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We derive in this Note a high-order corrector estimate for the homogenization of a 
microscopic semi-linear elliptic system posed in perforated domains. The major challenges 
are the presence of nonlinear volume and surface reaction rates. This type of correctors 
justifies mathematically the convergence rate of formal asymptotic expansions for the two-
scale homogenization settings. As the main tool, we use energy-like estimates to investigate 
the error estimate between the micro and macro concentrations and between the 
corresponding micro- and macro-concentration gradients. This work aims at generalizing 
the results reported in [1,2].

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and problem setting

This Note is a follow-up of [2], in which the derivation of a high-order corrector for a microscopic semi-linear elliptic 
system posed in heterogeneous/perforated domains is concentrated. In the terminology of homogenization, a corrector or 
corrector estimate wants to quantify the error between the approximate solution (governed by a certain asymptotic pro-
cedure) and the exact solution. Typically, this kind of estimate is helpful also in controlling the approximation error of 
numerical methods for multiscale problems (e.g., [3,4]). The main result of this Note is Theorem 3.1, where we report the 
upper bound of the corrector up to an arbitrary high order.

We consider the semi-linear elliptic boundary value problem

Aεuε
i ≡ ∇ · (−dε

i ∇uε
i

) = Ri
(
uε

1, ..., uε
N

)
in �ε

associated with the boundary conditions

dε
i ∇uε

i · n = ε
(
aε

i uε
i − bε

i F i
(
uε

i

))
across �ε

uε
i = 0 across �ext

for i ∈ {1, ..., N}, with N ≥ 2 being the number of involved concentrations. For simplicity, we refer to this problem as 
(

P ε
)
.

This problem is connected to the Smoluchowski–Soret–Dufour modeling of the evolution of temperature and colloid 
concentrations [5,6]. Here, uε := (

uε
1, ..., uε

N

)
denotes the vector of the concentrations, dε

i represents the molecular diffusion 
with Ri being the volume reaction rate and aε

i , bε
i are deposition coefficients, whilst Fi indicates a surface chemical reaction 

for the immobile species. Notice that the quantity ε is called the homogenization parameter or the scale factor. Denote by 
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Fig. 1.1. Admissible 2-D perforated domain (left) and basic geometry of the microstructure (right). (By courtesy of Mai Thanh Nhat Truong, Hankyong 
National University, Republic of Korea.)

x ∈ �ε the macroscopic variable and by y = x/ε the microscopic variable representing high oscillations at the microscopic 
geometry. Henceforward, we understand throughout this paper the following convention:

dε
i (x) = di

( x

ε

)
= di (y) , x ∈ �ε, y ∈ Y1

with the same meaning for all the oscillating data such as aε
i , bε

i , etc.
The perforated domain �ε ⊂ R

d is thought to approximate a porous medium and its precise description can be found in 
[1,7,2]. As an example, we depict in Fig. 1.1 an admissible geometry of our medium and the corresponding microstructure.

Our corrector estimate evaluation starts from the two-scale asymptotic expansion up to Mth-level (M ≥ 2) given by

uε
i (x) =

M∑
m=0

εmui,m (x, y) +O
(
εM+1

)
, x ∈ �ε (1)

where ui,m (x, ·) is Y -periodic for 0 ≤ m ≤ M and i ∈ {1, ..., N}.
It is worth noting that in [2], we have analyzed the solvability of (P ε) using the energy minimization approach and 

derived the upscaled equations as well as the corresponding effective coefficients. Furthermore, we showed that using the 
separation of variables, the functions ui,m(x, y) for 0 ≤ m ≤ M can be structured as, e.g.,

ui,0 (x, y) = ũi,0 (x)

ui,1 (x, y) = −χi,1 (y) · ∇xũi,0 (x)

ui,2 (x, y) = χi,2 (y)∇2
x ũi,0 (x)

with ũi,0 (x) being determined uniquely from the auxiliary problem and χi,m satisfying the corresponding cell problems. 
One can also rule out the ũi,0-based construction of ui,m that ui,m (x, y) = (−1)m χi,m (y)∇m

x ũi,0 (x) for 1 ≤ m ≤ M .
In this scenario, we wish to obtain the error estimate up to a high-order expansion for the differences of concentrations 

and their gradients, albeit some types have been investigated so far. In particular, we prove in this Note a corrector in the 
form of

uε −
K∑

k=0

εkuk − mε
M∑

m=K+1

εmum (2)

in which we fix K ∈ N such that 0 ≤ K ≤ M − 2 and mε ∈ C∞
c (�) is a cut-off function such that ε

∣∣∇mε
∣∣ ≤ C and

mε (x) :=
{

1, if dist (x,�) ≤ ε

0, if dist (x,�) ≥ 2ε

(see [1] for more properties of mε).
With the above definition of mε , the second term in (2) vanishes everywhere except in a neighborhood of the boundary 

of �ε . In other words, the appearance of mε provides that the speed of convergence in the interior of the material is better 
than the rate at the vicinity of the boundary, albeit the standard result expected that 

∥∥uε − u0
∥∥

H1(�ε)
≤ Cε1/2. It is then 

easy to see that (2) includes the cases

uε −
M∑

m=0

εmum and uε − u0 − mε
M∑

m=1

εmum, M ≥ 2

reported in [2] and further in [1].
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The similarity between Theorem 3.1 and Theorem 11 in [2] is that under the energy-type method, we employ the cut-off 
function mε to distinguish the speeds of convergence in H1-norm of the limit u0 in the interior part of the perforated 
material and at the boundary of inclusions. The main difference consists in showing that if K = M − 2, the corrector (5)

yields the order of O(εM− 3
2 ), whilst it only gives the order O(ε

1
2 ) in Theorem 11 in [2].

Further comments can be found in Remark 3.1 and Remark 3.2, discussing the a priori assumptions on the smoothness 
of the limit u0 and on the structure of the cell problems for arbitrarily high-order correctors.

2. Assumptions. Function spaces

We introduce the function space

V ε :=
{

v ∈ H1 (
�ε

) |v = 0 on �ext
}

which is a closed subspace of the Hilbert space H1
(
�ε

)
with the semi-norm

‖v‖V ε =
⎛
⎝ d∑

i=1

∫
�ε

∣∣∣∣ ∂v

∂xi

∣∣∣∣2

dx

⎞
⎠1/2

for all v ∈ V ε

We define Vε := V ε × ... × V ε as well as some other function spaces such as W p,q
(
�ε

) := W p,q(�ε) × ... × W p,q(�ε) the 
Sobolev space of functions with index of differentiability p ∈ N and integrability q and Wq

(
�ε

) := Lq
(
�ε

) × ... × Lq
(
�ε

)
for q ∈ (2, ∞].

To handle the corrector estimates, we need the following assumptions.
(A1) The diffusion coefficient dε

i ∈ L∞ (
R

d
)

is Lipschitz and Y -periodic, and there exists a positive constant αi such that

di (y) ξiξ j ≥ αi |ξ |2 for any ξ ∈R
d

(A2) The deposition coefficients aε
i , bε

i ∈ L∞ (
�ε

)
are positive and Y -periodic.

(A3) The reaction rates Ri : �ε × [0,∞)N → R and Fi : �ε × [0,∞) → R are Carathéodory functions. Moreover, they 
satisfy the structural assumptions:

Ri

(
M∑

m=0

εmu1,m, ...,

M∑
m=0

εmuN,m

)
=

M∑
m=0

εm R̄i
(
u1,m, ..., uN,m

) +O
(
εM+1

)
(3)

Fi

(
M∑

m=0

εmui,m

)
=

M∑
m=0

εm F̄i
(
ui,m

) +O
(
εM+1

)
(4)

where R̄ i and F̄ i are global Lipschitz functions with the Lipschitz constants Li and Ki for i ∈ {1, ..., N}, in the sense that

∣∣R̄ i
(
u1,m, ..., uN,m

) − R̄ i
(

v1,m, ..., v N,m
)∣∣ ≤ Li

N∑
i=1

∣∣ui,m − vi,m
∣∣

∣∣ F̄ i
(
u1,m, ..., uN,m

) − F̄ i
(

v1,m, ..., v N,m
)∣∣ ≤ Ki

N∑
i=1

∣∣ui,m − vi,m
∣∣

for every 0 ≤ m ≤ M .
Unless otherwise specified, all the constants C appearing in this Note are independent of the homogenization parame-

ter ε, but the respective values may differ from line to line and may change even within a single chain of estimates.

3. Corrector estimate

Theorem 3.1. Assume that (A1)–(A3) hold. Let uε be the vector of solutions of the elliptic system 
(

P ε
)
. Consider the high-order 

asymptotic expansion (1) up to M-level (M ≥ 2) and take u0 ∈ WM+2,∞(�ε) ∩WM+1,∞(�ε) and um ∈ W∞ (
�ε; H1

# (Y1) /R
)

for 
all 0 ≤ m ≤ M. For a fixed K ∈ N such that 0 ≤ K ≤ M − 2, the following corrector estimate holds:∥∥∥∥∥∥uε −

K∑
k=0

εkuk − mε
M∑

m=K+1

εmum

∥∥∥∥∥∥
Vε

≤ C

⎛
⎝εM−1 + εM +

M∑
m=K+1

(
εm− 1

2 + εm+ 1
2

)⎞
⎠ (5)

where C > 0 is a generic ε-independent constant.
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Proof. Before giving the proof, let us recall the structural inequalities of the cut-off function mε . The following useful 
estimates (cf. [8]) hold true:∥∥1 − mε

∥∥
L2(�ε)

≤ Cε1/2, ε
∥∥∇mε

∥∥
L2(�ε)

≤ Cε1/2 (6)

To bound from above in terms of ε the quantity (2), we can reduce the discussion to the corrector at ith concentration, 
which is defined as

	ε
i := uε

i −
K∑

k=0

εkui,k − mε
M∑

m=K+1

εmui,m for i ∈ {1, ..., N}

We observe that 	ε
i can be decomposed further as

	ε
i = uε

i −
M∑

m=0

εmui,m

︸ ︷︷ ︸
ϕε

i

+ (
1 − mε

) M∑
m=K+1

εmui,m

︸ ︷︷ ︸
γ ε

i

(7)

As in [2,1], we use the auxiliary problems⎧⎪⎨
⎪⎩
A0ui,0 = 0, in Y1

−di (y)∇yui,0 · n = 0, on ∂Y0

ui,0 is Y − periodic in y

(8)

⎧⎪⎨
⎪⎩
A0ui,1 = −A1ui,0, in Y1

−di (y)
(∇xui,0 + ∇yui,1

) · n = 0, on ∂Y0

ui,1 is Y − periodic in y

(9)

⎧⎪⎨
⎪⎩
A0ui,m+2 = R̄ i (um) −A1ui,m+1 −A2ui,m, in Y1

−di (y)
(∇xui,m+1 + ∇yui,m+2

) · n = bi (y) F̄ i
(
ui,m

) − ai (y) ui,m, on ∂Y0

ui,m+2 is Y − periodic in y

(10)

for 0 ≤ m ≤ M − 2.
In (8)–(10), the operators A0, A1 and A2 are defined, respectively, as follows:

A0 := ∇y · (−di (y)∇y
)

A1 := ∇x · (−di (y)∇y
) + ∇y · (−di (y)∇x)

A2 := ∇x · (−di (y)∇x)

By induction, one can easily obtain that the first part of decomposition (7), the function ϕε
i , satisfies the following 

equation:

Aεϕε
i = Ri

(
uε

) −
M−2∑
m=0

εm R̄i (um) − εM−1 (
A1ui,M +A2ui,M−1

) − εMA2ui,M in �ε (11)

associated with the following boundary condition at �ε

−dε
i ∇xϕ

ε
i · n = εMdε

i ∇xui,M · n + ε

[
aε

i

(
M−2∑
m=0

εmui,m − uε
i

)
+ bε

i

(
Fi

(
uε

i

) −
M−2∑
m=0

εm F̄i
(
ui,m

))]
(12)

Multiplying (11) by ϕi ∈ V ε , integrating the result by parts, and finally using (12), we arrive at∫
�ε

dε
i ∇ϕε

i ∇ϕi dx =
〈

Ri
(
uε

) −
M−2∑
m=0

εm R̄i (um) ,ϕi

〉
L2(�ε)

− εM−1 〈
A1ui,M +A2ui,M−1 + εA2ui,M ,ϕi

〉
L2(�ε)

− ε

〈
aε

i

(
M−2∑
m=0

εmui,m − uε
i

)
+ bε

i

(
Fi

(
uε

i

) −
M−2∑
m=0

εm F̄i
(
ui,m

))
,ϕi

〉
L2(�ε)

− εM
∫
ε

dε
i ∇xui,M · nϕi dSε (13)
�
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We can now gain the first part of the corrector (5), i.e. we shall estimate each integral on the right-hand side of (13), 
which we denote by I1, I2, I3 and I4, respectively.

Let L̄ := max
{

L̄1, ..., L̄N
}

. Using (3) in combination with the structural inequality 
∥∥R̄ i (um)

∥∥
L2(�ε)

≤ L̄ ‖um‖W2(�ε) +∥∥R̄ i (0)
∥∥

L2(�ε)
for all 0 ≤ m ≤ M , we see that∣∣∣∣∣∣

〈
Ri

(
uε

) −
M−2∑
m=0

εm R̄i (um) ,ϕi

〉
L2(�ε)

∣∣∣∣∣∣ ≤ εM−1
(

L̄ ‖uM−1‖W2(�ε) + ∥∥R̄ i (0)
∥∥

L2(�ε)

)
‖ϕi‖L2(�ε)

+ εM
(

L̄ ‖uM‖W2(�ε) + ∥∥R̄ i (0)
∥∥

L2(�ε)

)
‖ϕi‖L2(�ε)

≤ C
(
εM−1 + εM

)
‖ϕi‖L2(�ε) (14)

Direct computations give

A1ui,M = (−1)M+1
[
di

( x

ε

)
χi,M

( x

ε

)
+ ∇y

(
di

( x

ε

)
χi,M

( x

ε

))]
∇M+1

x ũi,0

A2ui,M−1 = (−1)M di

( x

ε

)
χi,M−1

( x

ε

)
∇M+1

x ũi,0

A2ui,M = (−1)M+1 di

( x

ε

)
χi,M

( x

ε

)
∇M+2

x ũi,0

Due to ui,0 ∈ W M+2,∞(�ε) and ui,m ∈ L∞ (
�ε; H1

# (Y1) /R
)

for all 0 ≤ m ≤ M in combination with (A1), the second 
integral I2 can be bounded above by

εM−1
∣∣∣〈A1ui,M +A2ui,M−1 + εA2ui,M ,ϕi

〉
L2(�ε)

∣∣∣ ≤ CεM−1 ‖ϕi‖L2(�ε) (15)

Let K̄ := 1 + max
{

K̄1, ..., K̄ N
}

. For the integral I3, we proceed as in the proof of (14). We thus claim that

ε

∣∣∣∣∣∣
〈

aε
i

(
M−2∑
m=0

εmui,m − uε
i

)
+ bε

i

(
Fi

(
uε

i

) −
M−2∑
m=0

εm F̄i
(
ui,m

))
,ϕi

〉
L2(�ε)

∣∣∣∣∣∣ ≤ C
(
εM−1 + εM

)
‖ϕi‖L2(�ε) (16)

in which we use (1) and (4) together with (A2) and the Hölder inequality, as well as the trace inequality (cf. [1, 
Lemma 2.31]). On top of that, it yields for the last integral I4 that

εM

∣∣∣∣∣∣
∫
�ε

dε
i ∇xui,M · nϕi dSε

∣∣∣∣∣∣ ≤ εM
∥∥dε

i ∇xui,M · n
∥∥

L2(�ε)
‖ϕi‖L2(�ε)

≤ CεM−1 ‖ϕi‖L2(�ε) (17)

where we follow the computations that 
∥∥dε

i ∇xui,M · n
∥∥

L2(�ε)
≤ Cε−1/2 and apply again the trace inequality.

Combining (13)–(17), we observe that∣∣〈ϕε
i ,ϕi

〉
V ε

∣∣ ≤ C
(
εM−1 + εM

)
‖ϕi‖L2(�ε) for ϕi ∈ V ε and i ∈ {1, ..., N} (18)

which then leads to 
∥∥ϕε

i

∥∥
V ε ≤ CεM−1 by choosing ϕi = ϕε

i for i ∈ {1, ..., N}.
It remains to estimate the second part of decomposition (7). We consider the following quantity:〈

γ ε
i ,ϕi

〉
V ε for ϕi ∈ V ε and i ∈ {1, ..., N}

At this stage, the following estimate is straightforward due to (6):∣∣∣∣∣∣
〈(

1 − mε
) M∑

m=K+1

εmui,m,ϕi

〉
V ε

∣∣∣∣∣∣ ≤ C

∥∥∥∥∥∥∇ (
1 − mε

) ⎛
⎝ M∑

m=K+1

εmui,m

⎞
⎠

∥∥∥∥∥∥
L2(�ε)

‖ϕi‖V ε

+ C

∥∥∥∥∥∥
(
1 − mε

)∇
⎛
⎝ M∑

m=K+1

εmui,m

⎞
⎠

∥∥∥∥∥∥
L2(�ε)

‖ϕi‖V ε

≤ C
M∑

εm
∥∥∇ (

1 − mε
)∥∥

L2(�ε)
‖ϕi‖V ε
m=K+1
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+ C
M∑

m=K+1

εm
∥∥1 − mε

∥∥
L2(�ε)

‖ϕi‖V ε

≤ C
M∑

m=K+1

(
εm− 1

2 + εm+ 1
2

)
‖ϕi‖V ε for all ϕi ∈ V ε (19)

Thanks to the triangle inequality, we combine (18) and (19) to get

∣∣〈	ε
i ,ϕi

〉
V ε

∣∣ ≤ C

⎛
⎝εM−1 + εM +

M∑
m=K+1

(
εm− 1

2 + εm+ 1
2

)⎞
⎠‖ϕi‖V ε for ϕi ∈ V ε

By choosing ϕi = 	ε
i and then by simplifying both sides of the resulting estimate by 

∥∥	ε
i

∥∥
V ε , we obtain that

∥∥	ε
i

∥∥
V ε ≤ C

⎛
⎝εM−1 + εM +

M∑
m=K+1

(
εm− 1

2 + εm+ 1
2

)⎞
⎠

This completes the proof of Theorem 3.1. �
Remark 3.1. To obtain high-order corrector estimates, the limit u0 has to be very smooth as stated e.g., in Theorem 3.1. 
The reason is that at the Mth level of expansion, we need ε-independent L∞-bounds of the terms ∇M+1

x ũi,0, ∇M+2
x ũi,0 in 

�ε and of ∇M
x ũi,M on �ε . To support this approach, recall that u0 is solution of a homogenized system ∇x · (−qi∇xui,0) =

R̄ i(u0), i ∈ {1, ..., N} in which qi are (positive constant) homogenized coefficients given by

qi = 1

|Y1|
∫
Y1

di(y)(−∇yχi,1 + I)dy

while I stands for the identity matrix. This homogenized system is associated with the zero Dirichlet boundary condition at 
�ext and still satisfies the ellipticity condition.

Note that if we suppose, for simplicity, that R̄ i are linear functions with respect to u0; then the homogenized system 
becomes the nonhomogeneous elliptic equation in vectorial form. Therefore, we can apply the classical results in [9, Theo-
rem 12.4] to guarantee that the derivatives of u0 up to the desired order are in L∞(�). Thus, the needed smoothness of u0
when dealing with the high-order correctors (M ≥ 2) is obtainable. This result can be used similarly when we consider the 
correctors for uε − u0 and uε − u0 − εu1 derived from (2) with K = 0 and K = 1, respectively.

Remark 3.2. From the high-order auxiliary problems (8)–(10) and the fact that ui,m (x, y) = (−1)m χi,m (y)∇m
x ũi,0 (x) for 

1 ≤ m ≤ M , one can derive the corresponding cell problems for the high-order corrector:⎧⎪⎨
⎪⎩
A0χi,1 = ∇ydi (y) , in Y1

−di (y)∇yχi,1 · n = di (y) · n, on ∂Y0

χi,1 is Y − periodic in y

and ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∇y · (−di (y)
(∇yχi,m+2 − χi,m+1

))∇m+2
x ũi,0

= (−1)m R̄i
(
(−1)m χ1,m∇m

x ũ1,0, ..., (−1)m χN,m∇m
x ũN,0

) − (di (y) − I)∇yχi,m+1 (y)∇m+2
x ũi,0, in Y1

−di (y)
(∇yχi,m+2 − χi,m+1

)∇m+2
x ũi,0 · n = (−1)m bi (y) F̄ i

(
(−1)m χi,m∇m

x ũi,0
) − ai (y)χi,m∇m

x ũi,0, on ∂Y0

χi,m+2 is Y − periodic in y

where x ∈ � is viewed here as the involved parameter, while 0 ≤ m ≤ M − 2 with i ∈ {1, ..., N}. Obviously, these problems 
are linear, which ensures that their solvability is standard.

We also remark that from elliptic regularity theory [10,11], since Y1 is a non-convex polygon, the above cell system for 
χi,m only admits a unique solution whose regularity is H1+s(Y1) for s ∈ (−1/2, 1/2) (cf. [10]), and we cannot go further 
from this regularity no matter how smooth the involved terms are. In addition, the non-existence result for this type of 
problems can be found in, e.g., [11, Theorem 14.11].
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