the aspect ratio β1 for various values of F1 is depicted in Fig. 4. It is important to note that for the three distinct forces 
and for a fixed β1, we obtain the same values of critical buckling loads. This plot shows that there is a certain value F of 
the force F1 such that for all force less than F , the critical buckling load in term of aspect ratio presents a minimum and 
increases from this aspect ratio corresponding to this minimum. Beyond this value, the critical buckling load decreases with 
increasing the aspect ratio.

5. Conclusion

An exact explicit analytical formula of the critical buckling load of double-walled carbon nanotubes (DWCNTs) under axial 
compression for fixed values of the aspect ratio has been established without any assumption on tube radii. The derivation 
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Fig. 4. Comparison between the analytical formula and the numerical calculation of the critical buckling load λcr versus the aspect ratio β1 for F1 = 0, 
10−5 × Eh, 2.10−5 × Eh.

of the formula is performed by using the elastic circular cylindrical shell Donnell model. This proposed expression permits 
to recover the results published in the literature. In addition, it shows that the omission of tubes radii difference leads to 
an overestimation of the critical buckling load and to erroneous buckling modes. These terms have a significant effect on 
the critical buckling load and must be taken into account for its realistic prediction. This approximation is legitimate if the 
ratio (R2 − R1) /R1 is very small.

Appendix A

Let us search the solution to (32), first we eliminate the term in ∧3 by introducing the following change of variable:

∧ = x − b3

4b4
(41)

Inserting (41) into (32), we get:

x4 + Ax2 + Bx + C = 0 (42)

where A, B and C are defined by Eqs. (35) and (36). We transform the polynomial of degree 4 in a polynomial of degree 3
by introducing an auxiliary variable u such that:(

x + u

2

)2 = (u − A) x2 − Bx +
(

u2

4
− C

)
(43)

with u �= A. Let us note that the polynomial (43) is equivalent to (42). Imposing that the discriminant of the right-hand side 
of (43) is zero and putting:

u = v + A

3
(44)

we obtain:

u3 + D1 v + D0 = 0 (45)

where D0 and D1 are defined by Eq. (36). Equation (45) is a polynomial of an odd degree, then it has at least a real root. 
Its root is obtained using Cardan’s formulae. For 4D3

1 + 27D2
0 > 0, it is given by:

vcr = √
3− D0

2
+

√
D2

0

4
+ D3

1

27
+ √

3− D0

2
−

√
D2

0

4
+ D3

1

27
(46)

The equation (44) gives:

ucr = vcr + A

3
(47)

Taking into account Eq. (41) and ∧ = p4, we get Eq. (32). The local critical buckling load λcr (40) of the double-walled 
carbon nanotubes is obtained using Eqs. (30) and (34).
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