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In this paper, we consider a spectral problem with singular perturbation of density 
located near the boundary of the domain, depending on a small parameter. We prove the 
compactness theorem and study the behavior of eigenelements to the given problem, as 
the small parameter tends to zero.
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r é s u m é

Dans cet article, nous considérons un problème spectral avec une perturbation singulière 
de la densité située près de la limite du domaine, dépendant d’un petit paramètre. 
Nous prouvons le théorème de la compacité et étudions le comportement des éléments 
génériques du problème donné, lorsque le petit paramètre tend vers zéro.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Problems in domains with concentrated masses have attracted the attention of mathematicians because of their nontriv-
ial behavior (see, for instance [1–7]). In these papers, the authors have studied the asymptotic behavior of eigenvalues and 
eigenfunctions by means of asymptotic methods and methods of the homogenization theory.
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Fig. 1. Domain with nontrivial micro structure near the boundary.

In the present paper, we consider an aperiodic distribution of concentrated masses and give an example of random 
geometry of the domain and of the masses.

2. Settings and main results

Denote by D ⊂R
n, n ≥ 2 a domain with sufficiently smooth boundary and inhomogeneous density depending on a small 

parameter ε > 0. Let us also denote by �ε a part of the boundary ∂ D of the domain D , having a cellular structure with 
ε-scale, and by γ the fixed part of the boundary ∂ D , and by ν the outward vector normal to the boundary ∂ D . Assume 
that the density in the domain D has the form

ρε(x) =
{

ε−m in Bε,

1 in D \ Bε
, 0 < m < 2 (1)

and Bε is a sufficiently smooth part of the domain D , Bε ∩ ∂ D = �ε , with thickness of order O(ε), i.e. dist(x, ∂ D) ≤ � ε, 
x ∈ Bε , � = const (see Fig. 1).

Denote by H1
0(D, �ε ∪ γ ) the closure by the Sobolev norm of W 1

2 (D), the set of smooth functions with compact support 
in D\(�ε ∪ γ ). We consider the spectral problems⎧⎪⎪⎨

⎪⎪⎩
	uk

ε + λk
ε ρε uk

ε = 0 in D

uk
ε = 0 on �ε ∪ γ

∂uk
ε

∂ν
= 0 on ∂ D\(�ε ∪ γ ), k = 1,2...

(2)

and {
	uk + λk

0 uk = 0 in D
uk = 0 on ∂ D, k = 1,2...

(3)

Here, uk
ε ∈ H1

0(D,�ε ∪ γ ), uk ∈ H1
0(D), k = 1, 2, ... are orthogonal bases in L2(D). The sets {λk

ε}, {λk
0}, k = 1, 2, . . . are the 

corresponding eigenvalues such that 0 < λ1
ε ≤ λ2

ε ≤ · · · ≤ λk
ε ≤ ..., 0 ≤ λ1

0 ≤ λ2
0 ≤ · · · ≤ λk

0 ≤ . . . , and they are repeated with 
respect to their multiplicities.

In what follows, we use the definition from [8].

Definition 2.1. A family of closed sets �ε ⊂ ∂ D is called selfsimilar if there exist constants C1 > 0 and s, 1 < s ≤ 2 inde-
pendent of ε, such that for any ε, 0 < ε ≤ ε0 and for any smooth function ϕ ∈ C∞(D) whose support does not intersect �ε , 
the following inequality

(∫
∂ D

|ϕ|sdx

) 1
s

≤ C1

(
ε

∫
D

|∇ϕ|2dx

) 1
2

(4)

holds true.

If the family {�ε} is selfsimilar, then the eigenvalues and eigenfunctions of the problems (2) and (3) have the following 
asymptotic properties as ε → 0.

Theorem 2.1. For the eigenvalues λk
ε, λk of problems (2) and (3), respectively, the convergence λk

ε → λk is valid as ε → 0.
0 0
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Define Rε : L2(D) → L2,ρε (D) as the following operator Rε f = f (1 − χε), where χε is the characteristic function of Bε , 
and L2,ρε (D) is the weighted space with the inner product ( f , g)L2,ρε (D) = ∫

D
ρε(x) f (x)g(x)dx.

Theorem 2.2. Let us consider the same hypothesis as in Theorem 2.1. Suppose that k, l are integers, k ≥ 0, l ≥ 1, and λk
0 < λk+1

0 =
· · · = λk+l

0 < λk+l+1
0 . Then, for any eigenfunction w of (3), associated with the eigenvalue λk+1

0 , there exists a linear combination uε of 
the eigenfunctions uk+1

ε , . . . , uk+l
ε of problem (2) such that: uε → Rε w as ε → 0.

3. Compactness theorem

Consider the boundary value problem associated with the spectral problem (2). We have⎧⎪⎨
⎪⎩

−	uε = ρε f in D
uε = 0 on �ε ∪ γ ⊂ ∂ D

ε
∂uε

∂ν
= g on ∂ D\(�ε ∪ γ )

(5)

Along with the property (4) we use the Poincaré and the Friedrichs inequalities in the following form. For any functions 
in D , the inequality∫

D

ϕ2dx ≤ C2

((∫
∂ D

|ϕ|dx

)2

+
∫
D

|∇ϕ|2dx

)
(6)

for any function in D , vanishing on γ , the inequality∫
D

ϕ2dx ≤ C2

∫
D

|∇ϕ|2dx (7)

where the constant C2 depends only on the domain, holds true.
We require the boundedness of the domain D , the smoothness of its boundary and the regularity of the set �ε ⊂ ∂ D

only to satisfy (4), (6).
If the family {�ε} is selfsimilar, then solutions uε to the problem (5) have the following asymptotic properties as ε → 0.

Theorem 3.1. Assume that g ∈ Ls′ (∂ D), where s′ is the mutual number to the number s from Definition 2.1, i.e. 1
s + 1

s′ = 1. Then

• (i) the sequence uε is bounded in the space Ls(∂ D) as ε → 0;
• (ii) there exists a measurable function C : ∂ D → [0, +∞) and a subsequence εk → 0 independent of the function g ∈ Ls′ (∂ D), 

such that uεk weakly converges to C(x)g(x) in Ls(∂ D) as εk → 0;
• (iii) the sequence uε is compact in Lp(D), where p < ns

n−1 , and the subsequence uεk strongly converges in Lp(D) to the function 
u0 , which satisfies the problem{ −	u0 = f in D

u0 = C g on ∂ D
(8)

Proof. The statement (iii) of the theorem follows from (i), (ii) and the following Lemma from [8].

Lemma 3.2. Let D be a domain with smooth boundary. If the sequence of solutions vε to the Poisson equation with sufficiently smooth 
right-hand side in D is weakly compact in Ls(∂ D), s > 1, then it is strongly compact in Lp(D), p < ns

n−1 .

Remark 1. In [8] this statement is proved for a sequence of harmonic functions, but the proof can be generalized step by 
step for the sequence of solutions to the Poisson equation in D .

To prove (i) we use the integral identity of the problem (5). We have

ε

∫
D

∇uε∇v dx = ε

∫
D

ρε f v dx +
∫
∂ D

gv dx (9)

for any smooth v with compact support in D\�ε . From (4) and (6), it follows that the functionals in the left- and right-hand 
sides of (9) on H1

0(D, �ε ∪γ ) satisfy the Lax–Milgram Lemma (see, for instance, [9]). Hence the solution uε ∈ H1
0(D, �ε ∪γ )

does exist and is unique. Besides, due to continuity, the inequalities (4), (6) and (9) hold true for functions from H1
0(D, �ε ∪

γ ). Moreover, there is a continuous trace operator from H1(D, �ε ∪ γ ) to Ls(∂ D).
0
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Substituting v = uε in (9), we get

ε

∫
D

|∇uε|2dx ≤
(∫

∂ D

|g|s′ dl

) 1
s′ (∫

∂ D

|uε|sdl

) 1
s

+

+
√√√√ε

∫
D

f 2 dx

√√√√ε

∫
D

u2
ε dx + ε1−m

√√√√∫
Bε

f 2 dx

√√√√∫
Bε

u2
ε dx

(10)

Using (4), the Friedrichs type inequalities (7) and 
∫
Bε

u2
ε dx ≤ Kε2

∫
D

|∇uε|2 dx, and keeping in mind that 
∫
Bε

f 2 dx = O(ε), 

we derive the following estimates:

ε

∫
D

|∇uε|2dx ≤ C3,

∫
∂ D

|uε|sdl ≤ C3 (11)

with the constant C3 independent of ε. Thus, we proved (i).
Let us consider an auxiliary problem⎧⎨

⎩
−	wε = ρε f in D
wε = 0 on �ε

ε∂ wεν = 1 on ∂ D\�ε

(12)

which correspond to the initial problem with g = 1. The corresponding identity in H1
0(D, �ε ∪ γ ) has the form

ε

∫
D

∇wε∇v dx = ε

∫
D

ρε f v dx +
∫
∂ D

v dx (13)

The solution wε ∈ H1
0(D, �ε ∪ γ ) satisfies the bounds analogous to (11), i.e.

ε

∫
D

|∇wε|2dx ≤ C4,

∫
∂ D

|wε|sdx ≤ C4 (14)

with the constant C4 independent of ε. From (14), we conclude that it is possible to choose a subsequence ε = εk , such 
that the traces of wεk weakly converge in Ls(∂ D). We denote the limit function on ∂ D by C(x). Obviously, C ∈ Ls(∂ D). By 
the maximum principle for solutions to elliptic equations, we also have C(x) ≥ 0. Taking an arbitrary function θ ∈ C∞(D), 
we substitute in the identities (9), (13) v = θ wε and v = θuε , respectively. Subtracting these identities from each other, we 
get

ε

∫
D

(wε∇uε − uε∇wε)∇θ dx = ε

∫
D

ρε f θ (wε − uε) dx +
∫
∂ D

(g wε − uε) θ dx (15)

Show that the left-hand side and the first term in the right-hand side of (15) converge to zero as ε → 0. In fact, the 
estimates (11), (14) and the Poincaré inequality give the boundedness of 

√
εuε and 

√
εwε in W 1

2 (D). By the Rellich theorem 
(see, for instance, [9]), the sequences of these functions are strongly compact in L2(D), and converge to zero in the norm of 
the space Lp(D), p < ns

n−1 . Hence, the sequence converges to zero in L2(D). Thus, in the products under the integrals in the 
left-hand side of (15), one multiplier is bounded in L2(D) as ε → 0, and another tends to zero. And the first term in the 
right-hand side also converges to zero, since m < 2 and the sequences 

√
εuε and 

√
εwε converge to zero.

In the second term of the right-hand side of (15), we pass to the limit as εk → 0. The function wεk weakly converges 
to C(x) in Ls(∂ D). The functions uεk are bounded in Ls(∂ D). Taking a subsequence from the subsequence εk such that uεk

weakly converges in Ls(∂ D) to some limit function u0 on ∂ D , and pass to the limit on this subsubsequence. We deduce∫
∂ D

(
g(x)C(x) − u0

)
θ dx = 0

Because of the arbitrariness of the choice of θ ∈ C∞(D) on ∂ D , the function u0 = g C , i.e. the function u0, is independent of 
the choice of the subsubsequence. Hence the whole subsequence uεk has a unique limit. Theorem 3.1 is proved. �
Remark 2. We finally prove that the solution uε to the problem (5) converges to the solution u0 to the problem (8) as 
ε → 0.
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4. Proof of the main theorems

We use the approach from [10] to the spectral problem (2). Applying Theorems 1.4 and 1.7 from [10, Section III.1], we 
finalize the proof of Theorems 2.1 and 2.2.

5. An example of random geometry

In this section, we describe in general and then in particular the structure of micro inhomogeneous sets on the boundary. 
To describe the family {�ε} in detail, we use an approach from [11] and [9].

5.1. Notation

Let (�, B, μ) be a probability space with a semigroup of mappings Tξ : � → �, measurable in ω ∈ �, ξ ∈ R
n−1

and preserving the measure μ on �. We assume the following group property to be satisfied: for any ξ, η ∈ R
n−1 and any 

ω ∈ � we have Tξ ◦ Tη ω = Tξ+η ω, T0 ω = ω.

Definition 5.1. We call the measurable function ϕ : � ×R
n−1 → R a random statistically homogeneous function if it has 

the form ϕ = φ(Tξ ω).

Definition 5.2. We call the random set homogeneous if its characteristic function is statistically homogeneous.

The family T on � forms an (n − 1)-dimensional dynamical system. In the further analysis, we assume T to be ergodic, 
i.e. any μ-measurable function on �, invariant with respect to this semigroup T is almost everywhere a constant. Under 
this assumption, the following Birkhoff theorem holds true (see, for instance, [11] and [9]).

Theorem 5.1 (The Birkhoff theorem). For any function φ ∈ Lα(�) (α ≥ 1) and any bounded domain D ⊂ R
n−1 , we almost surely 

have

lim
ε→0

1

|D|
∫
D

φ
(
T x

ε
ω

)
dx =

∫
�

φ(ω) μ(dω) ≡ 〈φ〉

Here we denoted by 〈·〉 the mathematical expectation and by | · | the volume of a domain. From the Birkhoff theorem, 
one can deduce that functions φ

(
T x

ε
ω

)
weakly converge almost surely to 〈φ〉 in Lloc

α (Rn−1) as ε → 0.

5.2. Structure of �ε

To simplify the exposition, we assume that D = {(x, z), 0 < xi < 1, 0 < z < 1}, �ε = Q ∩ εV (ω), where Q = {(x, z), 0 <
xi < 1, z = 0} is the lower face of the cube and V (ω) ∈ R

n−1 is statistically homogeneous. Also we denote by γ the other 
faces of the cube ∂ D\Q . Here x are local coordinates on ∂ D , and z is a coordinate along the normal to ∂ D .

So that the family {�ε} be selfsimilar in the sense of Definition 2.1, we demand that the statistically homogeneous set 
V (ω) satisfy an additional property, which we call nondegeneracy.

Definition 5.3. A random statistically homogeneous closed set V (ω) ⊂ R
n−1 is called nondegenerate if there exists a posi-

tive statistically homogeneous function h = h(ω) such that, for almost all ω and for any function ϕ ∈ C∞
0

(
R

n\V (ω)
)

with a 
compact support not containing V (ω), the following inequality:

∫
Rn−1

h
(
Tξω

)
ϕ2(x,0)dx ≤

∞∫
0

∫
Rn−1

|∇ϕ(x, z)|2dx dz (16)

holds true, wherein

〈h−1−δ〉 < +∞ (17)

with some δ, 0 < δ ≤ +∞.

Assume that V (ω) is a union in Rn−1 of balls with radii ρi > 0 centered at the isolated points yi . Let respectively B(ω)

be a union in Rn of semiballs (z > 0) with radii ρi > 0 centered in the same isolated points yi . The balls are allowed to 
intersect (see the left Fig. 2). Denote by r = rω(y) the distance from y ∈ R

n−1 to the nearest center yi , ρ = ρω(y) is the 
radius of the ball centered in yi , nearest to y. If V (ω) is statistically homogeneous domain, then the function r è ρ is also 
statistically homogeneous.

The following statement can be proved in a similar way as in [8].
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Fig. 2. Cube D with concentrated masses near the boundary and the Voronoy diagram on Q .

Lemma 5.2. The inequality (16) holds true, if

h = 1

ρ
H

( r

ρ

)
, H(t) =

⎧⎪⎨
⎪⎩

1
2t3 , n = 2

1
8t3 log(t+1)

, n = 3
n−3

4t2n−3 , n > 3

(18)

Proof. We split Rn−1 into measurable subsets V i , consisting of points for which yi is the nearest center (see the right 
Fig. 2). According to our assumption, the set {yi} has no accumulation points, hence V i are polyhedra. In each of them, we 
set the polar system of coordinates (r, θ), where r = |y − yi | and θ are polar angles. Obviously, the polyhedra are star-shaped 
with respect to the center; hence, their boundaries are defined in polar coordinates by unique functions r = R(θ). Inside the 
polyhedra, the functions ρω(y) are equal to the respective constants ρ > 0.

For any point M ∈ V i with coordinates (r, θ), r > ρ , we set a = ρ2

r and construct a point M ∈ V i with coordinates (a, θ), 
0 < a < ρ . Connect the points M and M by the curve l in the cylinder V i × [0, ∞), which is defined in the cylindrical 
coordinates (r, θ, z) by the equation

z = (r − r)(r − a)

r − a
, θ = const, a ≤ r ≤ r (19)

Consider an arbitrary function ϕ ∈ C∞
0

(
R

n\V (ω)
)

with compact support, for which we verify the inequality (16). In each 
cylinder V i × [0, ∞) we have ϕ(r, θ, 0) ≡ 0 if r < ρ . We represent the value of ϕ in the point (r, θ, 0), r > ρ , in the form of 
the integral over the curve l, i.e.

ϕ(r, θ,0) =
r∫

a

dϕ

dr
dr (20)

where dϕ
dr = ∂ϕ

∂r + ∂ϕ
∂z

dz
dr is the derivative along the curve l. Obviously, 

∣∣∣ dϕ
dr

∣∣∣ ≤ |∇ϕ|
√

1 +
(

dz
dr

)2
. Using the Cauchy–Schwartz–

Bunjakovskii inequality, we derive

ϕ2(r, θ,0) ≤
r∫

a

|∇ϕ|2
[

1 +
(dz

dr

)2]
rn−2dr

r∫
a

dt

tn−2
(21)

Denote

I = I(θ) =
R(θ)∫
ρ

ϕ2(r, θ,0)
1

ρ
H

( r

ρ

)
rn−2dr

Integrating I(θ) with respect to the polar angles and summarizing over all polyhedra V i , we get the left hand side of the 
inequality (16). Due to (21) we deduce for I the estimate

I ≤
R(θ)∫
ρ

( r∫
a

(
|∇ϕ|2

[
1 +

(dz

dr

)2]
rn−2 1

ρ
H

( r

ρ

)
rn−2

( r∫
a

dt

tn−2

))
dr

)
dr
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In this estimate we change variables (r, r) by the variables (z, r). The Jacobian has the form

dz

dr
= r(r − a)2 + a(r − r)2

r(r − a)2
> 0

By direct calculations we prove the following inequalities:

1 +
(dz

dr

)2
∣∣∣∣
a≤r≤r

≤ 2,
dz

dr

∣∣∣∣
a≤r≤r

≥ a

r + a

Thus,

I ≤ 2

R∫
ρ

( r∫
a

(
|∇ϕ|2rn−2 dz

dr
max

r, ρ≤r≤R

[ 1

ρ
H

( r

ρ

)
rn−2

( a

r + a

)−1
r∫

a

dt

tn−2

])
dr

)
dr

The choice of H(t) leads to

2 max
r, ρ≤r≤R

[ 1

ρ
H

( r

ρ

)
rn−2

( a

r + a

)−1
r∫

a

dt

tn−2

] ≤ 1 (22)

for any ρ and R . Keeping in mind (22), changing variables (r, r) by (z, r) and increasing the domain of integration, we 
derive

I ≤
R(θ)∫
ρ

( r∫
a

(|∇ϕ|2rn−2 dz

dr

)
dr

)
dr ≤

∞∫
0

( R(θ)∫
0

|∇ϕ|2rn−2dr
)

dz

Finally, integrating over the polar angles and summarizing on i, we obtain (16). The lemma is proved. �
5.3. Convergence result

Using the integral identities and integral inequalities, we prove the following statement.

Theorem 5.3. Suppose that V (ω) is a nondegenerate closed set with δ > 0 in Definition 5.3, then {�ε} is a selfsimilar family with 
s = 1 + δ

(2+δ)
and the solutions uε to the problem (5) satisfy the conditions of Theorem 3.1. In addition, the limit function u0 is unique 

and deterministic (non-random). The boundary function C(x) does not depend on the choice of a subsequence, equals zero on ∂ D\Q , 
and on Q it is equal to a positive constant.

Remark 3. Analogous results can be proved for the limit spectral problem.
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