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The empirical Darcy law describing flow in porous media, whose convincing theoretical 
justification was proposed almost 130 years after its original publication in 1856, has 
however been extended to account for particular flow conditions. This article reviews 
historical developments aimed at including inertial and slip effects (respectively, when the 
Reynolds and Knudsen numbers are not exceedingly small compared to unity). Despite the 
early empirical extensions to include inertia and slip effects, it is striking to observe that 
clear formal derivations of physical models to account for these effects were reported only 
recently.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Flows in porous media are of interest in numerous applications ranging from hydrology, hydrocarbon recovery, gas and 
nuclear waste storage, to drying of wood, transfer in food products or in living tissues to cite but a few. The main char-
acteristic of this particular domain of fluid mechanics lies in the (sometimes extreme) complexity of the geometry of the 
channels where the flow takes place. Additionally, in many situations, this geometry is unknown in its very details and 
may vary over more or less long distances characteristics of heterogeneities. Within this context, the physical description of 
the flow in such materials may appear to be a tremendous challenge.1 This certainly explains why empiricism remained so 
strong and lasted longer than in many other fields of fluid mechanics. In many situations, the interest is not in the details of 
the flow within the pores but rather in the flux-to-force governing laws at length scales including a large numbers of pores, 
although comprehensive analyses at the pore scale remain the corner stone in any progress towards the derivation of gov-
erning laws at larger scales. Clearly, active research in the description of transfer in porous materials was triggered by the 
publication of Darcy’s law in the middle of the 19th century and the emergence of a key macroscopic physical characteristic 
of a porous medium, namely the ability of a fluid to flow through it, i.e. its permeability.

* Corresponding author.
E-mail addresses: didier.lasseux@ensam.eu (D. Lasseux), iqfv@xanum.uam.mx (F.J. Valdés-Parada).

1 The one-phase slow flow is probably one of the simplest mechanism one can think about and there is a lot of other tremendously more complex 
physical processes in porous media of relevance from both scientific and industrial points of view, including multiphase flows, compressible flows, phase 
change, deformable porous media, reactions in multicomponent systems, etc.
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1.1. Darcy’s law as an empirical basis

Ever since its empirical formulation in 1856, Darcy’s law [1] has been a hallmark in modeling momentum transport 
through porous media. In this classical publication, there is a section entitled Détermination des lois d’écoulement de l’eau à 
travers le sable, dedicated to the study of water flows through a bed of sand where the following relation is proposed (see 
page 594 in [1]):

q = k
s

e
(h + e) (1)

where q is the volumetric flow rate, s is the cross section of the sand bed, e is the bed width, h is the pressure (or head) 
difference between the surface and the base of the sand bed, and finally k was proposed as a coefficient that depends on 
the permeability of the bed2 and on the properties of the fluid. For an excellent review about the origin of Darcy’s law, the 
interested reader is referred to the work by Zerner [3]. The use of this simple relation requires that the only resistance to 
the flow through the porous medium is due to viscous stresses induced by an isothermal, creeping (or laminar) steady flow 
of a Newtonian fluid within an inert, rigid and homogeneous porous medium. However, the lack of a rigorous upscaling 
technique prevented a formal derivation of this equation until the late 1960s, as it will be detailed later.

For a very long period of time – around fifty years – this law has been essentially verified experimentally in its global 
form, but was not considered in a local differential form nor derived on a theoretical basis. One finds a differential expres-
sion in the analysis of the flows in aquifers by J. Boussinesq [4] as a result of an analogy with heat transfer in a continuum. 
This work also reports an extension of the flow-rate-to-head-gradient relationship to non-homogeneous media. A formal 
derivation of a 1D local expression of this law obtained from the solution to the Stokes equation for a flow parallel to a 
regular array of infinite parallel cylinders (sufficiently apart from each other, i.e. for relatively large porosities) is due to 
Emersleben in 1925 [5]. A derivation mainly based on dimensional analysis was later proposed by Muskat and Botset in 
1931 [2] for a compressible flow in which the pressure difference is recognized to be replaced by the difference of the 
squares of the pressures.

Substantial literature will then appear during the 1950s, in which many different approaches to demonstrate Darcy’s 
law will be tested (see for instance [6] and references therein). Although these articles helped progressing into the under-
standing of the applicability of Darcy’s law, almost all of them relied on analogies, hypotheses or postulates that left them 
incomplete. The first extension to three-dimensions and to non-isotropic materials was reported by Hall [7], who intro-
duced a permeability tensor, which is also based on some pre-requisites (see in particular Eq. (17) therein and the way the 
permeability is identified).

Despite the lack of formal derivation of Darcy’s law, which can be expressed for a 1D flow in the x-direction as [8]

q = − K s

μ

∂〈pβ〉β
∂x

(2)

the meaning of the permeability and its relationship to the underlying pore structure focused closed attention. In the above 
expression, K is the permeability having units of m2 and μ the fluid viscosity. In addition, 〈pβ 〉β is the intrinsically-averaged 
pressure in the porous medium, defined as:

〈pβ〉β = 1

Vβ

∫
Vβ

pβ dV (3)

Here, Vβ is the domain (of volume Vβ ) occupied by the fluid phase β within a representative averaging domain (or REV) 
(see Fig. 1), and pβ is the pore-scale pressure.

An early estimate of K was inspired by an analysis due to Blake in 1922 [9] of flow over packings of grains of different 
shapes and a comparison to flows in capillary tubes that resulted in the following estimate

K = 1

k0 S2
0

ε3

(1 − ε)2
(4)

where ε is the porous medium porosity, S0 denotes the specific surface of the particles and it is defined as the ratio of the 
area of the particle to its volume. The coefficient S0, related to the effective particle diameter, dp , was identified from an 
analogy with spherical particles by

S0 = 6

dp
(5)

2 In [1], H. Darcy indicated that k “depends on the permeability of the sand layer”. In fact, k is the hydraulic conductivity, having the unit of a length per 
unit time. The intrinsic permeability as a physical quantity, denoted by K (or K in tensorial form) in the present article, appeared later in the literature. It 
seems that M. Muskat (see for instance [2]) was the first who used this coefficient.
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Fig. 1. Sketch of a porous medium including an averaging domain and the phases involved.

Finally, k0 is an adjustable coefficient that was later known as the Kozeny [10] coefficient. Carman [11] suggested taking 
k0 = 5, so that equation (4) can now be expressed as

K = d2
p ε3

180(1 − ε)2
(6)

which is usually known as the Kozeny–Carman equation and which is often used, sometimes abusively, to predict the value 
of permeability. Certainly, a precise correlation for any type of pore structure is out of reach.

1.2. Theoretical foundation of Darcy’s law

The lack of convincing formal derivations of Darcy’s law that lasted over more than a century is obviously related to 
the lack of clear upscaling methods allowing one to obtain the macroscopic conservation equations form their microscopic
(i.e. pore-scale) counterparts, as pointed out by Zerner [3]. These methods emerged in the 1970s and a first attempt was 
proposed by S. Whitaker in 1966 [12], who clearly obtained a generalization of Darcy’s law in the following vectorial form:

〈vβ〉 = − K

μ
· (∇〈pβ〉β − ρg

)
(7)

where ρ is the fluid density, g is the gravity acceleration, K is the permeability tensor and 〈vβ 〉 the seepage velocity, which 
is defined as the superficial average:

〈vβ〉 = 1

V

∫
Vβ

vβ dV (8)

with V being the volume of the REV and vβ the pore-scale velocity vector. The same result was achieved exactly in the 
same period by C. Marle [13]. However, in these articles, no clear structural link (i.e. a closure) is provided between the 
micro- and the macroscale allowing one to infer the dependence of the permeability upon the pore-scale geometry. It was 
not earlier than in the middle of the 1980s that a closed rigorous form was achieved by Whitaker [14] using the volume 
averaging method [15], which included an intrinsic closure scheme allowing one to predict the values of the components 
of the permeability tensor K. Some derivations of Darcy’s law have used other upscaling techniques such as homogeniza-
tion [16]. These and other techniques depart from the governing equations at the pore scale and, after the application of an 
averaging operator (such as the one sketched in Fig. 1) and many mathematical steps, lead to an upscaled model in terms 
of effective-medium coefficients that capture the essential (i.e. non-redundant) information from the pore scale. In this way, 
the permeability tensor can be viewed as a signature of the porous medium topology at a scale that is larger than the pore 
scale.

Over the past century, there have been some modifications brought to Darcy’s law that extended its applicability to 
more complicated transport processes than those originally considered by Darcy. Among the extensions to Darcy’s law, a 
non-exhaustive list should include: 1) Forchheimer’s modification to allow for the study of non-creeping flow regimes [17]; 
2) Brinkman’s correction to include macroscopic viscous stress by introducing an effective viscosity coefficient [18]; 
3) Klinkenberg’s modification of the permeability tensor to study gas slip flows in porous media [19]; 4) application to 
heterogeneous media by means of large-scale volume averaging [20]; 5) non-isothermal flow of non-Newtonian fluids in 
porous media (cf. [21] for instance).
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In what follows, the focus is laid upon two extensions to Darcy’s law that are of major importance, namely the inertial 
one-phase flow and the gas slip flow in homogeneous porous media. Our aim is to carefully review these extensions and draw 
some conclusions and perspectives on these subjects.

2. Inertial one-phase flow in porous media

The analogy with flows in ducts has been widely used in the derivation of empirical flow models in porous media and 
might have been a source of inspiration for H. Darcy to obtain the filtration law he reported in his book [1]. As mentioned 
in a remarkable analysis by Zerner [3], H. Darcy dedicated specific experiments to verify Poiseuille’s law in the context of 
slow flow. One of the major motivations was his questioning of the validity of the relationship between the “pressure drop” 
�P and the average velocity u in a tube of length L, which was then of common use, i.e.

�P

L
= au + bu2 (9)

a relationship mainly due to du Buat and Gaspard Riche de Prony (see [3]), with a and b being coefficients that had to be 
determined experimentally.

2.1. Forchheimer’s correction to Darcy’s law

It is striking to observe that the form of Eq. (9) corresponds to the relationship proposed by Forchheimer [17] to account 
for “rapid” flows in porous media with the classical analogy on u taken as the filtration or seepage velocity in 1D:

�P

L
= μ

K
u + ρβu2 (10)

where ρ is the fluid density and β is the Forchheimer coefficient, also called the coefficient of inertial resistance or inertial 
resistance factor.

The quadratic correction introduced by Forchheimer about half a century after the empirical validation and publication of 
Darcy’s law was obviously inspired from Eq. (9), despite this remarkable time lapse between Forchheimer’s publication and 
that of Darcy. In 1931, Muskat and Botset [2] reported experimental results of gas flow through different types of porous 
materials, in which they observed that the gradient of the square of the pressure was proportional to a power of the mass 
velocity ranging between 1 and 2 (1 when the flow was “completely viscous”, and 2 when it was “completely turbulent”). 
This empirical form of Eqs. (9) and (10) was accepted to account for inertial flows in porous media over an additional 
half-century during which only few alternative forms were put forth, like for instance [22]

�P

L
= au + bu2 + cu3 (11)

with a, b and c being adjustable coefficients. During the fifty years following Forchheimer’s publication, some confusion 
remained about the physical origin of the quadratic correction to Darcy’s law as it was often attributed to turbulence, 
although some references made clear statements on that point [6]. In fact, Irmay [6] argued that there is no reason, in 
general, to expect a linear solution to the non-linear Navier–Stokes equations. The Poiseuille solution in straight tubes is an 
exception caused by vanishing curvature, which is not the case in real porous media. Agreement has been quite unanimous 
on the threshold value of the Reynolds number at which the correction becomes significant, i.e. for 1 ≤ Red ≤ 15, where 
Red = ρ〈vβ 〉dg

μ is based on the filtration velocity 〈vβ 〉 and the typical grain size dg of the porous material. However, it was 
not before 1962 and the publication by Chauveteau and Thirriot [23], in which a flow regime classification was proposed, 
that turbulence in this range of Reynolds numbers was dismissed. Turbulence has been confirmed to typically arise for 
Red ∼ 100 [24–26].

During this period, and even up to the end of the 1970s, comparisons with experimental results were reported, showing 
quite good agreement for various types of porous structures, including packed beds of grains, bundles of capillary tubes or 
fibrous media for flows of gases or liquids [27,28]. From a practical point of view, the Forchheimer model has been used for 
applications in hydrology, petroleum and chemical engineering [29,30]. From a theoretical point of view, the same period 
was marked by various attempts to justify the form of Eq. (9). This was carried out on the basis of different approaches 
ranging from simplified derivations from the Navier–Stokes equations or analogies with pressure drop through capillary 
orifices [6]. The emergence of more formal upscaling techniques during the 1970s has led to further developments in the 
following years that also attempted to justify the quadratic form of the inertial correction to Darcy’s law [13,31–33].

2.2. Refinements on the inertial correction to Darcy’s law

Impulsed by the development of both computational resources and numerical methods, the velocity dependence of 
the corrective term on Darcy’s law regained much attention from the early 1990s on. It was during this period that the 
quadratic velocity dependence of this correction was questioned and analyzed in depth. Numerical simulations carried out 
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through networks of parallel cylinders of circular cross-section for a flow orthogonal to the cylinders showed that the 
correction scales as a 3rd power of the filtration velocity [34] instead of a quadratic term. This behavior was theoretically 
confirmed quasi simultaneously, regardless the geometry at the pore-scale, from formal derivations based on a rigorous 
upscaling procedure using double-scale homogenization with a closure process involving periodic representations of the 
porous medium [35–37]. The exponent 3 was confirmed for a Reynolds number, Rep , based on the characteristic pore size 
ranging between δ1/2 and 1, where δ is the micro-to-macroscale ratio. This result was further emphasized later on [38] and, 
from its original evidence, led to identify this regime as the so-called “weak inertia regime”, formalized for homogeneous 
isotropic and periodic media. Additional numerical works over larger intervals of the Reynolds number for flows in many 
different structures confirmed the existence of weak inertia and extended the classification of flows under (at least) three 
distinct regimes with crossovers, namely [39] i) the weak inertia regime occurring at the onset of non-linearity in the 
flow-rate-to-pressure-drop relationship for δ1/2 ≤ Rep ≤ 1; ii) the “strong inertia regime” characterized by a correction to 
Darcy’s law that scales as the square of the filtration velocity, i.e. leading to a Forchheimer type of model for Reynolds 
numbers in the range 1 to 10; iii) the turbulent regime appearing for Reynolds numbers typically of the order of 100.

Nevertheless, a detailed physical explanation of a cubic or quadratic correction to Darcy’s law in order to account for 
inertia still leaves much to be desired and remains a widely open question [40], while the description of the non-linearity 
is essentially qualitative. Obviously, inertial macroscopic forces cannot be invoked as they remain negligible compared to 
viscous forces [41], and this can be proved to hold as long as Rep � δ−1. Consequently, the nature of the non-linearity in 
the relationship between the macroscopic drag force and filtration velocity must certainly be explained from the signature 
of viscous and inertial forces at the microscale. On the one hand, several mechanisms suggesting that inertia alone, at the 
pore-scale, can explain the macroscale behavior may be put forth such as: i) streamlines bending due to the tortuosity of the 
structure and to local converging-diverging flow patterns; ii) backflows and separations resulting from form drag; iii) pore 
networks actively involved in the flow that are velocity-dependent as a consequence of i) and ii) yielding variations in the 
dissipation of the kinetic energy [42]. On the other hand, microscale viscous drag effects may be considered to contribute 
to the non-linearity when boundary layers at the solid–fluid interfaces, which become thicker when the Reynolds number 
increases (see an experimental observation in [24]), are taken into account. With this mechanism, the inertial core flow (in 
the center of the pores) may be easily understood as being strongly dependent upon the Reynolds number, partly explaining 
the different regimes.

2.3. Further developments

Although the existence of the two regimes (weak and strong inertia) has been widely accepted, a lot still needs to be 
understood regarding the universal existence and dependence of these regimes (and the associated crossovers) upon many 
parameters such as porosity, structural order, anisotropy, etc. In addition, most of the experimental or numerical characteri-
zations of the macroscale inertial correction have been carried out in 1D in a scalar form although many references pointed 
out that tensorial coefficients must be involved [31,36,41,32]. Even if the development did not allow for the formal identi-
fication of the above-mentioned regimes, a convincing derivation, relying on rigorous upscaling, of a macroscopic model for 
momentum transport of one-phase flowing in homogeneous porous media with inertia is certainly due to Whitaker [41]. 
This model, subject to time (μt∗ 	 ρ�2

β ), length-scales (�β � r0 � L) and Reynolds number 
(

ρ〈vβ 〉�β

μ

(
�β

L

)
� 1

)
constraints 

that were clearly formulated, provides the macroscale momentum equation, which reads

〈vβ〉 = − H

μ
· (∇〈pβ〉β − ρg

)
(12)

or equivalently

〈vβ〉 = − K

μ
· (∇〈pβ〉β − ρg

) − F · 〈vβ〉 (13)

where 〈vβ〉 is the filtration (or seepage) velocity as defined in Eq. (8), H is the apparent permeability, K the intrinsic 
permeability and F the inertial correction tensor (which is a function of the filtration velocity); ∇〈pβ 〉β is the macroscopic 
pressure gradient, 〈pβ〉β being defined in Eq. (3). Details on the averaging method employed to obtain this result are given 
in [15]. In addition to the macroscopic model, the upscaling provides the means to determine the associated macroscopic 
coefficients (K, H and F contained in Eqs. (12) and (13)) from the solution to the ancillary problems (so-called closure 
problems). Undoubtedly, while completing the physical description, this contribution concludes some previous derivations 
on the same problem performed with homogenization [36,40] and opens new perspectives to more in-depth investigation 
of the inertial correction to Darcy’s law.

In this spirit, closure problems were solved in order to compute H and F for different ordered and disordered model 
structures so as to investigate the existence of the regimes and their dependence upon the porosity and the microscale pore 
structure [43]. The main important conclusions deriving from this analysis can be summarized as follows. The two tensors 
H and F are generally dense and non-symmetric for ordered structures, even if the medium is isotropic at the macroscale 
in the Darcy regime. The non-symmetry coincides with a macroscopic drag force, which is not necessarily aligned with the 
macroscopic velocity. Symmetry is recovered for specific pressure gradient orientations along symmetry axes of the structure 
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(when present). Dissymmetry of these tensors decreases when structural disorder increases. Whatever the structure under 
concern, the weak inertia regime (a cubic inertial correction to Darcy’s law) is always observed. For ordered structures, the 
strong inertia regime (i.e. a quadratic (Forchheimer) correction to Darcy’s law) does not necessarily exist and it is otherwise 
restricted to a narrow interval of the Reynolds number. For disordered structures, the Forchheimer type of correction is 
a robust approximation over a very significant range of values of the Reynolds number. Moreover, the crossover value of 
the Reynolds number at which the quadratic correction becomes relevant decreases with increasing structural disorder, the 
weak inertia regime being restricted to a small range of Reynolds numbers where the correction is not very significant. This 
certainly explains why this regime is most of the time overlooked in experimental investigations on porous media having a 
random pore structure. In any situation, using a model such as that proposed in Eq. (9) implies that the permeability in the 
linear term in the filtration velocity differs from the intrinsic permeability. Even if some progress has been achieved in the 
physical explanation and the theoretical derivation of formal models to account for inertia effects for one-phase flows in 
porous media, much work remains to be done to understand fully the non-linearities associated with this type of process. 
For instance, most of the analyses so far were dedicated to the laminar steady regime and the occurrence of unsteadiness 
remains widely unexplored (this problem was barely outlined recently in [44]), as well as the turbulent regime; however, 
further discussion of these topics is out of the scope of the present review.

3. Slip flow in porous media

Gas flows in porous media differ considerably from liquid-phase flows, in particular for situations in which the pore sizes 
are comparable to the mean free path of the gas molecules. This is the case in many practical applications including micro-
and nano-fluidic systems such as MEMS and nano-porous media, transport in fibrous media, gas flow during soil remedia-
tion, long-term nuclear waste disposal, among many others. Due to the current high relevance of this type of transport, the 
evolution from the pioneering works performed in the nineteenth century to some of the current developments are briefly 
summarized in this section.

3.1. Slip flow background

A one-phase flow in confined systems of dimensions comparable to the mean free path leads to rarefaction effects that 
give rise to many interesting contributions in transport phenomena. In his classical study of the stresses that rarefied gases 
experience, J.C. Maxwell [45] proposed that, close to the surface of a solid, there should be a sliding of the gas in contact 
with the solid in the direction of a tangential stress. Maxwell proposed that the velocity should be proportional to the 
tangential stress and inversely proportional to the viscosity of the fluid. Under isothermal conditions, the sliding velocity for 
a 1D flow in the x-direction is expressed as:

v = G
dv

dx
(14)

where the coefficient G is the coefficient of slipping, defined as

G = 2

3

(
2

f
− 1

)
λβ (15)

with λβ being the mean free path and f the fraction of gas molecules that are diffusely scattered at the surface. Hence, if the 
solid surface is wholly absorbent, G = 2/3λβ . The proposal from Maxwell is consistent with a previous study by Navier [46], 
and we shall thus refer to Eq. (14) as the Navier–Maxwell equation. It should be noted that Maxwell obtained Eq. (14)
considering a single-component gas; the extension of this equation to multicomponent mixtures is found in Jackson [47].

During the last quarter of the nineteenth century, rarefaction effects were shown to increase significantly the flow rate 
with respect to that predicted from Poiseuille’s law [48]. This motivated several investigations during the early years of the 
twentieth century, in particular those by M. Knudsen. The scattering of gas molecules from solid walls was fundamental 
in Knudsen’s theory [49]. Knudsen studied molecular flows in tubes and determined the dependence on tube dimensions. 
He discussed the transition from Poiseuille’s flow in terms of the ratio of the mean free path of the gas molecules to the 
characteristic size of the apparatus (say, �β ). The reason for considering this ratio is due to the fact that, in the continuum 
approach, the slip velocity may be understood as the average flow velocity of the molecules at a distance from the wall 
that is equal to the mean free path [50]. Hence, as the mean free path becomes a bigger fraction of the tube diameter, 
the slip velocity increases with respect to the bulk velocity. This important ratio between the mean free path and the 
tube diameter is nowadays known as the Knudsen number in his honor (i.e. Kn = λβ/�β ). In the comprehensive review by 
Steckelmacher [51], the historical development and relevance of Knudsen’s works are presented in detail.

Later on, Adzumi [52–54], published a series of papers dedicated to the study of gas flow through capillaries. He consid-
ered three cases: 1) when λβ is very small in comparison to the diameter of the capillary (i.e. Kn � 1); 2) when λβ is large 
compared to the diameter (i.e. Kn > 1), and 3) when λβ is comparable to the capillary diameter (i.e. Kn ∼ 1). In the first 
case, he found Poiseuille’s law to be quite suitable, and the flow is inversely proportional to the gas viscosity [52]. In the 
second case, the flow rate was found to be independent of the viscosity, but inversely proportional to the square root of the 
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gas molecular weight, M , [53]. The flow characteristics in the third case were found by Adzumi to be a combination of the 
two first ones [54]. Nowadays, there is some consensus that the following bounds are identifiable: for Kn < 10−3, the laws 
of continuum mechanics are safely applicable, and non-slip can be assumed at the solid boundaries; for 10−3 < Kn < 10−1, 
the flow regime corresponds to slip flow, and the Navier–Maxwell equation must be considered at the solid–fluid interface; 
for 10−1 < Kn < 10, there is a transition regime in which the laws of continuum mechanics are likely to fail because the 
continuum hypothesis is no longer satisfied. For porous media applications in the transition regime, Maxwell [55] proposed 
that the action of the porous material over the gas was similar to a number of dust particles of the moving system, hence 
giving rise to the well-known dusty gas model. This model has the nice feature that the interactions of gas molecules with 
the dust molecules simulate their interaction with the rigid porous matrix, thus avoiding the problem of flux variations 
across the sections of the pores [47]. Finally, for Kn > 10 the gas kinetic theory must be considered because description in 
terms of particle–wall collision operators is required. This limiting situation is called molecular streaming or Knudsen flow, 
and it is characterized by the fact that the flow takes place by diffusion, instead of viscous, mechanisms [50]. Here, the term 
diffusion means that the flow results from creep at the wall rather than from molecule-to-molecule collisions.

3.2. Pore-scale slip flow and its consequence on Darcy’s law

Few years after Adzumi’s works, in his study of the permeability of gas flows in porous media in the slip regime, 
Klinkenberg [19] found that this coefficient is almost a linear function of the reciprocal mean pressure, 〈pβ 〉β . Using an 
idealized porous medium representation consisting in an array of capillaries, Klinkenberg was able to deduce the following 
relation between the apparent permeability, Ks , and the intrinsic permeability, K :

Ks = K

(
1 + b

〈pβ〉β
)

(16)

with b being a surface- and gas-dependent constant. Evidently, at sufficiently large gas pressures, Ks approaches K . Klinken-
berg used the above equation to predict the values of Ks/K in different experimental conditions with reliable accuracy, thus 
showing the need to consider slip effects in the determination of the permeability. In this way, the Darcy–Klinkenberg 
model is (gravity is omitted here):

〈vβ〉 = − K

μ

(
1 + b

〈pβ〉β
)

∂〈pβ〉β
∂x

(17)

for an average one-dimensional flow in the x-direction, while μ is the fluid dynamic viscosity.
An important point of discussion in the recent literature related to gas transport in porous media is about the pertinence 

of the linear and first-order interfacial boundary condition given in Eq. (14). Shen et al. [56] derived a first-order slip con-
dition from the Chapman–Enskog solution to the Boltzmann equation. This approach consists in linearizing the Boltzmann 
equation using a perturbation expansion for the probability function in terms of the Knudsen number. The resulting condi-
tion includes an additional term due to the pressure gradient along the flow’s direction. The success of first-order models 
has been argued to be constrained to slightly rarefied gas flows by Deissler [57]. According to this author, as the pressure 
in the gas becomes smaller, the velocity profiles may be nonlinear over a distance from the solid surface corresponding to 
the mean free path and the jumps at the interface may be expected to be functions of higher-order normal and tangential 
derivatives. Deissler thus proposed to use a second-order boundary condition that matches the Navier–Stokes equations for 
slip flows, finding good agreement with experimental results. Another early proposal of second-order models is the scalar 
one by Cercignani [58] on the basis of the Bhatnagar–Gross–Krook (BGK) approximation of the Boltzmann equation. How-
ever, these extensions consist of modifications to the scalar equation (14), in other words, they are constrained to simple 
geometries where one-dimensional flow is applicable. Unfortunately, extensions to more complicated geometries are not 
straightforward and they remain a challenge. Furthermore, since the Navier–Stokes equations are first-order accurate in the 
Knudsen number, it is not easy to justify the use of higher-order boundary conditions. Hence, an alternative is to use higher 
order momentum transport equations, such as the Burnett equation [59], which are the result of keeping the second-order 
terms in the Chapman–Enskog approach to approximate the Boltzmann equation.

As mentioned above, one of the limitations of the Navier–Maxwell boundary condition is that it is restricted to one-
dimensional flows. This limitation is also shared by the Klinkenberg model. To address this issue, Einzel et al. [60] proposed 
a generalized version of the slip boundary condition, which can be expressed as follows:

vβ = −
(

2 − σν

σν

)
︸ ︷︷ ︸

ξ

λβn ·
(
∇vβ + ∇vT

β

)
· (I − nn) (18)

where σν is the tangential-momentum accommodation coefficient, n is the unit normal vector directed from the fluid to-
ward the sold phase and I is the identity tensor. The coefficient σν accounts for the average tangential momentum exchange 
between the molecules and the fluid, and can vary from zero to one.
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3.3. Theoretical macroscopic slip flow models in porous media

In the same line of thoughts as those mentioned for inertial flows, the Klinkenberg model, although widely used in 
the literature, was formally derived only more than half a century after its publication. Using the homogenization method, 
Skjetne and Auriault [61] considered the steady-state, low-velocity Navier–Stokes equations for compressible flows in the 
slip regime, i.e. Re � Kn � 1 (for Re = O(δ = �/L), with � and L being the characteristic length scales at the microscale and 
macroscale, respectively). In this work, for the first time, a vectorial form of the Klinkenberg model was rigorously deduced 
for conditions in which both local compressibility and inertial effects are smaller than the wall-slip effects. The apparent 
permeability tensor was found to be positive-definite and non-symmetric, in general. This study was subsequently expanded 
by Chastanet et al. [62] to derive the corresponding upscaled model for low-pressure gas flows in dual-porosity media 
including fractures. Their study highlighted that the Knudsen number should be considered in addition to the separation of 
characteristic length scales in the system in order to assess the domains of validity of upscaled models for gas flow.

The derivation of the effective-medium equation corresponding to slightly-compressible slip-flow conditions using the 
volume averaging method has been carried out recently by Lasseux et al. [63]. This work completes the previous derivations 
by Skjetne and Auriault on the following points: 1) the compressibility effects are taken into account in the framework of 
slightly compressible flows restricted to small Reynolds numbers and small frequency number; 2) the vectorial form of the 
slip boundary condition is considered in its complete form, i.e. including the complete shear-rate at the fluid-solid interface 
as shown in Eq. (18); 3) it is derived for a barotropic fluid without any assumption on the equation of state of the gas. For 
an ideal gas, the resulting upscaled model is

〈vβ〉 = − 1

μ
K ·

⎛
⎝I + ξμ

〈pβ〉β

√
πR〈Tβ〉β

2M
S

⎞
⎠ (19)

which involves two tensors, namely, the intrinsic permeability tensor, K, and a slip-flow correction tensor, S. The parallelism 
between Eqs. (17) and (19) is obvious. The ancillary closure problem required to predict the values of the effective-medium 
coefficients was derived and formally solved for simple porous medium geometries in two- and three-dimensional unit 
cells. Furthermore, the dependence of s (S = sI) on K (K = K I) was found to obey a power-law relationship, with the 
value of the exponent depending on the geometrical configuration. In a subsequent work by Lasseux et al. [64], the slip 
correction was more accurately described by considering an expansion in the Knudsen number at the closure level. This 
leads to a reformulation of the closure problem as a differential (instead of an integro-differential) boundary-value problem, 
which was solved in more complicated unit cells in order to predict the apparent permeability tensor. Furthermore, with 
this expansion, the slip-flow correction tensor was shown to be the sum of slip corrections at the successive orders of the 
Knudsen number. The consideration of the complete form of the boundary condition at the solid–fluid interface was found 
to be crucial for the prediction of the slip corrections at the different orders of Kn. Their analysis evidenced a nonlinear 
relationship between the apparent permeability and the Knudsen number. This relationship motivates further theoretical 
and experimental research on the subject, in particular for highly porous structures.

4. Conclusions

This work has been dedicated to the analysis of the evolution of two major modifications to Darcy’s law, namely the 
inclusion of inertial and slip effects. The review carried out for both extensions suggests the following conclusions and 
prospects.

– The empirical introduction of a quadratic correction in terms of the filtration velocity to Darcy’s law by Forchheimer in 
1901 for 1D flows was certainly inspired by a model that was commonly used for flows in pipes prior to the publication 
of Darcy’s law. This correction has been widely supported by empiricism for more than 90 years, a period after which a 
first theoretical 3D model was achieved by upscaling (homogenization), showing that the onset of deviation from Dar-
cy’s law due to inertia involves a correction that rather scales as a 3rd power of the filtration velocity in a weak-inertia 
regime. For larger Reynolds number values, a so-called strong inertia regime, where the Forchheimer correction is due 
to hold, was accepted. An upscaled 3D complete model, obtained by volume averaging five years later, was used to high-
light the fact that, if the weak inertia regime always exists, the quadratic correction does not hold in some particular 
situations of pore-scale ordered structures and that, however, in the presence of disorder, the Forchheimer-type correc-
tion is a robust one. At this point, a quite different observation from that indicated below for slip flows may be pointed 
out regarding corrections made to Darcy’s law in order to include inertial effects. Indeed, if the underlying physics at 
the pore scale does not rise any particular question, issues are mainly related to the understanding of the different flow 
regimes at the macroscale, the physical mechanisms that trigger the transition from one regime to another and the 
associated range of Reynolds numbers, together with the possible occurrence of unsteadiness.

– The original identification of the slip effect for gas flows in porous media, when the Knudsen number is not exceedingly 
small compared to unity, by Klinkenberg (1941), which led this author to propose a correction to the intrinsic perme-
ability (in the 1D case) inversely proportional to the mean pressure, has been accepted with empirical justifications for 
almost 60 years. After this period, a first theoretical 3D model was derived, followed by more refined ones 15 years later 
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using rigorous upscaling techniques. While these upscaling tools are now at hand for such theoretical developments, 
it clearly appears that the main issues lie in an appropriate pore-scale description of the physics in that case, and in 
particular, in the slip-boundary condition, which still requires some efforts to better capture, and possibly extend, its 
domain of application in terms of the Knudsen number. In the same spirit, despite some attempts, macroscale models 
for transitional and strongly rarefied flow regimes still require important efforts. In parallel, numerical and experimental 
investigations are necessary to highlight the understanding of the detailed physics.

As a prospect, one may finally conclude with the following. From the evolution of two modifications to Darcy’s law inves-
tigated in the present work, it is important to remark that, after one-dimensional corrections were proposed, followed by 
extensive experimental analyses, there was a long time period before rigorous deductions were presented. This delay can be 
explained by the fact that the different necessary theoretical frameworks for performing upscaling from the pore-scale to the 
macroscale are relatively new (about 30–40 years old) and also by the fact that, in many situations, the one-dimensional ver-
sions remained relatively satisfactory. However, with recent applications directed to micro- and nanofluidic devices, among 
others, there is a need for more accurate macroscale models, that can be validated through comparison with reliable ex-
perimental data and direct numerical simulations. In this last issue, there is a strong tendency in current research towards 
understanding macroscale phenomena through imaging and direct simulations. This has been made possible by recent ad-
vances in computational capabilities. With this perspective in mind, it is relevant to pose the question of which direction 
future advances of flows in porous media will take. Probably, experimental and numerical studies would still evolve very 
significantly. However, strong efforts should certainly be dedicated to more sophisticated upscaling approaches applicable to 
more challenging situations than those studied in the current state of the art.
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