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An in-situ test performed in a brine-filled cavern proves that, when brine pressure 
decreases rapidly, the creep closure rate increases drastically. Conversely, a rapid pressure 
increase leads to “reverse” creep closure: cavern volume increases, even when, at cavern 
depth, fluid pressure is lower than geostatic pressure. It is tempting to explain these two 
phenomena by transient salt creep, a characteristic feature of salt rheological behavior 
commonly observed during laboratory creep tests. In fact, computations performed on an 
idealized cylindrical cavern excavated from a Norton–Hoff rock mass (a constitutive law 
that includes no transient component) prove that these two phenomena are, at least partly, 
of a structural nature: their origin is in the slow redistribution of stresses following any 
pressure change.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Field and laboratory evidence

1.1. An in-situ test performed in a salt cavern

An “outflow” test was performed by Hugout [1] in a cavern leached out from a salt formation during the spring of 1982 
at Étrez, France, where the utility company Storengy operates an underground gas-storage facility. Cavern depth and height 
were 950 m and 50 m, respectively, and cavern volume is V = 7, 500 ± 500 m3. After leaching was completed, well com-
pletion included a central string filled with saturated brine with a volumetric weight of γb = 0.012 MPa/m and an annular 
space filled with oil of volumetric weight γo = 0.0085 MPa/m. The brine/oil interface in the cavern was approximately 
H = 950 m deep, at which depth geostatic pressure is P∞ = γR H = 20.9 MPa when γR = 0.022 MPa/m. At the wellhead, 
brine pressure was zero; cavern pressure was P∞ −�P = γb H = 11.4 MPa, and oil pressure was δP = (γb − γo) H = 3.4 MPa
(Fig. 1).

On September 8, 1982, 93 days after leaching completion, the brine outflow rate was slightly more than 100 l/day (Fig. 2). 
The main driving forces for brine outflow were cavern-creep closure and brine warming. (During cavern solution-mining, 
soft water was pumped from a shallow aquifer and injected into the cavern. The injected water was significantly colder than 
the rock mass at a 950-m depth; after leaching was completed, cavern brine slowly warms and expands.) The valve on the 
annular space was opened rapidly, resulting in a cavern-pressure drop from P∞ −�P = 11.4 MPa to P∞ −�P −δP = 8 MPa. 
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Fig. 1. Distribution of fluid pressures during the two phases of the test.

Fig. 2. Fluid flowrate expelled during the test (after [1]).

In the central string, the brine–air interface dropped by h = (γb − γo) H/γb = 290 m (Fig. 1). The hydrocarbon outflow rate 
was measured from Day 93 to Day 360 (Fig. 2). The rate was 4500 l/day for a couple of days after the Day 93 cavern-pressure 
drop, after which it declined rapidly.

On Day 253, the annular space was closed, and brine was injected in the central string to restore the Day 92 configuration 
(Fig. 1). Cavern pressure increased from P∞ − �P − δP = 8 MPa to P∞ − �P = 11.4 MPa. For 12 days, the brine level 
consistently dropped in the central tubing (the flow rate of the brine was negative), and additional brine was injected to 
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Fig. 3. Creep test on a salt sample: after some time, the applied load (σ1) is increased to σ2 or decreased to σ3.

keep the air–brine interface at ground level. This apparent cavern volume increase was due to several factors, among which 
the most important is additional dissolution (salt concentration at saturation is an increasing function of brine pressure: 
when pressure increases, salt is dissolved at the cavern wall to reach chemical equilibrium; however, brine volume is 
smaller than the volumes of its constituents, resulting in a net cavern volume increase) and “reverse” cavern-creep closure. 
(Cavern volume increases, even though cavern pressure is lower than geostatic pressure.) These effects and several other 
minor phenomena triggered by the cavern pressure change – such as adiabatic brine warming – can be assessed precisely 
[2]. The cumulated brine volume injected in the cavern to compensate for cavern-volume increase during this 12-day period 
was 1077 l, of which, according to computations, 444 l were due to additional dissolution. After Day 265, a more or less 
constant brine-flow rate was observed. This rate was lower than the pre-test brine-flow rate, partly because brine warming 
was slower than it was before Day 93.

1.2. Laboratory creep tests

These changes in cavern closure rate are somewhat similar to what is observed during laboratory tests performed on 
salt samples when applied loads are changed, as schematically described in Fig. 3. At t = 0, a constant uniaxial load, σ1 > 0, 
is applied to a cylindrical salt sample. (Compressive stresses and contractions are positive when describing the results of a 
laboratory test.) The immediate response to a load change is elastic; it can be described by a linear relation between strain 
and stress. It is followed by transient creep, described later. After some time (several months), a steady state is reached, 
and the strain rate remains constant. The steady-state rate is a non-linear function of deviatoric stress and temperature. 
The Norton–Hoff law, or ε̇ = A(T )σ n , captures the main features of the steady-state behavior; it is not able to describe the 
transient behavior. In the case of rock salt, the mean stress has no influence on strain rate, and no volumetric change is 
observed.

Any change in applied load triggers transient creep. Following a load increase, σ2 > σ1, transient behavior is characterized 
by fast initial rates; following a load decrease, σ3 < σ2, transient behavior is characterized by slow initial rates, or even 
negative (“reverse”) initial rates [3–5] – at least when the “stress drop” is large enough (Fig. 3). These transient rates slowly 
decrease or increase to reach steady-state values, as explained above.

It is tempting to infer that the effects observed during cavern testing (rapid creep closure when cavern pressure is 
lowered abruptly, “reverse” creep closure when pressure is increased) are a direct consequence of the transient behavior 
observed at the laboratory. It will be proved in the following that even the Norton–Hoff steady-state law is able to capture, 
at least to some extent, the effects observed in salt caverns, even though no transient component is taken into account in 
this constitutive law.

2. Transient behavior of an idealized cylindrical cavern in a Norton–Hoff medium

2.1. Cylindrical symmetry

The 3D generalization of the Norton–Hoff law can be written:

ε̇i j = 1 + v

E
σ̇i j − v

E
σ̇kkδi j + 3A

2

(√
3 J2

)n−1
si j (1)

(no transient behavior is taken into account, and temperature dependence is not mentioned), where σi j is the stress tensor, 
si j is the deviatoric stress tensor and J2 = si j s ji/2 is its second invariant, ε̇i j is the strain rate tensor, and v , E , A and n
are four constants (when temperature is kept constant) – n = 3 to 5 is typical. Note that Eq. (1) predicts that, during a 
uniaxial creep test, |ε̇zz| = A |σzz|n , as mentioned in Section 1.2. The elastic component of the strain rate depends on the 
mean stress; however, this dependency will vanish in the following when v = 0.5 is assumed.

An idealized, infinite, cylindrical cavern of radius a is considered. Taking into account cylindrical symmetry and plane 
strain conditions, the constitutive law (2), (3) and (4), the equilibrium condition (5), the boundary condition (6) and the 
initial conditions (7) can be written as follows:
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Fig. 4. Cavern pressure changes.

∂ u̇

∂r
= σ̇rr − ν

(
σ̇ϕϕ + σ̇zz

)
E

+ A
√

3 J2
n−1 2σrr − σϕϕ − σzz

2
(2)

u̇

r
= σ̇ϕϕ − ν (σ̇zz + σ̇rr)

E
+ A

√
3 J2

n−1 2σϕϕ − σzz − σrr

2
(3)

0 = σ̇zz − ν
(
σ̇rr + σ̇ϕϕ

)
E

+ A
√

3 J2
n−1 2σzz − σrr − σϕϕ

2
(4)

r
∂σrr(r, t)

∂r
+ σrr(r, t) − σϕϕ(r, t) = 0 (5)

σrr(a, t) = −Pc(t) (6)

σrr(r,∞) = σϕϕ(r,∞) = σzz(r,∞) = −P∞ (7)

where σrr(r, t), σϕϕ(r, t), σzz(r, t) are the radial, tangential and axial stresses, respectively; u̇ = u̇(r, t) is the radial displace-
ment rate; cavern pressure is Pc = Pc(t), and P∞ > Pc is the geostatic pressure. Only small strains and displacements 
are considered. For simplicity, v = 0.5 is assumed, from which it can be inferred that, at any time, 2σzz = σrr + σϕϕ , √

3 J2 = ∣∣σrr − σϕϕ

∣∣, and u̇/r = aȧ/r2, when ȧ is the displacement rate at the cavern’s wall. Eq. (3) can be rewritten:

aȧ(t)

r2
= 3r

4E

∂σ̇rr(r, t)

∂r
+ A

√
3

2

∣∣∣∣−r

2

∂σrr(r, t)

∂r

∣∣∣∣
n−1 r

2

∂σrr(r, t)

∂r
(8)

2.2. Steady-state creep closure

When cavern pressure is kept constant (P∞ − Pc = �P > 0), steady state is reached after an infinite period of time. In 
such a state, the derivatives of stresses with respect to time vanish. Eq. (8) can be divided by r and integrated with respect 
to r between r = a and r = ∞, leading to

ȧss

a
= −

√
3

n+1

2
A∗

(
�P

n

)n

(9)

and the steady-state stress distribution is

σ ss
rr (r) = −P∞ + �P

(a

r

)2/n
σ ss

ϕϕ(r) = −P∞ +
(

1 − 2

n

)
�P

(a

r

)2/n
σ ss

zz (r) = −P∞ +
(

1 − 1

n

)
�P

(a

r

)2/n
(10)

In the following, in order to avoid handling cumbersome equations, it is assumed that n = 3 or 5; however, the method 
explained below can be applied to any value of n. Taking into account Eq. (9), Eq. (8) can be rewritten as

aȧ(t)

r2
= 3r

4E

∂σ̇rr(r, t)

∂r
+ ȧss

a

[ −nr

2�P

∂σrr(r, t)

∂r

]n

(11)

2.3. Initial transient behavior after a swift cavern pressure closure

It is assumed now that a constant pressure Pc = P∞ − �P was applied in the cavern over a long period of time, 
−∞ < t < 0, and that steady state was reached at t = 0− . At t = 0, cavern pressure is changed abruptly, and cavern pressure 
becomes Pc(t > 0) = P∞ − �P − δP (Fig. 4), where δP is > 0 or < 0.
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2.4. Transient cavern volume rate

At t = 0, stress distribution experiences an elastic (instantaneous) change by

δσ el
rr (r,0+) = δP

(a

r

)2
δσ el

ϕϕ(r,0+) = −δP
(a

r

)2
δσ el

zz(r,0+) = 0 (12)

At t = 0+ , Eq. (11) writes

aȧ(0+)

r2
= 3r

4E

∂σ̇rr(r,0+)

∂r
+ ȧss(0−)

a

[
nδP

�P

(a

r

)2 +
(a

r

) 2
n

]n

(13)

This equation can be integrated numerically with respect to r. However, when n is an integer, this equation can be written

aȧ(0+)

r3
= 3

4E

∂σ̇rr(r,0+)

∂r
+ ȧss(0−)

a

1

r

n∑
0

C p
n

(
nδP

�P

)p (a

r

)2p+2(n−p)/n
(14)

where C p
n are the binomial coefficients. It can be integrated with respect to r between r and ∞, where the radial stress is 

constant:

−aȧ(0+)

2r3
= 3

4E
σ̇rr(r,0+) − ȧss(0−)

a
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C p
n
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(
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�P

)p (a

r
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(15)

In particular, at r = a, σ̇rr(a)|t=0+ = 0, as cavern pressure is kept constant, and it can be inferred that

ȧ(0+)

ȧss(0−)
=

n∑
0

nC p
n

np + n − p

(
nδP

�P

)p

(16)

Two features (which were not included in the constitutive law) then appear.

1. Following a pressure drop (δP > 0), the transient creep closure rate, ȧ(0+), is much faster than the steady-state rate, 
ȧss(0−), observed before a cavern pressure drop.

2. Following a pressure increase (δP < 0), the “reverse” creep-closure rate, 
(
ȧ(0+)/ȧss(0−) < 0

)
, can be observed after an 

increase in cavern pressure provided that the pressure increase is large enough.

When n = 3 and n = 5 (values often met in practice), the following formula hold:
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(
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Also, the change in volume rate can be negative when the cavern experiences a large enough pressure increase (δP < 0). The 
case n = 3 is represented in Fig. 5. When δP/�P = 1, the creep closure rate is multiplied by a factor of approximately 27; 
when δP/�P < −0.58, reverse creep appears, and the cavern volume increases.

The case n = 5 is represented on Fig. 6. When δP/�P = 1, the creep-closure rate is multiplied by a factor of approxi-
mately 1800; when δP/�P < −0.62, reverse creep appears, and the cavern volume increases.

Note that in the case of the Étrez cavern, described in Section 1.1, δP/�P � −0.36, suggesting that the exponent of 
the power law is smaller than n = 3 – or that some other effects, not included in the model (e.g., transient creep) play a 
significant role.

2.5. Higher derivatives of displacement at the cavern wall

This method allows computing all derivatives of a with respect to time at t = 0. Computations are complex when higher 
derivatives are considered. For instance, the second derivative with respect to time can be inferred from Eq. (11):

aä(0+)

r2
= 3

4E

r∂σ̈rr(r,0+)

∂r
+ ȧss(0−)

a
n

(
− n

2�P

r∂σrr

P∂r

)n−1 (
− n

2�P

r∂σ̇rr

P∂r

)
(17)

or, using Eq. (11) again:
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Fig. 5. Cavern creep closure increase (or decrease) as a function of fluid pressure increase (n = 3).

Fig. 6. Cavern creep closure increase (or decrease) as a function of fluid pressure increase (n = 5).
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This equation can be divided by r and integrated with respect to r, leading to
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and when r = a,
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As expected, when n = 1 (linear viscoelasticity), the second derivative vanishes to zero as the steady-state stress distribution 
is reached immediately after the pressure drop.
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3. Conclusion

It has been proven that, after an abrupt pressure drop or pressure increase, an idealized cylindrical cavern created in 
an elastoviscoplastic Norton–Hoff infinite rock mass experiences a transient volume change, even when the constitutive law 
does not include a transient component. Reverse creep (cavern volume increase) can be observed following an increase in 
cavern pressure, even when it remains lower than geostatic pressure. This effect is due to the slow stress redistribution 
following the pressure change rather than to any transient creep behavior.

When transient convergence is observed in a tunnel (the convergence rate slowly decreases), it cannot be inferred that 
the constitutive viscoplastic law of the rock mass includes a transient component. Obviously, in an actual cavern or tunnel, 
in addition to this structural, or “geometrical”, transient behavior, true “rheological” transient behavior can play a significant 
role.
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