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This paper deals with the robust safety design optimization of a rail vehicle system 
moving in short radius curved tracks. A combined multi-objective imperialist competitive 
algorithm and Monte Carlo method is developed and used for the robust multi-objective 
optimization of the rail vehicle system. This robust optimization of rail vehicle safety 
considers simultaneously the derailment angle and its standard deviation where the 
design parameters uncertainties are considered. The obtained results showed that the 
robust design reduces significantly the sensitivity of the rail vehicle safety to the design 
parameters uncertainties compared to the determinist one and to the literature results.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

It is a common practice in a rail vehicle (RV) safety design to consider the nominal values only as input variables for 
design optimization. Nejlaoui et al. [1] took care of the RV security in quasi-static cases by using the Genetic Algorithm (GA) 
method. He and McPhee [2] treated a mono-objective optimization design of the RV derailment by using Genetic Algorithms. 
The objective function is a weighted combination of the angle of attack and of the ratio of the lateral force to the vertical 
force applied by each wheel on the rail. To evaluate the RV safety system, Eom and Lee [3] developed a sensitivity analysis 
of the parameters related to the derailment coefficients of track conditions. Banerjee et al. [4] used a model with 18 degrees 
of freedom to analyze the RV safety through determining the critical speed.

However, the RV design parameters (DPs) have usually an uncertainty around their nominal values due to the presence of 
variations in manufacturing, geometry, and material properties. To estimate the effect of DP uncertainty on the performance 
of a mechanical system, several methods have been described. In particular, the Monte Carlo Simulation (MCS) is a popular 
tool because of its relative precision and simplicity [5]. Araujo et al. [6] use the MCS method to estimate the uncertainty of 
surface emissivity, obtained by dual spectral infrared radiometry at ambient temperature. Motevalli et al. [7] applied a MCS 
approach to study the water inflow uncertainty impact on the performance of both single and multi-reservoir systems.
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Nomenclature

i Index of wheelset
j Index of wheel.
k Index of bogie
g The gravity constant
Gki Wheelset center of mass
Gk Bogie center of mass
Ḡ Car body center of mass
m Half wheelset mass
m̂ Bearing box body mass
M Bogie mass
M̄ Car body mass
N Normal load by a wheel
H Vertical distance between the primary and the 

secondary suspension
h0 Vertical distance between the primary suspen-

sion and Gk
δ The rail inclination
γ0 Inclination of the tangent plan of contact 

wheel–rail with the horizontal
e0 Half spacing of the track
γe Equivalent conicity
Rc Radius of curve

yki Transversal displacement of the wheelset i of 
bogie k

yk Transversal displacement of the bogie k
ȳ Transversal displacement of the car body
αki Yaw angle of the wheelset i of the bogie k
αk Yaw angle of the bogie k
ᾱ Yaw angle of the car body
θk Roll angle of the bogie k
θ̄ Roll angle of the car body
θki Roll angle of the wheelsets ki
V The speed of the vehicle
Ku Spring stiffness of the primary suspension in 

the direction u (u = x, y, z)
K̄u Spring stiffness of the secondary suspension in 

the direction u
d Transversal distance between the primary sus-

pension and Gk
d̄ Transversal distance between the secondary 

suspension and the car body center of mass
R Curvature radius of the wheel profile
R ′ Curvature radius of the rail profile
S the normal force on the flange

Other works have studied the robust product design where uncertainties of the DP are considered. Cheng and Li [8] have 
developed a hybrid differential evolution and sequential quadratic programming method that ensures robust mechanical 
structures under uncertain DP. Kalantari et al. [9] have developed a hybrid robust evolutionary algorithm by combining the 
NSGAII process with a local search method. This strategy is used to optimize composite structures under an uncertain fiber 
angle and a lamina thickness. Bouazizi et al. [10] studied the robust optimization of a vibration absorber using the GA. The 
robustness, defined by the ratio of the mean value to the standard deviation, is treated as an objective function.

This paper deals with the multi-objective robust design optimization of a rail vehicle moving in short-radius curved 
tracks based on the safety criteria. A combined algorithm based on the Multi-objective Imperialist Competitive Algorithm 
(MOICA) and the MCS is proposed. The obtained results are compared to literature ones. In section 2, the dynamic model of 
the RV is reviewed and the safety criterion is defined. Section 3 deals with the determinist multi-objective design optimiza-
tion of RV safety. Then, the authors show that the determinist optimal solutions can be seriously altered by DP uncertainties. 
In Section 4, a novel algorithm is developed and used in multi-objective robust optimization. The results are discussed and 
compared with literature results. Finally, some concluding remarks are presented in section 5.

2. Model of the RV system

The RV system is made of a rigid car body C , bogies Ck and wheelsets Ski . The connection between these components 
is represented by the secondary and the primary suspensions. Each suspension is formed by a system of linear springs and 
dampers, which work in three directions (Fig. 1) [1,11].

The longitudinal symmetry of the RV system leads to the decoupling of lateral, vertical and longitudinal motions [1,11]. 
In this paper, we focus on the lateral dynamic behavior of the RV system. To simplify the analysis without reducing the 
accuracy of the model, we will consider only a quarter model of the RV (Fig. 1) [1,11]. Hence, the RV system has only eight 
degrees of freedom represented by the generalized coordinate vector q:

q = [ ȳ, ᾱ, y1,α1, y11,α11, y12,α12]T (1)

In this study, the rail is assumed to be smooth and rigid. Moreover, due to the fact that the rail curve radius and the RV 
speed are constant, damping forces were found not to be important, compared to the elastic ones [1,11].

We may find the dynamic model of the RV system by applying the Lagrange method:

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= Q i (2)

L is the Lagrangian function and Q i represents the generalized forces applied to the system.
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Fig. 1. The rail vehicle model.

Fig. 2. The wheel–rail contact forces.

The use of Eq. (2) gives us the following RV dynamic model:

A(q)q = b (3)

For more details, see [1,11]. The matrix A and the vector b are given in the appendix.

2.1. Safety modeling

The creep forces at the wheel–rail interface in longitudinal (X1i j ), in lateral (T1i j) directions and a torque (M1i j) (Fig. 2) 
are modeled based on Kalker’s non-linear theory [1,2]. The derailment risk of the RV system can occur if the lateral force F1i
surpasses a certain limit. These forces F1i , which are responsible for the derailment, can be identified through the algebraic 
equations of the analytical dynamic model [1,11]:

F1i =
i=2∑
i=1

K y
(

y1 − y11 − (−1)iaα1 − y12
) − (−1)i K̄x

d̄2

2a

(
ᾱ∗ + y1

Ā
− y11 − y12

2a
− α1 + Ā

Rc

)

+
i=2∑
i=1

(−1)i Kxd2

2a

(
α1 − α1i + y11 − y12

2a
− (−1)i a

Rc

)
+ 2χC22α1i

∑
i

+(m + m̂)γnc + W ζ y1i (4)

C22 is Kalker’s coefficient [2,11] and 
∑

i, χ, W , ζ and γnc are defined in the appendix.
The analysis of the equilibrium forces in vertical and lateral directions gives:

F1i

N
= tan θ − T1i j

S

1 + T1i j tan θ
(5)
S



M. Nejlaoui et al. / C. R. Mecanique 345 (2017) 712–723 715
Fig. 3. The solving algorithm.

Table 1
Design variables and their search domains ([1,2] and [11]).

DP Ku (N/m) K̄u (N/m) γe M̄ (kg) M (kg)

D(DP) [106, 108] [104, 106] [0.02, 0.25] [30000, 45000] [3000, 3500]

According to the Coulomb law of friction, to be away from creep, the maximum of (T1i j/S) cannot exceed the coefficient of 
friction μ. Therefore, at a given maximum contact angle θmax, to avoid the derailment, we should have:

F

N
≤ tan θmax − μ

1 + μ tan θmax

(
F = max(F1i)

)
(6)

This gives

tanβ ≤ tan θmax − μ

1 + μ tan θmax

(
tanβ = F

N

)
(7)

The minimization of the derailment angle β will be considered as the objective function.

2.2. The solving algorithm

The obtained model, defined in Eq. (3), is highly nonlinear. In order to solve the model in q, we developed an iterative 
algorithm based on Broyden’s method [11,12] (Fig. 3). The value of β is calculated using Eq. (7).

3. Determinist optimization of the RV safety

At constant speed, the vehicle can circulate with different radii of curvature that increase the non-compensated lateral 
acceleration γnc = V 2

Rc
− gδ. Consequently, this increases the centrifugal forces. These forces can cause the derailment of the 

RV system, especially in short-radius curved tracks.
The goal of this work is to find the RV design vector parameters that minimize the objective function β . The minimization 

of the derailment angle β ensures the maximization of the RV safety for different motion scenarios characterized by Rc
(Rc ∈ [200 m to 500 m]).

In what follows, we will optimize the DPs that have the most significant effect on the dynamic behavior of the RV 
system. The search domains D(DP) of each DP are listed in Table 1. The other design variables of the RV are considered 
constant. Their values are given in [1,2,11].
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Fig. 4. The MOICA flowchart.

Thus, the optimization problem can be presented as follows:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Minimize β

under the constraints:
DP ∈ D(DP)

Rc ∈ [200,250,300,350,400,450,500]
β ≤ βmax

For θmax = 75 degrees [1] and μ = 0, 31 [2], in order to avoid the derailment βmax = 58 degrees (Eq. (7)).

3.1. The optimization method

The multi-objective imperialist competitive algorithm (MOICA) is an evolutionary optimization method developed re-
cently by [13]. The MOICA flowchart is shown in Fig. 4.

The MOICA begins with a generation of an initial population randomly. Each element of the population is a country. The 
power of a country, which is the counterpart of the fitness value in GA, is inversely proportional to its cost given by Eq. (8).

Costk =
r∑

j=1

| f j,k − f best
j |

| f max
j − f min

j | (8)

r is the number of objective functions and f j,k is the value of the objective function j for the kth country. f max
j and f min

j

are the maximum and minimum values of the objective function j in each iteration, respectively. f best
j is the minimum or 

the maximum of the objective function according to the optimization process.
The powerful countries in the population are selected to be the imperialists, and the rest form the colonies of these 

imperialists. The normalized cost of the nth imperialist is given by [13,14]:

Cn = max
i

{Costi} − Costn (9)

where Costi and Costn are the costs of the ith and the nth imperialist, respectively.
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Fig. 5. Colonies moving toward their relevant imperialist.

Fig. 6. Imperialistic competition.

The normalized power of the nth imperialist is calculated as:

Pn =
∣∣∣∣ Cn∑

i Ci

∣∣∣∣ (10)

Due to the imperialists’ powers, the colonies of the initial population are divided among them to form the initial empires. 
Each initial empire is composed of one imperialist and several colonies. After forming the initial empires, the colonies start 
moving towards their relevant powerful imperialist (Fig. 5). In this movement, α and X are numbers generated uniformly 
as X ∼ U (0, η × d) and α ∼ U (−γ , γ ). d is the distance between the imperialist and the colony and η must be greater than 
1. γ is a parameter representing the direction deviation [13,14].

In each empire, the multi-points crossover and the random replacement mutation operators enhance the colonies with 
a new one that can have more power. The evaluation of colonies and imperialists is based on the cost given by Eq. (8). 
The costs of the new colonies are compared with the cost of the imperialist. If any colony becomes more powerful than its 
imperialist, the imperialist and the colony are swapped. Then the fast non-dominated sorting approach [13,15] is used to 
rank the non-dominated imperialists in an archive to form the Pareto front.

The sum of an imperialist power and the average power of all its colonies gives the empire power. During the imperialists 
competition, all empires, based on their power, try to acquire the other empires colonies (Fig. 6). The weakest empires lose 
their colonies and collapse. The MOICA algorithm stops when all the weak empires collapse and only one powerful empire 
remains.

3.2. Results and discussion

The application of the optimization program, for different values of Rc, gives the results displayed in Fig. 7. One can 
notice that when the radius of curvature Rc increases, the derailment angle β decreases. In fact, the increase in Rc decreases 
the derailment force (from Eq. (4)) applied to the vehicle.

In what follows, we will analyze the evolution of the derailment angle as a function of the radius of curvature for three 
different optimized design vectors (1, 4 and 7), presented in Fig. 7. For each design vector, corresponding to solutions S1, S4 
and S7 (Table 2), we show in Fig. 8 the curve (CSi) representing the evolution of β as a function of Rc.

One can note in Fig. 5 that the derailment phenomenon is more likely to occur when using the S4 and S7 design vector, 
even at 200 m. The RV system will be safe if it is constructed with the S1 design vector. Thus, the S1 optimal solution 
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Fig. 7. Optimization results.

Fig. 8. Evolution of β as a function of Rc (for S1, S4 and S7 solutions).

Table 2
The design parameters corresponding to the chosen solutions.

Kx (N/m) K y (N/m) Kz (N/m) K̄x (N/m) K̄ y (N/m) K̄ z (N/m) γe M̄ (kg) M (kg)

S1 1,33 · 106 1,68 · 106 1,88 · 106 1,21 · 104 1,73 · 104 1,93 · 104 0,19 43520 3454
S4 3,84 · 106 4,13 · 106 4,76 · 106 4,29 · 104 4,42 · 104 6,01 · 104 0.13 41340 3219
S7 6,78 · 106 7,54 · 106 8,82 · 106 8,65 · 104 7,98 · 104 9,23 · 104 0,11 36747 3033

corresponds to a safe design vector of the RV system in the range of 200 to 500 m. However, for a more realistic analysis, 
the design parameters can present uncertainties around their nominal values. These uncertainties can generate variability of 
the RV safety evaluated by β . Therefore, the safety performances represented through the S1 optimal solution can often be 
altered by the design parameters uncertainties.

In what follows, we will study the effect of the design parameters uncertainties on the variability of the derailment 
angle β .
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Fig. 9. Fluctuation of β to the DP uncertainties (S1 solution for Rc = 200 m).

3.3. The RV safety variability as a function of the design parameters uncertainty

In what follows, the variability of the optimized RV safety generated by the DP uncertainties will be estimated. Thus, the 
case of an optimal solution S1, given in Table 2, will be studied.

Each uncertain DP is presented by a normal distribution and characterized by a mean value and a standard deviation. 
The MCS is performed for every DP where each evaluation consists of a specified number of runs. For each MCS, all the de-
terminist design variables are fixed at their nominal values and their uncertainty are selected randomly from their statistical 
distributions supposed to vary within ±10% of the specified nominal values [2].

With the MCS, we perform n = 104 simulations to determine the mean values β̄ and the standard deviation σ . The 
evolution of the derailment angle β is presented in Fig. 9.

One can note that the derailment angle can reach up to 60◦ and the imposed constraint β ≤ βmax is not satisfied. Conse-
quently, by considering the DP uncertainties, the safety given by the determinist optimal solution S1 is no longer guaranteed. 
Therefore, one can conclude that the obtained determinist optimal solutions are not robust to the DP uncertainties.

A multi-objective robust design, where the sensitivity of the RV safety would be one of the objective functions, is needed.

4. Robust design of the RV safety

The robust design of the RV system should have the maximum of safety levels (defined by the minimum of β̄ ) and also 
the minimum of safety variability generated by the DP uncertainty. This robustness can be quantified by the standard devi-
ation σ of the objective function, i.e. high robustness of the solution means low standard deviation, for a given uncertainty 
of the DP. Consequently, the robust optimal design strategy can be expressed as follows:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Minimize β̄

Minimize σ
Subject to: β̄ + 3σ ≤ βmax

Rc ∈ [200,250,300,350,400,450,500]
DP ∈ D(DP)

The constraint β̄ + 3σ ≤ βmax imposes that the solutions are considered only if we have 99% confidence that the derailment 
angle does not exceed the maximum allowed derailment angle.

4.1. The MOICA–MCS algorithm

In this work, the MOICA–MCS Algorithm (Fig. 10) that combines the MOICA and the MCS is developed and used to solve 
this optimization problem to obtain robust solutions.

After the evolution stage, the MOICA sends a generation of countries to the MCS. The MCS performs n simulations for 
every country and sends back to the MOICA the mean values, β̄ , and its standard deviations, σ . Then these countries 
undergo the remaining steps of the MOICA algorithm.
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Fig. 10. The MOICA–MCS algorithm.

5. Results and discussion

Using the MOICA–MCS algorithm, we obtain the robust optimal solutions presented in Fig. 11. For each radius of cur-
vature in the range of 200 to 500 m, we obtain a corresponding Pareto front. The Pareto front concept locates a set of 
non-dominated solutions. These solutions are called non-dominated because each one has, at least, one optimum (mini-
mum/maximum) objective function [15–17]. To simplify the analysis, we present only the Pareto fronts corresponding to 
200, 350 and 500 m in three dimensions and in top view (Fig. 11).

To better understand the particularity of the robust solutions, the design vectors of the three safest solutions (corre-
sponding to low derailment angle values at each Rc) are given in Table 3.

For comparison reasons, we present in Fig. 12 the robust Pareto fronts with determinist results and with a set of biblio-
graphic results.

The standard deviation of determinist and bibliographic solutions are determined by introducing their DP under the SMC. 
The values of β̄ and σ are summarized in Table 4.

To compare the safety vulnerability of robust, determinist and literature solutions, we present in Fig. 13 their statistical 
distributions.

It is clear from Fig. 13 and Table 4 that the robust solutions present the lower fluctuations of the derailment angle 
compared to determinist results and to a result from the literature. In term of β̄ , one can note that the robust solutions 
keep about the same lower values given by the determinist results. Moreover, the robust solutions have the minimum values 
of σ compared to determinist and literature results. Based on this discussion, we can note that the robust design of the 
RV system has the maximum of safety levels (defined by the minimum of β̄), and also the minimum of safety variability 
generated by the DP uncertainty.



M. Nejlaoui et al. / C. R. Mecanique 345 (2017) 712–723 721
Fig. 11. Robust design; a) 3D view, b) top view.

Table 3
The design vectors of robust solutions SR1, SR4 and SR7.

Kx (N/m) K y (N/m) Kz (N/m) K̄x (N/m) K̄ y (N/m) K̄ z (N/m) γe M̄ (kg) M (kg)

SR1 1,02 · 106 1,12 · 106 1,23 · 106 1,01 · 104 1,18 · 104 1,03 · 104 0,19 44520 3454
SR4 1,12 · 106 1,38 · 106 1,08 · 106 1,6 · 104 1,23 · 104 1,28 · 104 0 · 13 41012 3305
SR7 1,24 · 106 1,42 · 106 1,9 · 106 1,79 · 104 1,32 · 104 1,47 · 104 0,11 35547 3028

Fig. 12. Robust, determinist and bibliographic results.

Therefore, one can conclude that finding a determinist optimal solution is not sufficient. Additionally, one has to be sure 
that the obtained solution is robust enough to the uncertainty of the DP. When one thinks that it is true, one can think of 
this design as much better than those unchecked for the robustness to the uncertainty of their DP.

Figs. 11, 12 and 13 can be a valuable tool for the designer, since they can be used to choose the level of confidence of 
the chosen solution. If the designer has low confidence in his DP, he can favor the robustness of the solution by choosing 
low values for the standard deviation.

To have an idea of the computational time of the proposed algorithm, the objective functions and the different constraints 
are implemented under the Matlab software, according to the MOICA algorithm, and compiled using a computer with Cori7, 
740 Qm, 1.74 GHz, RAM 8 GB. The execution time for the RV optimization (for Rc = 350 m) was about 93 and 58 s for the 
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Table 4
Values of β̄ and σ for robust, determinist and bibliographic design.

SR1 SR4 SR7 S1 S4 S7 Nejlaoui et al. [1] Eom and Lee [3] Banerjee et al. [4]

β̄ (degree) 56.45 43.38 33.6 56.38 43.35 33.5 57.13 45.87 35.79
σ (degree) 0.29 0.96 1.02 1.33 1.6 1.9 1.42 1.8 1.92

Fig. 13. Safety fluctuations of robust, determinist and bibliographic solutions.

robust and determinist cases, respectively. The execution time difference between the robust and the determinist cases is 
due to the time needed for the Monte Carlo simulation. In fact, 104 simulations are performed for each uncertain design 
vector, in order to quantify the effect of the design parameters uncertainties.

6. Conclusion

This paper introduced a multi-objective robust design optimization of the rail vehicle safety under uncertain design pa-
rameters. First, a determinist optimization design was conducted; where it was shown that the optimal determinist solution 
safety is highly sensitive to the design parameters uncertainties. An algorithm, which combines the multi-objective imperi-
alist competitive algorithm and the Monte Carlo method, was introduced for the multi-objective robust design optimization 
of the rail vehicle safety where the standard deviation of the objective function is considered as a second objective function. 
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The obtained results showed that the robust design reduces significantly the sensitivity of the rail vehicle safety to the DP 
uncertainties compared to the determinist one and to the literature results.

The presented analysis could help the designer in his choice of the most adequate design parameters of a set of rail 
vehicle systems yielding the maximum robust safety.

Appendix

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K̄ y K̄ y Ā −K̄ y 0 0 0 0 0

K̄ y Ā K̄xd̄2 + K̄ y Ā2 K̄x d̄2

Ā
− K̄ y Ā −K̄xd̄2 − K̄x d̄2

2a 0 K̄x d̄2

2a 0

K̄ y h̄1 K̄ y Āh̄1 −K̄ y h̄1 0 0 0 0 0

−K̄ y

(
K̄x d̄2

Ā
− K̄ y Ā

) (
K̄x d̄2

Ā2 + K̄ y + 2K y

)
− K̄x d̄2

Ā

(
− K̄x d̄2

2aĀ
− 2K y

)
0

(
K̄x d̄2

2aĀ
− 2K y

)
0

0 −K̄xd̄2 − K̄x d̄2

Ā

(
K̄xd̄2 + 2Kxd2

+2K ya2

) (
K̄x

d̄2

2a + Kx
d2

a

)
−Kxd2

(
−K̄x

d̄2

2a − Kx
d2

a

)
−Kxd2

−K̄ y h̄1 −K̄ y Āh̄1 K̄ y h̄1 0 −2K y h1 0 −2K y h1 0

0 − K̄x d̄2

2a

(
− K̄x d̄2

2a − 2K y

) (
K̄x

d̄2

2a + Kx
d2

a

) (
K̄x

d̄2

4a2 + Kx
d2

2a2

+2K y + W ζ

) (
−Kx

d2

2a − 2χC22�1

) (
−K̄x

d̄2

4a2 − Kx
d2

2a2

+2K y

)
−Kx

d2

2a

0 0 0 −Kxd2 −Kx
d2

2a + 2e0 C11
γe
r0

σ1

(
Kxd2 − W γ0ε0

+2C23

)
Kxd2

2a 0

0 K̄x d̄2

2a

(
K̄x d̄2

2a − 2K y

) (
−K̄x

d̄2

2a − Kx
d2

a

) (
−K̄x

d̄2

4a2 − Kx
d2

2a2

+2K y

)
Kx

d2

2a

(
K̄x

d̄2

4a2 + Kx
d2

2a2

+2K y + W ζ

)
Kx

d2

2a − 2χC22�2

0 0 0 −Kxd2 −Kxd2

2a 0 Kx
d2

2a + 2e0 C11
γe
r0

σ2

(
Kxd2 − W γ0ε0

+2C23

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A.11)

b =
[

M̄
4 γnc 0 M

2 γnc 2K̄xd̄2 Ā
Rc

(m + m̂)γnc − W ζ y0 2Kxd2 a
Rc

(m + m̂)γnc − W ζ y0 −2Kxd2 a
Rc

]T

(A.12)

γnc = V 2

Rc
− gδ, σi = 1 − C11

3μN

γe

r0
y∗

1i + C2
11

27μ2N2

(
γe

r0
y∗

1i

)2

(A.13)

∑
i

= 1 − C22

3μN
α1i + C2

22

27μ2N2
α2

1i, ζ = 1

(R − R ′)

(
e0 + Rγ0

e0 − r0γ0

)2

(A.14)

ε0 = (R + 2r0)γ0 − e0, χ = e0

(e0 − r0γ0)
, W =

(
M̄

4
+ M

2
+ m + m̂

)
g. (A.15)
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