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This article addresses the asymptotic response of viscoelastic heterogeneous media in the 
frequency domain, at high and low frequencies, for different types of elementary linear 
viscoelastic constituents. By resorting to stationary principles for complex viscoelasticity 
and adopting a classification of the viscoelastic behaviours based on the nature of 
their asymptotic regimes, either elastic or viscous, four exact relations are obtained on 
the overall viscoelastic complex moduli in each case. Two relations are related to the 
asymptotic uncoupled heterogeneous problems, while the two remaining ones result from 
the viscoelastic coupling that manifests itself in the transient regime. These results also 
provide exact conditions on certain integrals in time of the effective relaxation spectrum. 
This general setting encompasses the results obtained in preceding studies on mixtures of 
Maxwell constituents [1,2].

© 2017 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

r é s u m é

Dans cette Note, nous étudions la réponse asymptotique de milieux hétérogènes visco-
élastiques dans le domaine fréquentiel, à basse et haute fréquence, pour les différents types 
de constituants viscoélastiques linéaires élémentaires. En ayant recours à des principes 
de stationnarité pour la viscoélasticité complexe et en utilisant une classification des 
comportements viscoélastiques fondée sur la nature des régimes asymptotiques, élastique 
ou visqueux, quatre relations exactes sont obtenues sur les modules complexes effectifs. 
Deux d’entre elles décrivent les régimes asymptotiques effectifs (problèmes hétérogènes 
découplés), tandis que deux autres résultent du couplage viscoélastique qui se manifeste 
au cours du régime transitoire. Ces résultats fournissent également des conditions exactes 
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sur des intégrales temporelles du spectre de relaxation effectif. Ce cadre général inclut les 
résultats précédemment obtenus pour des mélanges de constituants maxwelliens [1,2].

© 2017 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Homogeneous viscoelastic materials are characterized by a time-dependent response, which can be expressed as a hered-
itary integral involving their relaxation or creep functions and a mechanical loading history. These constitutive functions 
describe asymptotically, at short and long times, elastic or viscous behaviours, while the intermediate time response (i.e.
transient regime) exhibits a viscoelastic character. The latter is contained in the relaxation and retardation spectra of the 
material. The effective response of a viscoelastic heterogeneous medium also presents these different regimes. For Kelvin–
Voigt or Maxwell constituents, it has been demonstrated that the asymptotic effective properties are the homogenized 
tensors of the corresponding uncoupled elastic or viscous heterogeneous problem [3,4]. Besides, it has been established that 
the overall constitutive response is solution to an integro-differential equation, whereas the local response is described by 
a differential equation. This feature has been termed a “long-memory” effect [5,6,3,4]. In the case of a mixture of Maxwell 
materials, this implies a non-vanishing retardation spectrum at the overall scale. Therefore, the effective creep response 
exhibits a transient regime, with a continuous decrease in the creep strain rate, whereas the local constitutive law does not 
exhibit a transient creep response. Similar features hold for the relaxation response of a mixture of Kelvin–Voigt materials.

In this context, exact relations have been more recently obtained on the overall relaxation and retardation spectra of 
heterogeneous materials made of Maxwell constituents [1,2]. They supplement the classical ones previously derived on the 
asymptotic uncoupled regimes. These exact relations on the overall transient response involve a coupling between the local 
viscoelastic properties and the local fields, which are solutions to the asymptotic heterogeneous problems. The present 
study aims at deriving similar results for any type of elementary viscoelastic constituents, assuming that the heterogeneous 
medium is made of elementary constituents of the same type. As with Maxwell constituents, these results can be further 
used to derive approximate homogenization models.

2. The different types of linear viscoelastic behaviours

According to the classical linear theory of viscoelasticity [7–9], the stress response σ (t) to a given derivable strain loading 
path ε(u), u ∈ [0; t], with additional discontinuities (i.e. strain jumps) [ε]i at times ti and initial conditions σ (t = 0) = 0, 
reads

σ (t) =
t∫

0

L(t − u) : ε̇(u)du +
∑

i

L(t − ti) : [ε]i (1)

L(t) is the viscoelastic stiffness tensor (i.e. relaxation function) whose general form is

L(t) = Ler + Lvg δ(t) +
+∞∫
0

G(τ )e−t/τ dτ (2)

with G the relaxation spectrum. Besides, by reference to polymer materials, the viscous and elastic properties at short and 
long times (high and low frequencies) are respectively termed “glassy” (subindex g) and “relaxed” (subindex r). So, Ler is 
the relaxed elastic stiffness, while Lvg is the glassy viscous stiffness. Note also that δ(t) is the Dirac delta function. The 
stress response is therefore given by the time derivative of the convolution product of the functions L and ε. It is usually 
termed Stieltjes convolution product, by reference to the Stieltjes integral, which generalizes the classical Riemann one [10], 
and is noted � in the sequel. The constitutive relation (1) can thus be written in a concise manner as

σ (t) = d

dt
(L ∗ ε) (t) = (L � ε) (t) (3)

Similarly, the strain response ε(t) to a given derivable stress loading path σ (u), u ∈ [0; t], with additional discontinuities 
(i.e. stress jumps) [σ ]i at times ti and initial conditions ε(t = 0) = 0, reads

ε(t) = (M � σ ) (t) =
t∫

0

M(t − u) : σ̇ (u)du +
∑

i

M(t − ti) : [σ ]i (4)

M(t) is the viscoelastic compliance tensor (i.e. creep function) whose general form is

http://creativecommons.org/licenses/by-nc-nd/4.0/
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Table 1
The four types of linear viscoelastic response [12,13].

Type Meg Mvr Ler Lvg Elementary constituent Short time response Long time response

I > 0 0 > 0 0 Zener Elastic Elastic
II > 0 > 0 0 0 Maxwell Elastic Viscous
III 0 0 > 0 > 0 Kelvin–Voigt Viscous Elastic
IV 0 > 0 0 > 0 anti-Zener Viscous Viscous

M(t) = Meg + t Mvr +
+∞∫
0

J(τ )
(
1 − e−t/τ )

dτ (5)

with Meg the glassy elastic compliance, Mvr the relaxed viscous compliance and J the retardation spectrum.1 The relaxation 
and retardation spectra characterize the viscoelastic transient response.

By considering the possible combinations of elastic or viscous asymptotic regimes, the linear viscoelastic behaviours can 
be classified into four categories [12], which are summarized in Table 1. The subsequent analysis is closely related to this 
classification. For later use, it can be noted that the Maxwell and Kelvin–Voigt models are described by two constitutive ten-
sors, respectively elastic and viscous, whereas the Zener and anti-Zener models are described by three constitutive tensors 
(i.e. two elastic [resp. viscous] and one viscous [resp. elastic] tensors).

3. Overall viscoelastic functions of heterogeneous media

Exact relations on the asymptotic responses of viscoelastic heterogeneous media with elementary constituents of the 
same type (Table 1) are derived in the following. These results encompass those obtained in [1,2] for Maxwell constituents. 
By making use of stationary principles for complex constitutive behaviours [14], these relations are derived for the real 
and imaginary parts of the effective complex modulus, which are the quantities most commonly measured by dynamic 
mechanical analysis. Implications on the relaxation spectrum are also given. For conciseness, the corresponding relations 
for the overall complex compliance and the retardation spectrum are not reported here. They can be obtained in a similar 
manner by a dual analysis.

3.1. Description of a heterogeneous viscoelastic medium

The heterogeneous medium occupies a volume element � and comprises N different homogeneous phases of volume 
�(s) with viscoelastic relaxation L(s)(t) and creep M(s)(t) functions, s ∈ [1; N]. Besides, it is assumed that �(s) � � and that 
the phases are perfectly bonded. The pointwise viscoelastic stiffness and compliance tensors thus read

L(x, t) =
N∑

s=1

L(s)(t)χ(s)(x) and M(x, t) =
N∑

s=1

M(s)(t)χ(s)(x) (6)

with χ(s) the characteristic function of phase (s), that is

χ(s)(x) =
{

1 if x ∈ �(s),

0 otherwise
(7)

L(s)(t) and M(s)(t) are inverse functions for the Stieltjes convolution product, that is L(s) � M(s) = I. The volume averages 
over � and �(s) are respectively denoted • = 〈•〉 and •(s) = 〈•〉(s) . By definition of the characteristic function, the volume 
fraction of phase (s) is cs = 〈χ(s)〉.

3.2. Local problems for general loading paths

The local problem to be solved in the volume element � subjected to a strain loading history ε(t) from t = 0 to t = T
and classical boundary conditions (i.e. uniform or periodic) reads⎧⎪⎨⎪⎩

σ (x, t) = (L � ε) (x, t), ∀(x, t) ∈ � × [0; T ],
divσ = 0, curl(tcurlε) = 0, ∀(x, t) ∈ � × [0; T ],
〈ε(t)〉 = ε(t), ∀t ∈ [0; T ]

(8)

Similarly, the local problem corresponding to a stress loading history σ (t) reads

1 It is noted that the spectra G and J present several ranges of relaxation (resp. retardation) times which depend on their symmetry class [11, Appendix A].
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⎧⎪⎨⎪⎩
ε(x, t) = (M � σ ) (x, t), ∀(x, t) ∈ � × [0; T ],
divσ = 0, curl(tcurlε) = 0, ∀(x, t) ∈ � × [0; T ],
〈σ (t)〉 = σ (t), ∀t ∈ [0; T ]

(9)

Depending on the applied loading history, the overall constitutive law is defined by

σ (t) = (̃
L � ε

)
(t) or ε(t) = (

M̃ � σ
)
(t), ∀t ∈ [0; T ], with L̃ � M̃ = I (10)

3.3. Local problem for harmonic strain loadings

The response of a heterogeneous media to a sinusoidal loading is classically studied by making use of the Laplace–Carson 
(LC) transform of the constitutive equations for a purely imaginary transform variable p [15]. For the particular case of an 
overall harmonic strain loading, that is ε(t) = ε∗ eiωt (where i = √−1), the local problem corresponding to the steady-state 
regime at angular frequency ω reads⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

σ ∗(x, iω) = L∗(x, iω) : ε∗(x, iω), ∀x ∈ �,

L∗(x, iω) = LC(L(x, t)), ∀x ∈ �,

divσ ∗ = 0, curl(tcurlε∗) = 0, ∀x ∈ �,

〈ε∗〉 = ε∗

(11)

L∗(x, iω) is the LC transform of the local relaxation function L(x, t) with transform variable p = iω. It can be decomposed 
into

L∗(x, iω) = L′(x,ω) + iL′′(x,ω) (12)

where L′ and L′′ are the storage and loss moduli, which are respectively proportional to the stored and dissipated energies. 
The problem to be solved, for a given angular frequency ω, therefore corresponds to a symbolically heterogeneous elastic 
problem with pointwise complex fields ε∗ , σ ∗ and L∗ . The overall complex constitutive law can thus be expressed in the 
form

σ ∗ = L̃∗(iω) : ε∗ with L̃∗(iω) = L̃′(ω) + ĩL′′(ω) (13)

Besides, it is worth noting that the asymptotic local fields (i.e. as ω → +∞ and ω → 0) are solutions to the purely elastic 
or viscous heterogeneous problems corresponding to the glassy and relaxed regimes. It is recalled that the nature of the 
asymptotic states depends on the type of viscoelastic behaviour considered (Table 1). The local (complex) stress field satisfies

lim
ω→+∞σ ∗(x, iω) = σ g(x) and lim

ω→0
σ ∗(x, iω) = σ r(x) (14)

with σ g and σ r the (real) stress fields solution to the heterogeneous glassy and relaxed problems. The same asymptotic 
properties hold for the strain (rate) field ε∗(x, iω) with asymptotic fields εg(x) and εr(x), respectively.

3.4. Saddle-point variational principles for complex viscoelasticity

The complex constitutive relation (11)1 can be rewritten as a system of real equations(
σ ′
σ ′′

)
= LI :

(
ε′′
ε′

)
with LI =

(−L′′ L′
L′ L′′

)
(15)

where (σ ′, ε′) and (σ ′′, ε′′) are real fields. Observing that the quadratic form associated with LI is a saddle-shaped function, 
Cherkaev and Gibiansky [14] derived the following stationary principle for the real fields ε′(x, ω) and ε′′(x, ω)(

ε′′
ε′

)
:
(−̃L′′ L̃′

L̃′ L̃′′

)
:
(

ε′′
ε′

)
= min

ε′,〈ε′〉=ε′ max
ε′′,〈ε′′〉=ε′′

〈(
ε′′
ε′

)
:
(−L′′ L′

L′ L′′
)

:
(

ε′′
ε′

)〉
(16)

The left-hand side of (16) is the imaginary part of the overall “complex energy” φ∗ = σ ∗ : ε∗ , that is

Im(φ∗) = Im (σ ∗ : ε∗) = 〈
σ ′′ : ε′ + σ ′ : ε′′〉 (17)

By considering an alternative rewriting of the complex constitutive law (11)1(
σ ′

−σ ′′
)

= LR :
(

ε′
ε′′

)
with LR =

(
L′ −L′′

−L′′ −L′
)

(18)

another saddle-point variational principle can be established
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(
ε′
ε′′

)
:
(

L̃′ −̃L′′

−̃L′′ −̃L′

)
:
(

ε′
ε′′

)
= min

ε′,〈ε′〉=ε′ max
ε′′,〈ε′′〉=ε′′

〈(
ε′
ε′′

)
:
(

L′ −L′′
−L′′ −L′

)
:
(

ε′
ε′′

)〉
(19)

which is the real part of the overall “complex energy” φ∗ , that is

Re(φ∗) = Re (σ ∗ : ε∗) = 〈
σ ′ : ε′ − σ ′′ : ε′′〉 (20)

From the definition of φ∗ and a lemma on the derivative of the stationary value of an energy [16], it follows that

∂

∂ω

(
Re(φ∗)

) =
〈(

ε′
ε′′

)
: ∂ LR

∂ω
:
(

ε′
ε′′

)〉
and

∂

∂ω

(
Im(φ∗)

) =
〈(

ε′′
ε′

)
: ∂ LI

∂ω
:
(

ε′′
ε′

)〉
(21)

We can build on the two stationary principles (16) and (19) and their derivatives with respect to the angular frequency ω
(21) to obtain exact asymptotic relations on the effective complex modulus of heterogeneous viscoelastic media at low and 
high frequencies. These relations are investigated in the sequel for the different cases of elementary viscoelastic constituents 
(Table 1).

3.5. Mixture of Zener constituents (type-I viscoelasticity)

3.5.1. Local and effective viscoelastic properties
The behaviour of a Zener constituent (a.k.a. standard linear solid model) is characterized by elastic responses in the 

asymptotic regimes 
(
Ler , Meg

)
and presents a unique “transient” viscous stiffness tensor (Lv). Its constitutive relation is 

solution to a homogeneous differential equation that reads

σ (t) + Lv : (Leg − Ler

)−1 : σ̇ (t) = Ler : ε(t) + Leg : Lv : (Leg − Ler

)−1 : ε̇(t) (22)

The viscoelastic stiffness and compliance tensors of the Zener phase (s) are

L(s)(t) = L(s)
er + G(s) e−t/τ (s)

and M(s)(t) = M(s)
eg + J(s)

(
1 − e−t/τ ′(s)

)
(23)

with τ (s) and τ ′(s) the relaxation and retardation times. It can be noted that the eigenvalues of L(s)
v :

(
L(s)

eg − L(s)
er

)−1
corre-

spond to the relaxation times of the Zener constituent (s). Also, the asymptotic elastic properties tensors obey the following 
relations

L(s)
er =

(
M(s)

eg + J(s)
)−1

and M(s)
eg =

(
L(s)

er + G(s)
)−1

(24)

The general expressions of the effective relaxation and creep functions, consistent with the elastic asymptotic regimes, are

L̃(t) = L̃er +
+∞∫
0

G̃(τ )e−t/τ dτ and M̃(t) = M̃eg +
+∞∫
0

J̃(τ )
(
1 − e−t/τ )

dτ (25)

and the effective response to strain harmonic loadings with angular frequency ω is described by the complex viscoelastic 
stiffness tensor ̃L∗(iω) given by

L̃∗(iω) = LC(̃L(t)) = L̃er +
+∞∫
0

iωτ

1 + iωτ
G̃(τ )dτ (26)

3.5.2. Exact relations on the overall complex modulus and relaxation spectrum
From the stationary principles on the complex energy φ∗ and the asymptotic properties of the strain field ε∗ , it follows 

that ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

lim
ω→+∞ ε : L̃′(ω) : ε = ε : L̃eg : ε =

∑
s

cs L(s)
eg :: 〈εg ⊗ εg

〉(s)
,

lim
ω→0

ε : L̃′(ω) : ε = ε : L̃er : ε =
∑

s

cs L(s)
er :: 〈εr ⊗ εr〉(s) ,

lim
ω→0

ε : ∂ L̃′′

∂ω
(ω) : ε =

∑
s

cs L(s)
v :: 〈εr ⊗ εr〉(s) ,

lim
ω→+∞−ω2ε : ∂ L̃′′

∂ω
(ω) : ε =

∑
cs

(
G(s) : L(s)

v
−1 : G(s)

)
:: 〈εg ⊗ εg

〉(s)

(27)
s
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Fig. 1. Physical interpretation on the overall relaxation spectrum G̃ for type-I viscoelastic behaviour. (a) and (b): Relaxation stress and stress rate for a 
constant macroscopic strain ε. (c): Stress response for a constant macroscopic strain rate ε̇.

The first two relations (27)1,2 classically express the effective elastic properties in the glassy and relaxed asymptotic 
states at high and low frequencies, respectively. The last two relations (27)3,4 result from the viscoelastic nature of the 
transient response. They combine the local viscoelastic properties and the intraphase second moments of the strain fields, 
which are solutions to the asymptotic heterogeneous problems.

From the form of the complex moduli tensor (26), it is also noted that

lim
ω→0

L̃′′(ω) = lim
ω→+∞ L̃′′(ω) = lim

ω→+∞ω2 ∂ L̃′

∂ω
(ω) = lim

ω→0

∂ L̃′

∂ω
(ω) = 0 (28)

By using the expression (26), exact conditions are obtained as well from (27)1,3,4 on integrals in time of the effective 
relaxation spectrum G̃, namely

+∞∫
0

G̃(τ )dτ ,

+∞∫
0

τ G̃(τ )dτ and

+∞∫
0

G̃(τ )

τ
dτ (29)

Their respective physical interpretations, in the time domain, are given in Fig. 1.

3.6. Mixture of Maxwell constituents (type-II viscoelasticity)

This case has been studied in details in [1,2]. The main results are recalled here to make the present article self-
contained.

3.6.1. Local and effective viscoelastic properties
The response of a Maxwell constituent is characterized by an elastic regime (Meg ) at short times (t → 0+) and a viscous 

regime (Mvr ) at long times (t → +∞). Its constitutive relation is solution to the differential equation

Mvr : σ (t) + Meg : σ̇ (t) = ε̇(t) (30)

Hence, the viscoelastic stiffness and compliance tensors of the Maxwell phase (s) are

L(s)(t) = L(s)
eg e−t/τ (s)

and M(s)(t) = M(s)
eg + M(s)

vr t (31)

The inverse of the relaxation times τ (s) are the eigenvalues of L(s)
eg : M(s)

vr while the retardation times are null.
The corresponding overall relaxation and creep functions have the following general expressions:
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Fig. 2. Physical interpretation on the overall relaxation spectrum ̃G for type-II viscoelastic behaviour. (a), (b) Relaxation stress and stress-rate for a prescribed 
macroscopic strain ε and (c) stress response for a constant applied macroscopic strain rate ε̇.

L̃(t) =
+∞∫
0

G̃(τ )e−t/τ dτ and M̃(t) = M̃eg + M̃vr t +
+∞∫
0

J̃(τ )
(
1 − e−t/τ )

dτ (32)

The complex viscoelastic stiffness tensor ̃L∗(iω) reads

L̃∗(iω) = LC(̃L(t)) =
+∞∫
0

iωτ

1 + iωτ
G̃(τ )dτ (33)

3.6.2. Exact relations on the overall complex modulus and relaxation spectrum
From the stationary principles on φ∗ and the asymptotic properties of the strain field ε∗ , we obtain⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

lim
ω→+∞ ε : L̃′(ω) : ε = ε : L̃eg : ε =

∑
s

cs L(s)
eg :: 〈εg ⊗ εg

〉(s)

lim
ω→0

ε̇ : 1

ω
L̃′′(ω) : ε̇ = ε̇ : L̃vr : ε̇ =

∑
s

cs L(s)
vr :: 〈ε̇r ⊗ ε̇r〉(s) ,

lim
ω→+∞−ω2ε : ∂ L̃′′

∂ω
(ω) : ε =

∑
s

cs

(
L(s)

eg : M(s)
vr : L(s)

eg

)
:: 〈εg ⊗ εg

〉(s)
,

lim
ω→0

ε̇ : ∂

∂ω

(
1

ω
L̃′(ω)

)
: ε̇ =

∑
s

cs

(
L(s)

vr : M(s)
eg : L(s)

vr

)
:: 〈ε̇r ⊗ ε̇r〉(s)

(34)

Besides, the general expression of the complex moduli tensor (33) implies that

lim
ω→+∞ L̃′′(ω) = lim

ω→0

1

ω
L̃′(ω) = lim

ω→+∞ω2 ∂ L̃′

∂ω
(ω) = lim

ω→0

∂

∂ω

(
1

ω
L̃′′(ω)

)
= 0 (35)

By introducing the expression (33), the relations (34) give as well conditions on integrals of the overall relaxation spec-
trum G̃

+∞∫
0

G̃(τ )dτ ,

+∞∫
0

G̃(τ )

τ
dτ ,

+∞∫
0

τ G̃(τ )dτ and

+∞∫
0

τ 2G̃(τ )dτ (36)

whose physical meaning is shown in Fig. 2 for constant macroscopic strain (rate) loadings.
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3.7. Mixture of Kelvin–Voigt constituents (type-III viscoelasticity)

3.7.1. Local and effective viscoelastic properties
The response of a Kelvin–Voigt material is characterized by a viscous regime (Lvg ) at short times (t → 0+) and an elastic 

regime (Ler ) at long times (t → +∞). Its constitutive relation is solution to

σ (t) = Ler : ε(t) + Lvg : ε̇(t) (37)

Hence, the viscoelastic stiffness and compliance tensors of the Kelvin–Voigt phase (s) are

L(s)(t) = L(s)
er + L(s)

vg δ(t) and M(s)(t) = M(s)
er

(
1 − e−t/τ ′(s)

)
(38)

The retardation times τ ′(s) are the eigenvalues of L(s)
vg : M(s)

er while the relaxation times are null.
In agreement with the asymptotic regimes, the general expressions of the relaxation and creep functions are

L̃(t) = L̃er + L̃vg δ(t) +
+∞∫
0

G̃(τ )e−t/τ dτ and M̃(t) =
+∞∫
0

J̃(τ )
(
1 − e−t/τ )

dτ (39)

and the complex viscoelastic stiffness tensor ̃L∗(iω) reads

L̃∗(iω) = LC(̃L(t)) = L̃er + iω̃Lvg +
+∞∫
0

iωτ

1 + iωτ
G̃(τ )dτ (40)

3.7.2. Exact relations on the overall complex modulus and relaxation spectrum
From the stationary principles on φ∗ and the asymptotic properties of the strain field ε∗ , we get⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

lim
ω→0

ε : L̃′(ω) : ε = ε : L̃er : ε =
∑

s

cs L(s)
er :: 〈εr ⊗ εr〉(s) ,

lim
ω→+∞ ε̇ : 1

ω
L̃′′(ω) : ε̇ = ε̇ : L̃vg : ε̇ =

∑
s

cs L(s)
vg :: 〈ε̇g ⊗ ε̇g

〉(s)
,

lim
ω→0

ε : ∂ L̃′′

∂ω
(ω) : ε =

∑
s

cs L(s)
vg :: 〈εr ⊗ εr〉(s) ,

lim
ω→+∞−ω2 ε̇ : ∂

∂ω

(
1

ω
L̃′(ω)

)
: ε̇ =

∑
s

cs L(s)
er :: 〈ε̇g ⊗ ε̇g

〉(s)

(41)

Besides, the general expression of the complex moduli tensor (40) implies that

lim
ω→0

L̃′′(ω) = lim
ω→+∞

1

ω
L̃′(ω) = lim

ω→0

∂ L̃′

∂ω
(ω) = lim

ω→+∞ω2 ∂

∂ω

(
1

ω
L̃′′(ω)

)
= 0 (42)

By incorporating the definition (40) into the relations (41)3,4, conditions on the following integrals of the relaxation spec-
trum G̃ are obtained

+∞∫
0

τ G̃(τ )dτ and

+∞∫
0

G̃(τ )dτ (43)

Their physical interpretations, in the time domain, are given in Fig. 3.

3.8. Mixture of anti-Zener constituents (type-IV viscoelasticity)

3.8.1. Local and effective viscoelastic properties
The behaviour of anti-Zener constituents is characterized by viscous responses in the asymptotic regimes 

(
Lvg , Mvr

)
and shows a unique “transient” elastic compliance tensor (Me). Its constitutive response is described by a homogeneous 
differential equation, which may be written as

σ (t) + (
Lvr − Lvg

) : Me : σ̇ (t) = Lvr : ε̇(t) + (
Lvr − Lvg

) : Me : Lvg : ε̈(t) (44)

The viscoelastic stiffness and compliance tensors of the anti-Zener phase (s) are
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Fig. 3. Physical interpretation on the overall relaxation spectrum ̃G for type-III viscoelastic behaviour. Stress and stress rate for a constant macroscopic strain 
rate ε̇.

L(s)(t) = L(s)
vg δ(t) + G(s) e−t/τ (s)

and M(s)(t) = M(s)
vr t + J(s)

(
1 − e−t/τ ′(s)

)
(45)

with τ (s) and τ ′(s) the relaxation and retardation times. The relaxation times τ (s) are the eigenvalues of 
(

L(s)
vr − L(s)

vg

)
: M(s)

e

and the asymptotic viscous properties tensors satisfy

L(s)
vr = L(s)

vg + τ (s) G(s) and M(s)
vg = M(s)

vr + 1

τ ′(s)
J(s) (46)

It is noted that G(s) = M(s)
e

−1 = L(s)
e . In agreement with the viscous asymptotic regimes, the overall relaxation and creep 

functions can be expressed as

L̃(t) = L̃vg δ(t) +
+∞∫
0

G̃(τ )e−t/τ dτ and M̃(t) = M̃vr t +
+∞∫
0

J̃(τ )
(
1 − e−t/τ )

dτ (47)

The corresponding overall complex relaxation tensor ̃L∗(iω) reads

L̃∗(iω) = LC(̃L(t)) = iω L̃vg +
+∞∫
0

iωτ

1 + iωτ
G̃(τ )dτ (48)

3.8.2. Exact relations on the overall complex modulus and relaxation spectrum
From the stationary principles on φ∗ and the asymptotic properties of the strain field ε∗ , it follows that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

lim
ω→0

ε̇ : 1

ω
L̃′′(ω) : ε̇ = ε̇ : L̃vr : ε̇ =

∑
s

cs L(s)
vr :: 〈ε̇r ⊗ ε̇r〉(s) ,

lim
ω→+∞ ε̇ : 1

ω
L̃′′(ω) : ε̇ = ε̇ : L̃vg : ε̇ =

∑
s

cs L(s)
vg :: 〈ε̇g ⊗ ε̇g

〉(s)
,

lim
ω→+∞−ω2ε̇ : ∂

∂ω

(
1

ω
L̃′(ω)

)
: ε̇ =

∑
s

cs L(s)
e :: 〈ε̇g ⊗ ε̇g

〉(s)
,

lim
ω→0

ε̇ : ∂

∂ω

(
1

ω
L̃′(ω)

)
: ε̇ =

∑
s

cs

(
	L(s)

v : M(s)
e : 	L(s)

v

)
:: 〈ε̇r ⊗ ε̇r〉(s)

(49)

with 	L(s)
v = L(s)

vr − L(s)
vg .

From the form of the complex moduli tensor (48), it is also noted that

lim
ω→0

1

ω
L̃′(ω) = lim

ω→+∞
1

ω
L̃′(ω) = lim

ω→+∞ω2 ∂

∂ω

(
1

ω
L̃′′(ω)

)
= lim

ω→0

∂

∂ω

(
1

ω
L̃′′(ω)

)
= 0 (50)

By introducing the expression (48), relations (49)1,3,4 deliver conditions on integrals of the effective relaxation spectrum G̃
+∞∫
0

τ G̃(τ )dτ ,

+∞∫
0

τ 2G̃(τ )dτ and

+∞∫
0

G̃(τ )dτ (51)

whose physical meaning is shown in Fig. 4.
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Fig. 4. Physical interpretation on the overall relaxation spectrum ̃G for type-IV viscoelastic behaviour. (a) Stress response for a constant macroscopic strain 
rate ε̇. (b) Relaxation stress for a constant macroscopic strain ε.

4. Concluding remarks

By making use of stationary principles for complex viscoelasticity and asymptotic properties of the solution fields of 
viscoelastic heterogeneous problems, exact asymptotic relations in the frequency domain have been derived on the effective 
storage and loss moduli tensors as well as the overall relaxation spectrum that characterizes the transient viscoelastic re-
sponse. These results extend those previously obtained for Maxwell constituents [1,2] to any kind of elementary viscoelastic 
constituents (see Table 1). In particular, four independent exact relations have been obtained whatever the kind of vis-
coelastic behaviour. This implies that the form of the overall constitutive law does not follow, in general, the one of the 
elementary viscoelastic constituents since the latter are described by two or three independent parameters, depending on 
the type of viscoelastic behaviour. This remark is consistent with the previous studies on Kelvin–Voigt [5,6,3] and Maxwell 
materials [4]. In the case of mixtures of Zener or anti-Zener constituents, this simply means that the overall relaxation 
(retardation) spectrum does not reduce in general to a single Dirac mass.
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