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A uniaxial experiment is performed on an ultra-thin specimen made of 17-7 precipitation 
hardened stainless steel. An anti-wrinkling setup allows for the characterization of the 
mechanical behavior with Integrated Digital Image Correlation (IDIC). The result shows that 
a single uniaxial experiment investigated via IDIC possesses enough data (and even more) 
to characterize a complete anisotropic elastoplastic model.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

r é s u m é

Un essai de traction uniaxiale est conduit sur un échantillon en acier inoxydable 17-7 
à durcissement structural. Un montage anti-plissement permet la caractérisation du 
comportement mécanique par corrélation d’images numériques intégrée (CINI). Il est 
montré que ce seul essai analysé par CINI possède assez d’information (voire plus) pour 
une identification complète du modèle de plasticité anisotrope.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

For engineering design purposes, von Mises’ [1] criterion is commonly used and gives satisfactory results. However, 
industrially-manufactured materials require plastic anisotropy to be accounted for. For instance, sheet metal forming calls 
for anisotropic plasticity models. Numerous authors have actively discussed their characterization. Whiteley [2] and Lloyd [3]
investigated the importance of directionality in-deep drawing of sheet steel and so-called pressed-metals. Lankford et al. [4]
proposed an experimental ratio to characterize plastic anisotropy. Hill [5] and Dorn [6] introduced the first models to 
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describe anisotropic plastic flows. These models have been extended to describe more complex constitutive laws [7]. Many 
developments have followed since these early propositions. However, one of the standard and most widely used models in 
nowadays commercial finite element codes [8] still is Hill’s original proposition (i.e. the so-called Hill-1948 model [9]).

The calibration of such models calls for several tensile tests, at least in three directions (i.e. generally 0◦ , 90◦ , and 45◦
with respect to the rolling direction [10]). It is worth noting that more complex test configurations are also used (e.g., plain 
strain tensile test, shear test, experiment on cross-shaped samples, bulge test), even though very few of them are standard-
ized. Most of these tests consider zones where the strain and stress states are uniform so that simple extraction techniques 
are considered to determine the sought quantities. With the development of full-field measurement techniques [11], another 
route consists in analyzing and designing the test as being fully heterogeneous [12].

The present study aims at identifying an anisotropic plasticity law, investigating Hill-1948 quadratic yield function via 
Integrated-DIC [13–19]. The key feature consists in analyzing a single sample made of ultra-thin precipitation hardened steel 
and tested in uniaxial tension. A sensitivity analysis is performed to assess the identifiability of an anisotropic yield surface 
coupled with linear kinematic hardening and isotropic elasticity. It will be shown that seven material parameters can be 
evaluated, even though the sample geometry remains very simple.

2. Methodological framework

2.1. Investigated constitutive law

In the following, linear and isotropic elasticity (with Young’s modulus E and Poisson’s ratio ν), and linear kinematic 
hardening with a quadratic yield criterion [5] are coupled. The total strain rate ε̇ is written in terms of elastic and plastic 
strain rates ε̇ = ε̇el + ε̇pl, where ε̇el is the elastic strain rate tensor and ε̇pl the plastic strain rate tensor. As a first approx-
imation, a linear kinematic hardening model is chosen for the back-stress rate [20] in which C is the hardening modulus. 
Last, the quadratic [5] anisotropic yield criterion is expressed in terms of rectangular Cartesian stress components as

f (σ ) =
√

H1(σ22 − σ33)2 + H2(σ33 − σ11)2 + H3(σ11 − σ22)2 + 2H4σ
2
23 + 2H5σ

2
31 + 2H6σ

2
12 (1)

where Hi are constants expressed with the normal yield stress ratios (R11, R22, R33) and those in shear (R12, R23, R31) 
both with respect to the axes of anisotropy [9]
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The computations being two dimensional, R31 and R23 are insensitive and set to 1 hereafter (and hence H4 = H5 = 3/2). 
One of the in-plane parameters must be chosen to decorrelate its value from the yield stress σy (i.e. H1 is set to 1/2 in the 
sequel). Therefore, only three additional material parameters, i.e. H2, H3, and H6, remain to be determined when plastic 
anisotropy is accounted for. To conclude, seven parameters (i.e. E , ν , σy , C , H2, H3, and H6) need to be calibrated with the 
chosen model.

2.2. Integrated-DIC

The calibration of the material parameters {p} is performed via Integrated Digital Image Correlation, where the un-
knowns are no longer kinematic degrees of freedom, but the sought constitutive parameters themselves. Integrated-DIC is a 
global technique that registers an image f in the reference configuration and a series of Nt pictures g in the deformed con-
figurations. Assuming gray level conservation, the inverse problem is solved by minimizing the sum of squared differences 
between the deformed images corrected by the trial displacement u(x, t, {p}) and the reference image

χ2
f ({p}) = 1

2γ 2
f N�Nt

∑
t

∑
�

((g(x + u(x, t, {p}), t) − f (x))2 (2)

with respect to {p}. In this expression � denotes the Region of Interest (ROI), N� its area in terms of the number of pixels it 
contains, x any considered pixel, and γ f = 323 gray levels the standard deviation (i.e. 2% of the dynamic range of f ) of the 
white noise assumed to affect each image independently (including the reference one, which is responsible for the factor 
of 1/2 coming as a multiplicative term in this functional). The load is also of importance for the identification because it 
increases the number of measured quantities and as a consequence diminishes the relative uncertainty by enhancing the 
material parameter sensitivities [12]. Thus, a second objective function, χ2, is introduced
F
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χ2
F = 1

N F Ntγ
2
F

{F m − F c({p})}t{F m − F c({p})} (3)

where {F m} are the measured reaction forces and {F c({p})} the computed levels that depend on the chosen material 
parameter set, N F the number of load cells, and γ 2

F the load variance (i.e. 100 N in the present case). The identification, 
which is based upon both observables (i.e. gray levels and reaction forces), is achieved by minimizing the global functional 
χ2({p})

χ2({p}) = N�

N� + N F
χ2

f ({p}) + N F

N� + N F
χ2

F ({p}) (4)

where the DIC and reaction force functionals have been introduced in Equations (2) and (3) respectively. The choice for the 
specific weight is issued from a Bayesian approach whereby the noise characteristics impose the appropriate weights to be 
given to quadratic differences [12]. In particular, quadratic differences are to be evaluated with a metric equal to the inverse 
noise covariance.

When nonlinear behaviors are investigated, the dependence of the displacement field with the material parameters is 
nonlinear as well. Consequently, sensitivity fields (i.e. displacement and reaction force derivatives with respect to the sought 
parameters) are computed via finite element simulations. In the present case, the commercial (implicit) finite element code 
used is Abaqus standard [9]. It is driven by the measured displacements (via FE DIC) on the upper and lower edges of the 
considered region of interest to compute the displacement fields and reaction forces. If the FE mesh is finer in Integrated 
DIC in comparison to DIC, the measured displacements on the coarser mesh are interpolated on the finer mesh according to 
the measurement discretization. A Gauss–Newton procedure is implemented to minimize the global functional by iteratively 
updating the material parameters [18].

2.3. Sensitivity analysis

To probe the identifiability of the seven parameters, a sensitivity analysis is carried out. Consequently, the Hessian of 
the Integrated DIC code is analyzed [12]. Figure 1(a) shows the global Hessian (H IFDIC) of the IDIC procedure. The material 
parameters having the largest influence are H1, H2, and H3 and account for the anisotropic plasticity behavior (H1 is 
analyzed to show its correlations with other parameters, but for identification purposes its value is kept equal to one half). 
This result shows that a uniaxial experiment enables for the characterization of an anisotropic behavior. It also indicates 
that this behavior must be accounted for when plastic anisotropy is suspected to occur. Figure 1(b) shows that the Poisson’s 
ratio is correlated with H1, H2, and H3, and explains why it is necessary to have a model that separates both contributions 
from Poisson’s ratio and the anisotropic coefficients. Once the lowest eigenvalue of the complete Hessian has been taken 
out, its condition number is of the order of 105, which is not too high given the number of remaining parameters. From 
this analysis, it is concluded that the seven parameters are identifiable.

3. Parameter identification

The present study investigates the mechanical behavior of a 70-μm thick sheet of precipitation hardened stainless steel 
(17-7 PH grade) in TH1050 condition. The manufacturer [21] assessed the elastic properties of the studied material. The 

Fig. 1. Global Hessian (a) and its corresponding correlation matrix (b) for the investigated model (i.e. {p} = {E, ν, σy, C, H1, H2, H3, H6}t). The absolute 
value of the Hessian is used to allow for a logarithmic scale.
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Fig. 2. (a) Uniaxial specimen with dedicated anti-wrinkling device. (b) DIC and (c) IDIC displacement fields ux at the last experimental time step with two 
mesh sizes; (c) also shows the area that will be used to assess the Lankford coefficient. The displacements are expressed in pixels (1 pixel ↔ 70 μm).

specimen is loaded in a servo-hydraulic tension/compression testing machine (see Fig. 2(a)). The experiment consists of 
three loading/unloading cycles in a displacement controlled mode with increased displacement amplitudes for each new 
cycle. The unloading phases are stopped when the measured load reaches 10 N to avoid compression. The maximum von 
Mises equivalent strain is of the order of 8%. 14-bit gray scale images are captured with a digital camera (pco.pixelfly) and 
a telecentric lens. The effective magnification is 70 μm per pixel. Last, the load measurements and the image acquisitions 
are synchronized.

The main experimental challenge concerns the specimen thickness that prevents grooved grips to be used. The solution 
consists in bonding the specimen ends to flat-surface aluminum alloy tabs with a 3M Scotch-Weld Structural Adhesive Film 
AF 126 [22]. Residual wrinkles are generated during this process near the edges. To maintain the surface flat in the center 
region (crucial to perform 2D-DIC analyses), an anti-wrinkling device is designed (see Fig. 2). It consists in holding the 
specimen between two Plexiglas sheets fastened with four screws. A very small gap is left between the Plexiglas sheets to 
minimize as much as possible the effects of friction on the tested sample. To perform DIC analyses, a random speckle pattern 
is applied on the monitored surface and no paint loss was observed during the test, thereby validating the hypothesis of 
negligible friction induced by the anti-wrinkling device. Figure 2 shows at the last experimental time step the measured 
(b) and identified (c) displacement fields associated with three-nodded triangular meshes with linear interpolation (T3). For 
DIC, the mesh size is of the order of 60 pixels, and 40 pixels for Integrated DIC.

Figure 3(a) shows the normalized gray level residuals (i.e. χ f ) at each time step for DIC and IDIC analyses. Prior to 
starting the experiment, 10 images and load measurements are acquired to assess the uncertainties. Then, the experiment 
starts and the residual increases to roughly four times the noise level. The DIC residual remains relatively constant over the 
experiment. Conversely, the IDIC residuals are on average higher than DIC residuals. Let us stress that DIC is based on a 
number of degrees of freedom equal to 600 per image, or 114,600 for the entire experiment, whereas the IDIC approach 
has no more than seven degrees of freedom. This very drastic reduction incorporates many constraints due to an a priori 
assumption on the material behavior. The difference in residuals from DIC to IDIC is an indication of the model error that 
is due to the specific chosen constitutive law. Once the elastic regime ends (t ≥ 20 s), the IDIC residuals increase and 
exceed the DIC residuals. This result shows that the assumption of a constant anisotropic behavior, i.e. constant anisotropic 
coefficients as a function of the plastic strain, is not totally consistent with the experimental data. Similarly, Fig. 3(b) shows 
that the load levels are consistent in the elastic regime and gradually degrade in anisotropic plasticity.

Table 1 gathers the assessed material parameters for the studied constitutive law. Their initial values ({p0}) are chosen 
according to literature data [21,23]. The initial and last values of the residuals are also shown (1st–last) for the investigated 
law plus one identification with a coarser mesh (referred to as IDIC∗). All the parameters converge to a stabilized level 
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Fig. 3. (a) Gray level residual history χ f (t) for DIC and IDIC. (b) Applied and computed reaction force history.

Table 1
Identified parameters and identification residuals via IDIC over the entire loading history cycle (IDIC∗ cor-
responds to the DIC mesh and “1st–last” corresponds to the first and last values of the residuals).

χ
1st–last

χ f

1st–last
χF

1st–last
E
GPa

ν σ0

MPa
C
GPa

H2 H3 H6

p0 5.0 200 0.3 1300 10 0.5 0.5 1.5
IDIC 11.3–7.0 11.3–7.0 15.5–9.30 202 0.30 1420 9.1 0.42 0.44 1.59
IDIC∗ 11.1–7.8 11.1–7.8 15.5–10.8 202 0.3 1390 9.2 0.44 0.45 1.56

while the residuals χ for each law are minimized. First, the IDIC residual is greater than the DIC residual obtained with a 
coarse mesh (i.e. the one used to measure the boundary conditions), but lower than the IDIC∗ residual obtained on the same 
mesh. This is an indication that model errors occur. It proves that refining the mesh (Fig. 2) can enhance the identification 
quality by decreasing the gray level residuals. This mesh difference also explains why the DIC residual is larger than the 
IDIC residuals during the first time steps (t ∈ [10; 20] s). The load residuals also decrease.

The lowest global residual corresponds to seven times the noise level, which indicates that the model does not fully 
capture all the experimental behaviors. Figure 4 shows the displacement field residual for the transverse component (i.e. 
the difference between the IDIC and DIC displacement fields). The displacement difference is not noise (i.e. measurement 
uncertainty), but rather a smooth component that is not totally accounted for by the model. This is a clear manifestation of 
model error. The short wavelength component close to the upper edge is believed to be due to small wrinkles.

The Lankford coefficient is an indicator used to describe the anisotropic plasticity behavior of sheet metals [10]. It 
corresponds to r = ε

p
33/ε

p
11, where εp

11 is the transverse plastic strain, εp
33 the out-of-plane plastic strain. This analysis is 

performed in the central area (see Fig. 2(c)) of the specimen and the reported strains are the corresponding mean values. 
Figure 5 shows the Lankford coefficients both for DIC and IDIC results. For DIC analyses, the elastic strains are evaluated from 
the applied load and the knowledge of the elastic properties of the alloy. Incompressibility is assumed for the plastic strains 

Fig. 4. Transverse displacement field residual (IDIC–DIC) expressed in pixels (1 pixel ↔ 70 μm). Its corresponding root mean square level is equal to 
0.19 pixel.
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Fig. 5. Lankford ratio evaluated from DIC and from the identified anisotropic elastoplastic model.

to evaluate εp
33. The coefficient converges for both cases toward a constant value as the level of plastic strain increases. 

The asymptotic value (i.e. about 2) is consistent with literature data of cold-rolled stainless steel [24]. Second, the model 
does not fully capture the experimentally observed anisotropy in the early stages of plasticity. This result shows that even if 
the identification of the anisotropic coefficients has been achieved, the assumption of a constant anisotropic behavior is an 
approximation. This is consistent with the fact that the IDIC residuals are higher at the end of cycle 1 and the beginning of 
cycle 2 (see Fig. 3).

It is to be emphasized that using full field measurements allows for the calibration of the entire set of parameters using 
a single experiment. Such a conclusion was also drawn for a thicker sample made of aluminum alloy [25]. It also gives access 
to an evaluation of a significant model error (based on the value of the final residuals being well above 1, see Table 1), and 
it provides in addition an assessment of the deviation in the observed and fitted strains through the Lankford ratio, which 
may help enriching the constitutive law (say with an evolving anisotropy) in order to reduce the model error.

4. Conclusion

The identifiability of the Hill-1948 model has been investigated with Integrated Digital Image Correlation for a uniaxial 
test on ultra-thin sheet made of precipitation hardened stainless steel. A dedicated anti-wrinkling system was designed and 
employed to prevent non-uniform out-of-plane displacements while loading and unloading the specimen. The identification 
is performed over the entire history accounting for three loading/unloading cycles. The sensitivity analysis proves that the 
anisotropic yield criterion can a priori be quantitatively evaluated. It is shown a posteriori that it is possible to determine all
material parameters for the in-plane anisotropic plastic model in a single uniaxial experiment thanks to full-field measure-
ments. Moreover, the same experimental procedure is rich enough to indicate a model error and provides some insight into 
directions for the enrichment of the constitutive law to better describe the experiment.
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