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In this paper, a new method for identifying the dynamical parameters of local constraining 
supports such as mass, stiffness, and damping was developed through combining the 
measured frequency transfer functions and structural modification techniques. Since 
measurement noise often leads to erroneous identifications, regularization techniques have 
been implemented to reduce noise amplification in the inverse problem. The developed 
technique has been validated by numerical tests on a multi-supported flexible structure, 
which can be seen as an idealized electricity generator rotor shaft. The results are 
satisfactory for noise-free data as well as under realistic noise levels. The sensitivity of 
the identified support features to noise levels is asserted through a parametric study

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Rotors such as gas turbines, centrifugal compressors and fans are among the most important mechanical components 
in many engineering fields. High-speed rotating machines are often required; yet, they become prone to vibration issues 
and dynamic instabilities when reaching critical speed regimes. Thus, for reliability reasons, it is necessary to ensure a good 
stability of the machinery. Hence, rotor instability causes have been investigated for many decades. Newkirk [1] described 
the “oil whip” phenomenon for the bearing induced instability. It has been shown later that rotor instability can be related 
to the bearing dynamic coefficients. Stiffness and damping coefficients of the bearings must be known in order to create the 
rotor’s design, as shown by Ramsden [2]. Further conclusions were then made by Dawson and Taylor [3] through experi-
ments on rotor dynamics, which are required to study the bearings and supports effects on the rotor response. Thermal and 
elastic distortion effects must be also taken into account and, to this end, the characterization of the dynamic behavior of 
the bearings is needed. Nordmann and Scholhom [4] proposed a procedure to identify the stiffness and damping parameters 
of a plain bearing. For rotors mounted on two symmetrical bearings, the impact method was used by Chan and White [5] to 
identify the dynamic bearing parameters, by adjusting the resulting model on the frequency response functions (FRFs). As 
bearing parameters are not symmetrical in most cases, the use of their method is restricted. A method for the identification 
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Fig. 1. Picture of the rotor test rig at LDA of IST/CTN (left); detailed sketch of the components of the rotor model (right).

of the structural parameters of joints was later proposed by Wang and Liu [6], then extended by Ammugam et al. [7] to 
identify the linearized parameters of an oil film by using experimental or theoretical FRFs. Qiu and Tieu [8] developed an 
algorithm to identify the dynamic parameters of a bearing from its impulse response. Chen and Lee [9] proposed a method 
to estimate the linearized coefficients of rolling element bearings, using the relations of unbalance responses and known 
system parameters to predict the coefficients of the rolling element bearings. Tiwari et al. [10] proposed an identification 
algorithm to characterize bearing dynamic properties in a flexible rotor-bearing system, based on unbalance responses. Ex-
perimental identification of the dynamic parameters of bearings and seals was further detailed by Tiwari et al. [11]. De 
Santiago and San Andrés [12] used recorded transient rotor responses, due to impact and unbalance, to identify the bearing 
support parameters. Tiwari and Chakravarthy [13] presented two identification algorithms to predict the residual unbalance 
and bearing parameters in a rigid rotor-bearing system. Han et al. [14] suggested an iterative method, based on a Kriging 
surrogate model and evolutionary algorithm to identify the bearing properties in a rotor-bearing system.

In the present paper, a method for the identification of local structural characteristics, based on the formulation of struc-
tural modifications previously proposed by Özgüven [15] and Debut et al. [16] is further developed and applied. It is used 
for the identification of the linearized support parameters – i.e. mass, stiffness and damping of each rotor bearing – from 
the computed modal frequencies and mode shapes of the unconstrained rotor and from a measured FRF matrix of the 
transfer functions relating the dynamics at all support locations of the constrained rotor. The main idea of this method is to 
exploit a dynamical formulation that relates the unconstrained system to the constrained system. The unconstrained system 
is represented by means of the transfer functions computed by the finite element method, whereas the constrained one 
is represented by the measured transfer functions at the supports. The presence of noise in the measurements of transfer 
functions, as well as almost nodal values in the mode shapes, lead to ill-posed inverse problems. The proposed formulation 
allows a better regularization of the inverse problem through filtering techniques, namely using singular values decompo-
sition (SVD) of the relevant formulation matrices. Inverse problems of the type addressed here are typically solved through 
iterative formulations in a nonlinear fashion, and solved using optimization methods. However, these methods become time 
consuming when the number of the identified parameters increases. Moreover, convergence to a suitable solution is not 
guaranteed. Therefore, a transformed linear formulation is rather used to find solutions of the inverse problem. Another 
advantage of the proposed approach is that it does not imply an experimental identification of the constrained modes of 
the system, which can be delicate in practice. Instead, it is rooted only on transfer function measurements.

As a first step to the problem addressed, this paper presents identification results obtained using realistic simulated data 
for a model of an electricity generator shaft, under non-rotating conditions. In order to illustrate the satisfactory behavior of 
the approach, a parametric study is performed to determine the sensitivity of the identification procedure to measurement 
noise.

2. Theoretical model

2.1. Description of the proposed approach

The structure is composed of a multiple spans rotor, supported by ball bearings, connected to a fixed structure as shown 
in Fig. 1. As a first step, we consider that the structure is unconstrained, meaning that boundary conditions at the supports 
are not taken into account. Then, the frequency transfer function matrix HUi j (ω), which relates the excitation at location i
to the response at location j, is given in terms of the assembled matrices from the Finite Element model as:

HU(ω) = [−ω2M + iωC + K
]−1

(1)

where M, C and K are the structure mass, damping and stiffness matrices, respectively. If the supports are considered 
as localized additional mass, stiffness and damping constraints, then the frequency transfer function matrix HC(ω) of the 
constrained system can be given by:
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HC(ω) = [−ω2M + iωC + K + [−ω2MC + iωCC + KC
]]−1

= [
HU(ω)−1 + [−ω2MC + iωCC + KC

]]−1
(2)

where matrices MC , KC and CC contain the parameters of the supports. As it was shown in a previous work [17], the 
significantly different orders of magnitude of the support properties (mass, damping, and stiffness) may lead to erroneous 
identification results. Hence, it is more convenient to use a dimensionless form for the variables. All following equations 
will be given in terms of dimensionless quantities, as defined below:

M̃U = 1

mUs

MU; C̃U = 1

mUsωUs

CU; K̃U = 1

mUsω
2
Us

KU (3)

H̃U(ω̃) = mUsω
2
Us

HU(ω) (4)

where ωUs and mUs stand for a reference modal frequency and the corresponding modal mass of the unconstrained system. 
In terms of dimensionless quantities, the reduced frequency is represented as ω̃ = ω/ωUs . Then, Eq. (1) is reformulated as 
follows:

H̃U(ω̃) = [−ω̃2M̃U + iω̃C̃U + K̃U
]−1

(5)

Similarly, from Eq. (2), the frequency transfer function matrix HC(ω) of the constrained system can be written in terms of 
dimensionless parameters as follows:

H̃C(ω̃) = [
H̃U(ω̃)−1 + [−ω̃2M̃C + iω̃C̃C + K̃C

]]−1
(6)

where

M̃C = 1

mUs

MC; C̃C = 1

mUsωUs

CC; K̃C = 1

mUsω
2
Us

KC (7)

H̃C(ω̃) = mUsω
2
Us

HC(ω) (8)

represent the dimensionless supports parameter matrices and the dimensionless constrained transfer function matrix. From 
Eq. (2), an estimate of the constrained transfer function matrix HC(ω) may be obtained from the unconstrained dynamics 
HU(ω) and the constraint matrices. This was given by Özgüven [15], here written in terms of the dimensionless quantities 
as:

H̃C(ω̃) = [
I + H̃U(ω̃)

[−ω̃2M̃C + iω̃C̃C + K̃C
]]−1

H̃U(ω̃) (9)

from which the converse relation may be inferred:

H̃U(ω̃) = [
I − H̃C(ω̃)

[−ω̃2M̃C + iω̃C̃C + K̃C
]]−1

H̃C(ω̃) (10)

To obtain a convenient form for the identification of the support parameters, the left-hand side vector and the right-hand 
side vector are now multiplied by an external excitation f̃. Then, taking into account that H̃U(ω̃) = ỹU(ω̃)/f̃(ω̃):

[
H̃C(ω̃)−1 − [−ω̃2M̃C + iω̃C̃C + K̃C

]]
ỹU(ω̃) = f̃(ω̃) (11)

Note that, in the absence of an external excitation, Eq. (11) will be verified only at the dimensionless modal frequencies 
ω̃Um = ωUm /ωUs and corresponding mode shapes ϕUm

. Then, Eq. (11) is reformulated as follows:

H̃C(ω̃Um )−1ϕUm
= [−ω̃2

Um
M̃C + iω̃Um C̃C + K̃C

]
ϕUm

(12)

Notice that, from now on, for the sake of simplicity, notation will be alleviated by dropping the tildes. Assuming that the 
constraint matrices of the supports are diagonal, Eq. (12) can then be written in a condensed form, by extracting only those 
lines and columns pertaining to the system locations where constraints are applied, see [15]:

HC(ωUm )−1ϕUm
= [−ω2

Um
mC + iωUm cC + kC

]
ϕUm

(13)

where mC , cC and kC stand for the reduced-sized diagonal constraint matrices at the supports. Also, from now on, it is 
tacitly assumed that the transfer function matrix HC(ωUm ) and mode shapes ϕUm

have also been downsized in order to 
contain only terms related to the constraint locations. Then, from Eq. (13), the following important form is obtained:

−ω2
Um

mC + iωUm cC + kC = [
HC(ωUm )φUm

]−1
ϕUm

(14)

where φUm
= diag(ϕUm

) is the diagonal matrix built from the mode shape vector ϕUm
while mC , cC and kC are vectors 

build from the diagonal terms of the corresponding coefficient matrices. Such trick enables one to identify the constraint 
parameters mC , cC and kC directly from Eq. (14), while preserving a linear identification formulation [6,16].
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Concerning the real part of this complex equation, one can write Eq. (14) for two unconstrained modes m and n:

−ω2
Um

mC + kC = Re
([

HC(ωUm )φUm

]−1
ϕUm

)
(15)

−ω2
Un

mC + kC = Re
([

HC(ωUn )φUn

]−1
ϕUn

)
(16)

In compact matrix form, Eqs. (15) and (16) become:

{
mC
kC

}
=

[ −ω2
Um

I I
−ω2

Un
I I

]−1 {
Re([HC(ωUm )φUm

]−1ϕUm
)

Re([HC(ωUn )φUn
]−1ϕUn

)

}
(17)

Concerning the dissipation terms at the supports, we have directly from the imaginary part of Eq. (14):

cC = 1

ωUm

Im
([

HC(ωUm )φUm

]−1
ϕUm

)
(18)

2.2. Preconditioning technique

The identification accuracy can be improved by taking a set of N unconstrained modes, which leads to the following 
oversized system of equations:

{
mC
kC

}
=

⎡
⎢⎣

−ω2
U1

I I
...

...

−ω2
U N

I I

⎤
⎥⎦

+

Re

⎛
⎜⎝

⎧⎪⎨
⎪⎩

[HC(ωU1)φU1
]−1ϕU1

...

[HC(ωU N )φU N
]−1ϕU N

⎫⎪⎬
⎪⎭

⎞
⎟⎠ (19)

and

cC =
⎡
⎢⎣

ωU1 I
...

ωU N I

⎤
⎥⎦

+

Im

⎛
⎜⎝

⎧⎪⎨
⎪⎩

[HC(ωU1)φU1
]−1ϕU1

...

[HC(ωU N )φU N
]−1ϕU N

⎫⎪⎬
⎪⎭

⎞
⎟⎠ (20)

where [⊗]+ stands for the pseudo-inverse of a general rectangular matrix [⊗] in the Moore–Penrose sense, see for instance 
[18].

In practice, the presence of noise in the measured transfer functions or the existence of near-nodal mode shapes at 
some of the measurement locations can lead to an ill-posed problem. Therefore, it is necessary to consider such feature in 
order to overcome this problem, which typically leads to undue measurement noise amplification and seriously corrupted 
identification results.

The conditioning of the formulation is already improved by scaling the formulation through dimensionless quantities, as 
performed starting from Eq. (6). On the other hand, the complex vector in the right hand-side of Eqs. (19) and (20) can be 
decomposed in the following form:

⎧⎪⎨
⎪⎩

[HC(ωU1)φU1
]−1ϕU1

...

[HC(ωU N )φU N
]−1ϕU N

⎫⎪⎬
⎪⎭ =

⎡
⎢⎣

φU1
· · · 0

...
. . .

...

0 · · · φU N

⎤
⎥⎦

−1 ⎡
⎢⎣

HC(ωU1) · · · 0
...

. . .
...

0 · · · HC(ωU N )

⎤
⎥⎦

−1 ⎧⎪⎨
⎪⎩

ϕU1
...

ϕU N

⎫⎪⎬
⎪⎭ (21)

2.3. SVD regularization

This formulation allows a better regularization of the inverse problem, in order to mitigate the presence of noise as 
well as numerical issues caused by near-zero in the matrix of unconstrained mode shapes. Among various methods that 
have been developed to overcome problems of ill-conditioning, the truncated Singular Value Decomposition (SVD) is a 
regularization technique that appears very elegant and effective to filter both the constrained system transfer function 
HC(ωU ) and the mode shape φU matrices. It is possible to quantify the singularity of a given matrix through the so-called 
condition number, which is the ratio between the highest and the lowest singular values of the SVD matrix decomposition:

� = U�Vh (22)

where � refers to a generic matrix to be inverted, while � = diag(σ1, · · · , σN) with the singular values σ1 ≥ σ2 ≥ .. ≥ σN ≥ 0
and matrices U, V of the left and right singular vectors are orthogonal. The superscript ‘h ’ stands for the conjugate-transpose. 
Note that, while the condition number c = σmax/σmin displays values in the range 1 ≤ c ≤ ∞, the inverse of the condition 
number c∗ = σmin/σmax conveniently displays values in the range 0 ≤ c∗ ≤ 1. Matrix � is perfectly conditioned when c∗ = 1
and ill-conditioned as c∗ decreases to zero. In terms of the matrix SVD, the pseudo-inverse transformation can be computed 
as:
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Table 1
Numerical data of the rotor components.

length of the shaft 1.668 m external diameter of the aluminum disks 0.1 m
diameter of the shaft 0.01 m inner diameter of the aluminum disks 0.01 m
shaft Young’s modulus 210 GPa thickness of the aluminum disks 0.025 m
shaft density 8020 kg/m3 density of the aluminum disks 2700 kg/m3

external diameter of the stainless steel disks 0.1 m external diameter of the aluminum disks 0.1 m
inner diameter of the stainless steel disks 0.01 m inner diameter of the aluminum disks 0.01 m
thickness of the stainless steel disks 0.025 m thickness of the aluminum disks 0.005 m
density of the stainless steel disks 8020 kg/m3 density of the aluminum disks 2700 kg/m3

length of the bronze anchors 0.045 m length of the aluminum anchors 0.032 m
external diameter of the bronze anchors 0.032 m external diameter of the aluminum anchors 0.035 m
inner diameter of the bronze anchors 0.01 m inner diameter of the aluminum anchors 0.01 m
Young’s modulus of the bronze anchors 130 GPa Young’s modulus of the aluminum anchors 130 GPa
density of the bronze anchors 8400 kg/m3 density of the aluminum anchors 5550 kg/m3

�+ = V�+Uh (23)

with �+ = diag(1/σ1, · · · , 1/σN ). A regularized manner to solve the inverse problem is to use a truncated pseudo-inverse 
Eq. (23) of the matrix �, so that:

�+
reg =

{
1/σi if σi/σmax ≥ ε
0 if σi/σmax < ε

(24)

where ε is called the truncation (filtering) boundary and the regularized pseudo-inverse is given as:

�+
reg = V�+

regUh (25)

In the context of the present identification problem, the results obtained by the truncated SVD regularization technique 
appear effective, as illustrated in the following numerical computations. The reader may refer to [19,20] for more details 
about the SVD regularization.

3. Numerical applications

3.1. System description

Fig. 1 shows an experimental rig at the Applied Dynamics Laboratory (ADL) of IST/CTN, which illustrates the main 
features of turbo electricity generators. It is essentially composed of four spans with various lengths, each one containing 
two large flywheels and two thin balancing discs. This rotor model was previously studied by Baklouti et al. [17]. It is 
composed of a stainless steel shaft supported by six roller bearings mounted through cylindrical bronze anchors, eight thin 
aluminum disks maintained by cylindrical aluminum anchors, five large stainless steel disks and three large aluminum disks 
that have identical dimensions. Numerical data of the rotor components are shown in Table 1. Fig. 1 also illustrates a sketch 
of the rotor system, showing in detail the distribution of the rotor components and their dimensions.

3.2. Simulation results

Following the theoretical approach presented in the preceding section, the modes of the unconstrained structure were 
first computed using the finite element method, by solving the eigenvalue problem using the assembled matrices of the 
structure with free boundary conditions at the support locations. The structure was meshed using 37 beam elements, 
a mesh density found to be adequate with respect to the geometry of the rotor system and the modes to be used in the 
identification procedure. The computed modal masses mU and circular frequencies ωU , as well as the mode shapes ϕU , are 
shown in Fig. 2 for the first unconstrained modes.

Next, in order to simulate the measured frequency transfer function matrix connecting the dynamics of all points of 
the constrained rotor, HC(ω) was numerically built from Eq. (2). For more realistic simulated measurements, random noises 
with Gaussian distribution and given levels were added to the corresponding impulse responses in matrix hC(t), which 
were computed by using inverse Fourier transforms of the matrix transfer functions HC(ω). Then, noisy versions of the 
transfer functions were recovered from the Fourier-transformed noisy impulse responses. This manner of simulating noisy 
measurements is deemed realistic.

Representative transfer functions are illustrated in Fig. 3 for a relative noise level of 5% (with respect to the average 
RMS amplitude of the impulse responses). For compactness, only the absolute values of HC(ω) are shown. The shown 
plots correspond to the fourth line of the transfer function matrix, for which the rotor is excited at each support and the 
corresponding vibratory responses are collected at the level of the fourth support. Notice that the magnitude of noise is 
comparatively higher when the excitation and measurement locations are more distant. As a pre-processing step, in order 
to reduce the noise effect, a parabolic fitting (represented by the black curves in Fig. 3) was used to clean the transfer 
functions in the vicinity of the unconstrained rotor modal frequencies (represented by the vertical dashed red lines).
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Fig. 2. First computed modes of the unconstrained structure.

Fig. 3. Illustrative transfer functions measured at the fourth support. Constrained transfer functions without noise (blue); constrained transfer functions 
with 5% noise level (purple). The dashed lines correspond to the modal frequencies of the corresponding unconstrained system.

3.3. Identification results

For the identifications performed in the first example, a level of 10% noise was injected in the simulated transfer 
functions. The SVD regularization techniques were implemented, for filtering noise effects, as previously described. Fig. 4
presents the identification results for the various support parameters mC , kC and cC , using respectively 4 and 8 modes in 
Eqs. (19) and (20). The green bars correspond to the simulation reference support features, while the red bars refer to the 
identified parameters. In this first example, all supports were assumed to be identical, with mass, stiffness and damping of 
the supports set to 1 kg, 106 N/m and 103 N s/m, respectively.

It is clear that the identification results are improved by increasing the number of unconstrained modes used. The iden-
tification errors are significantly lower, compared with the previous work by Baklouti et al. [17]. Actually, the identification 
strategy proposed in the present work also benefits from the dimensionless adopted formulation.

For the second example, different values of the support parameters mC , kC and cC have been assumed when building 
the simulated transfer functions HC(ω). Fig. 5 summarizes the identification results, for different levels of noise injected in 
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Fig. 4. Identification results for the various support parameters, identical for all supports, using: (a) 8 modes; (b) 4 modes, with 10% noise level.

the transfer functions (0%, 5% and 10%). One can note that the identification results are exact when no noise is added to the 
signals, showing that the proposed approach is consistent. The errors in the identification results become more significant 
when the levels of noise are increased, and this is a predictable consequence.

Overall, the proposed identification method shows satisfactory results, using the various regularization strategies previ-
ously described (SVD filtering of the identification formulation and parabolic fitting of the noisy modal peaks of the transfer 
functions). For the illustrative examples in this paper, by using eight unconstrained modes, the identification procedure is 
robust for realistic levels of noise pollution.

4. Conclusions

A method for the identification of supports parameters applicable to multi-span beams and rotors was developed in this 
work. The proposed support identification approach uses measured frequency transfer functions of the constrained system 
and the computed modes of the unconstrained system. An important feature of this identification formulation is that no 
modal identification of the constrained system is needed, as the measured transfer functions are directly used.

Inverse problems are commonly prone to numerical issues. Thus, regularization techniques have been implemented 
within this work to avoid ill-conditioning issues and mitigate noise effects. For the two examples provided, the proposed 
approach successfully led to accurate identifications of the system support parameters. Moreover, the effect of the number of 
modes used for the identification was discussed and a parametric study was performed in order to evaluate the robustness 
to noise of the identification method.

Future work involves an extension of the present identification formulation, in order to accommodate the gyroscopic and 
centrifugal terms arising in spinning rotor-systems.
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Fig. 5. Identification results for the various support parameters using different levels of noise: (a) 0%; (b) 5%; (c) 10%.
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