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We consider a family of linearly viscoelastic elliptic shells, and we use asymptotic 
analysis to justify that what we have identified as the two-dimensional viscoelastic elliptic 
membrane problem is an accurate approximation when the thickness of the shell tends to 
zero. Most noticeable is that the limit problem includes a long-term memory that takes 
into account the previous history of deformations. We provide convergence results which 
justify our asymptotic approach.
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1. Introduction

In the last decades, many authors have applied the asymptotic methods in three-dimensional elasticity problems in order 
to derive new reduced one-dimensional or two-dimensional models and justify the existing ones. A complete theory regard-
ing elastic shells can be found in [1], where models for elliptic membranes, generalized membranes, and flexural shells are 
presented. It contains a full description of the asymptotic procedure that leads to the corresponding sets of two-dimensional 
equations. Particularly, the existence and uniqueness of the solution to elastic elliptic membrane shell equations can be 
found in [2] and in [3]. There, the two-dimensional elastic models are completely justified with convergence theorems.

More recently, in [4], the obstacle problem for an elastic elliptic membrane has been identified and justified as the 
limit problem for a family of unilateral contact problems of elastic elliptic shells. A large number of actual physical and 
engineering problems have made it necessary to study models that take into account effects such as hardening and memory 
of the material. An example of these are the viscoelastic models (see, for example, [5,6]). In some of these models, we can 
find terms that take into account the history of previous deformations or stresses of the body, known as long-term memory. 
For a family of shells made of a long-term memory viscoelastic material, we can find in [7–9] the use of asymptotic analysis 
to justify with convergence results the limit two-dimensional membrane, flexural, and Koiter equations.

In this direction, to our knowledge, in [10] we gave the first steps towards the justification of existing models of 
viscoelastic shells and finding new ones with the starting point being three-dimensional Kelvin–Voigt viscoelastic shell 
problems. By using the asymptotic expansion method, we found a rich variety of cases for the limit two-dimensional prob-
lems, depending on the geometry of the middle surface, the boundary conditions and the order of the applied forces. The 
most remarkable feature found was that, from the asymptotic analysis of the three-dimensional problems, a long-term 
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memory arose in the two-dimensional limit problems, represented by an integral with respect to the time variable. The aim 
of this Note is to mathematically justify these equations that we identified in [10] as the viscoelastic elliptic membrane 
problem, by presenting rigorous convergence results.

2. The three-dimensional linearly viscoelastic shell problem

We denote Sd , where d = 2, 3 in practice, the space of second-order symmetric tensors on Rd , while “ · ” will represent 
the inner product and | · | the usual norm in Sd and Rd . In what follows, unless the contrary is explicitly written, we will 
use summation convention on repeated indices. Moreover, Latin indices i, j, k, l, ..., take their values in the set {1, 2, 3}, 
whereas Greek indices α, β, σ , τ , ... do it in the set {1, 2}. Also, we use standard notation for the Lebesgue and Sobolev 
spaces. Moreover, for a time dependent function u, we denote u̇ the first derivative of u with respect to the time variable. 
Recall that “→” denotes strong convergence, while “⇀” denotes weak convergence.

Let ω be a domain of R2, with a Lipschitz-continuous boundary γ = ∂ω. Let y = (yα) be a generic point of its closure 
ω̄ and let ∂α denote the partial derivative with respect to yα .

Let θ ∈ C2(ω̄; R3) be an injective mapping such that the two vectors aα(y) := ∂αθ(y) are linearly independent. These 
vectors form the covariant basis of the tangent plane to the surface S := θ(ω̄) at the point θ(y). The surface S is uniformly 
elliptic, in the sense that the two principal radius of curvature are either both positive at all points of S , or both negative at 
all points of S . We can consider the two vectors aα(y) of the same tangent plane defined by the relations aα(y) ·aβ(y) = δα

β , 
which constitute the contravariant basis. We define the unit vector, a3(y) = a3(y) := a1(y)∧a2(y)

|a1(y)∧a2(y)| , normal vector to S at the 
point θ(y), where ∧ denotes the vector product in R3.

We can define the first fundamental form, given as a metric tensor, in covariant or contravariant components, re-
spectively, by aαβ := aα · aβ , aαβ := aα · aβ , the second fundamental form, given as a curvature tensor, in covariant or 
mixed components, respectively, by bαβ := a3 · ∂βaα , bβ

α := aβσ · bσα , and the Christoffel symbols of the surface S by 
�σ

αβ := aσ · ∂βaα . The area element along S is 
√

a dy, where a := det(aαβ).
For each ε > 0, we define the three-dimensional domain ε := ω × (−ε, ε) and its boundary �ε = ∂ε . We also define 

the parts of the boundary, �ε+ := ω × {ε}, �ε− := ω × {−ε} and �ε
0 := γ × [−ε, ε].

Let xε = (xε
i ) be a generic point of ̄ε , and let ∂ε

i denote the partial derivative with respect to xε
i . Note that xε

α = yα and 
∂ε
α = ∂α . Let � : ̄ε → R

3 be the mapping defined by

�(xε) := θ(y) + xε
3a3(y) ∀xε = (y, xε

3) = (y1, y2, xε
3) ∈ ̄ε (1)

If the injective mapping θ : ω̄ →R
3 is smooth enough, the mapping � : ̄ε →R

3 is also injective for ε > 0 small enough 
(see Theorem 3.1-1, [1]). For each ε, 0 < ε ≤ ε0 (with ε0 defined in Theorem 3.1-1, [1]), the set �(̄ε) is the reference 
configuration of a viscoelastic shell, with middle surface S = θ(ω̄) and thickness 2 ε > 0. Furthermore, for ε > 0, gε

i (xε) :=
∂ε

i �(xε) are linearly independent, and the mapping � : ̄ε → R
3 is injective for all ε, 0 < ε ≤ ε0, as a consequence of the 

injectivity of the mapping θ . Hence, the three vectors gε
i (xε) form the covariant basis of the tangent space at the point 

�(xε), and g i,ε(xε), defined by the relations g i,ε · gε
j = δi

j , form the contravariant basis at the point �(xε). We define the 
metric tensor, in covariant or contravariant components, respectively, by gε

i j := gε
i · gε

j , g
ij,ε := g i,ε · g j,ε , and the Christoffel 

symbols by �p,ε
i j := g p,ε · ∂ε

i gε
j .

The volume element in the set �(̄ε) is 
√

gε dxε , and the surface element in �(�ε) is 
√

gεd�ε , where gε := det(gε
i j).

Besides, let T > 0 be the period of observation and we denote by uε
i : [0, T ] × ̄ε → R

3 the covariant components of the 
displacement field, i.e. Uε := uε

i g i,ε : [0, T ] × ̄ε → R
3. For simplicity, we define the vector field uε = (uε

i ) : [0, T ] × ε →
R

3, which will denote the vector of unknowns.
We assume that the shell is subjected to a boundary condition of place; in particular, we assume that the displacements 

field vanishes in �(�ε
0), i.e. on the whole lateral face of the shell.

Let us define the space of admissible unknowns,

V (ε) = {vε = (vε
i ) ∈ [H1(ε)]3; vε = 0 on �ε

0}
This is a real Hilbert space with the induced inner product of [H1(ε)]3. The corresponding norm is denoted by || · ||1,ε .
We assume that the body is made of a Kelvin–Voigt viscoelastic material, which is homogeneous and isotropic, so that 

the material is characterized by its Lamé coefficients λ ≥ 0, μ > 0 and its viscosity coefficients, θ ≥ 0, ρ ≥ 0 (see for instance 
[5,6]). Under the effect of applied forces, the body is deformed, and we can find that uε = (uε

i ) verifies the following 
variational problem of a three-dimensional viscoelastic shell in curvilinear coordinates:

Problem 2.1. Find uε = (uε
i ) : [0, T ] × ε →R

3 such that

uε(t, ·) ∈ V (ε) ∀ t ∈ [0, T ]
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∫
ε

Aijkl,εeε
k||l(uε)eε

i|| j(vε)
√

gε dxε +
∫
ε

Bijkl,εeε
k||l(u̇ε)eε

i|| j(vε)
√

gε dxε

=
∫
ε

f i,ε vε
i

√
gε dxε +

∫
�ε+∪�ε−

hi,ε vε
i

√
gε d�ε ∀vε ∈ V (ε), a.e. in (0, T )

uε(0, ·) = uε
0(·)

where the functions

Aijkl,ε := λgij,ε gkl,ε + μ(gik,ε g jl,ε + gil,ε g jk,ε) (2)

Bijkl,ε := θ gij,ε gkl,ε + ρ

2
(gik,ε g jl,ε + gil,ε g jk,ε) (3)

are the contravariant components of the three-dimensional elasticity and viscosity tensors, respectively. We assume that 
the Lamé coefficients λ ≥ 0, μ > 0 and the viscosity coefficients θ ≥ 0, ρ ≥ 0 are all independent of ε. Moreover, the terms 
eε

i|| j(uε) := 1
2 (uε

i|| j + uε
j||i) = 1

2 (∂ε
j uε

i + ∂ε
i uε

j ) − �
p,ε
i j uε

p designate the covariant components of the linearized strain tensor 
associated with the displacement field U ε of the set �(̄ε). Moreover, f i,ε denotes the contravariant components of the 
volumic force densities, hi,ε denotes contravariant components of surface force densities and uε

0 denotes the initial “dis-

placements” (actually, the initial displacement is U ε
0 := (uε

0)i g i,ε). Note that �3,ε
α3 = �

p,ε
33 = Aαβσ3,ε = Aα333,ε = Bαβσ3,ε =

Bα333,ε = 0 in ̄ε , by (1).

The existence and uniqueness of the solution to Problem 2.1 for ε > 0 small enough can be consulted in [10]. There we 
find that, under suitable regularity hypotheses for the applied forces and initial condition, there exists a unique solution 
such that uε ∈ W 1,2(0, T ; V (ε)).

3. The scaled three-dimensional shell problem

For convenience, we consider a reference domain independent of the small parameter ε. Hence, let us define the 
three-dimensional domain  := ω × (−1, 1) and its boundary � = ∂. We also define the parts of the boundary, 
�+ := ω × {1}, �− := ω × {−1} and �0 := γ × [−1, 1]. Let x = (x1, x2, x3) be a generic point in ̄ and consider the no-
tation ∂i for the partial derivative with respect to xi . We define the projection map, πε : x = (x1, x2, x3) ∈ ̄ −→ πε(x) =
xε = (xε

i ) = (xε
1, xε

2, xε
3) = (x1, x2, εx3) ∈ ̄ε; hence, ∂ε

α = ∂α and ∂ε
3 = 1

ε ∂3. We consider the scaled unknown and vector fields 
defined as uε

i (t, xε) =: ui(ε)(t, x) and vε
i (xε) =: vi(x) ∀xε = πε(x) ∈ ̄ε, ∀ t ∈ [0, T ].

Also, we define the scaled functions �
p
i j(ε)(x) := �

p,ε
i j (xε), g(ε)(x) := gε(xε), Aijkl(ε)(x) := Aijkl,ε(xε), Bijkl(ε)(x) :=

Bijkl,ε(xε), for all xε = πε(x) ∈ ̄ε . For all v = (vi) ∈ [H1()]3, we define the scaled linearized strains components 
ei|| j(ε)(v) ∈ L2() by

eα||β(ε; v) := 1

2
(∂β vα + ∂α vβ) − �

p
αβ(ε)v p (4)

eα||3(ε; v) := 1

2

(
1

ε
∂3 vα + ∂α v3

)
− �

p
α3(ε)v p (5)

e3||3(ε; v) := 1

ε
∂3 v3 (6)

Note that with these definitions, it is verified that eε
i|| j(vε)(πε(x)) = ei|| j(ε; v)(x) ∀x ∈ .

Remark 1. The functions �p
i j(ε), g(ε), Aijkl(ε), Bijkl(ε) converge in C0(̄) when ε tends to zero.

When we consider ε = 0, the functions will be defined with respect to y ∈ ω̄. Also, we shall distinguish the three-
dimensional Christoffel symbols from the two-dimensional ones by using �σ

αβ (ε) and �σ
αβ , respectively.

The next result is an adaptation of (b) in Theorem 3.3-2, [1] to the viscoelastic case. We will study the asymptotic 
behaviour of the scaled contravariant components Aijkl(ε), Bijkl(ε) of the three-dimensional elasticity and viscosity tensors 
defined above, as ε → 0. We show their uniform positive definiteness not only with respect to x ∈ ̄, but also with respect 
to ε, 0 < ε ≤ ε0. Besides, their limits are functions of y ∈ ω̄ only, i.e. they are independent of the transversal variable x3.

Theorem 3.1. Let ω be a domain in R2 and let θ ∈ C2(ω̄; R3) be an injective mapping such that the two vectors aα = ∂αθ are linearly 
independent at all points of ω̄; let aαβ denote the contravariant components of the metric tensor of S = θ(ω̄). In addition to that, let 
the other assumptions on the mapping θ and the definition of ε0 be as in Theorem 3.1-1, [1]. The contravariant components Aijkl(ε), 
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Bijkl(ε) of the scaled three-dimensional elasticity and viscosity tensors, respectively, satisfy Aijkl(ε) = Aijkl(0) + O (ε) and Aαβσ3(ε) =
Aα333(ε) = 0, Bijkl(ε) = Bijkl(0) + O (ε) and Bαβσ3(ε) = Bα333(ε) = 0, for all ε, 0 < ε ≤ ε0 and

Aαβστ (0) = λaαβaστ + μ(aασ aβτ + aατ aβσ ), Aαβ33(0) = λaαβ

Aα3σ3(0) = μaασ , A3333(0) = λ + 2μ

Bαβστ (0) = θaαβaστ + ρ

2
(aασ aβτ + aατ aβσ ), Bαβ33(0) = θaαβ

Bα3σ3(0) = ρ

2
aασ , B3333(0) = θ + ρ

Aαβσ3(0) = Aα333(0) = Bαβσ3(0) = Bα333(0) = 0. Moreover, there exist two constants Ce > 0 and Cv > 0, independent of the 
variables and ε, such that∑

i, j

|ti j|2 ≤ Ce Aijkl(ε)(x)tklti j,
∑
i, j

|ti j|2 ≤ C v Bijkl(ε)(x)tklti j (7)

for all ε, 0 < ε ≤ ε0 , for all x ∈ ̄ and all t = (ti j) ∈ S
2 .

Let the scaled applied forces be defined by f ε =: f (ε) = ( f i(ε))(t, x) = f 0(t, x) ∀x ∈  and hε =: h(ε) = (hi(ε))(t, x) =
εh1(t, x) ∀x ∈ �+ ∪�− and ∀t ∈ [0, T ] where f 0 and h1 are functions independent of ε. Also, we introduce u0(ε) :  −→R

3

by u0(ε)(x) := uε
0(xε) ∀x ∈ , where xε = πε(x) ∈ ε and define the space V () := {v = (vi) ∈ [H1()]3; v = 0 on �0}, 

which is a Hilbert space with the inner product of [H1()]3. The corresponding norm is denoted by || · ||1, . Then, the 
scaled variational problem can be written as follows.

Problem 3.2. Find u(ε) : [0, T ] ×  −→ R
3 such that

u(ε)(t, ·) ∈ V () ∀ t ∈ [0, T ]∫


Aijkl(ε)ek||l(ε, u(ε))ei|| j(ε, v)
√

g(ε) dx +
∫


Bijkl(ε)ek||l(ε, u̇(ε))ei|| j(ε, v)
√

g(ε) dx

=
∫


f i,0 vi

√
g(ε) dx +

∫
�+∪�−

εhi,1 vi

√
g(ε) d� ∀v ∈ V (), a.e. in (0, T ) (8)

u(ε)(0, ·) = u0(ε)(·)
We can prove the existence and uniqueness of the solution to Problem 3.2 (see [10]). Moreover, under suitable regularity 

conditions, u(ε) ∈ W 1,2(0, T ; V ()).
In Theorem 3.3-1, [1], we find that the limits of the scaled Christoffel symbols are independent of x3. Moreover, g(ε) =

a + O (ε).

4. Asymptotic analysis. Convergence results as ε → 0

In the next theorems, we recall, for the benefit of the reader, the following three- and two-dimensional inequalities of 
Korn’s type for a family of elliptic membrane shells (see for example Theorem 4.3-1 and Theorem 2.7-3, [1], respectively).

Theorem 4.1. Assume that θ ∈ C3(ω̄; R3) and consider ε0 defined as in Theorem 3.1-1 [1]. We consider a family of elliptic membrane 
shells with thickness 2ε with each one having the same middle surface S = θ(ω̄). Then there exist a constant ε1 verifying 0 < ε1 < ε0
and a constant C > 0 such that, for all ε, 0 < ε ≤ ε1 , the following three-dimensional inequality of Korn’s type holds,(∑

α

||vα||21, + |v3|20,

)1/2

≤ C

⎛
⎝∑

i, j

|ei|| j(ε; v)|20,

⎞
⎠

1/2

∀v = (vi) ∈ V () (9)

Theorem 4.2. Let ω be a domain in R2 and let θ ∈ C2,1(ω̄; R3) be an injective mapping such that the two vectors aα = ∂αθ are 
linearly independent at all points of ω̄ and such that the surface S = θ(ω̄) is elliptic. Then, the following inequality is verified(∑

α

||ηα ||21,ω + |η3|20,ω

)1/2

≤ CM

⎛
⎝∑

α,β

|γαβ(η)|20,ω

⎞
⎠

1/2

∀η ∈ V M(ω) (10)

where V M(ω) := H1
0(ω) × H1

0(ω) × L2(ω) and γαβ(η) = 1
2

(
∂αηβ + ∂βηα

) − �σ
αβησ − bαβη3 denote the covariant components of 

the linearized change of metric tensor associated with a displacement η = ηiai of the middle surface.
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We recall the two-dimensional equations obtained for a viscoelastic membrane shell as a consequence of the formal 
asymptotic study made in [10]. For the case of elliptic membranes, the right space where the problem is well posed is 
V M(ω). Moreover, the space defined by

V 0(ω) := {η ∈ [H1(ω)]3;η = 0 on γ ,γαβ(η) = 0 on ω}
is such that only contains the element η = 0 (see (10)).

From the asymptotic analysis made in [10], we show that, if the applied body force density is O (1) with respect to ε and 
the surface traction density is O (ε) as in Problem 3.2, we obtain in the limit the two-dimensional variational problem for a 
viscoelastic membrane. Let us remind the definition of the two-dimensional fourth-order tensors that appeared naturally in 
[10]:

aαβστ := 2λρ2 + 4μθ2

(θ + ρ)2
aαβaστ + 2μ(aασ aβτ + aατ aβσ ) (11)

bαβστ := 2θρ

θ + ρ
aαβaστ + ρ(aασ aβτ + aατ aβσ ) (12)

cαβστ := 2 (θ�)2

θ + ρ
aαβaστ (13)

where � :=
(

λ
θ

− λ+2μ
θ+ρ

)
. Therefore, we can enunciate the two-dimensional variational problem for a linear viscoelastic 

elliptic membrane as follows.

Problem 4.3. Find ξ : [0, T ] × ω −→R
3 such that: ξ (t, ·) ∈ V M(ω) ∀ t ∈ [0, T ],∫

ω

aαβστ γστ (ξ)γαβ(η)
√

a dy +
∫
ω

bαβστ γστ (ξ̇)γαβ(η)
√

a dy

−
t∫

0

e−k(t−s)
∫
ω

cαβστ γστ (ξ(s))γαβ(η)
√

a dy ds

=
∫
ω

pi,0ηi
√

a dy ∀η = (ηi) ∈ V M(ω), a.e. t ∈ (0, T )

ξ(0, ·) = ξ0(·)
where we introduced the constant k > 0 defined by k := λ+2μ

θ+ρ , and

pi,0(t) :=
1∫

−1

f i,0(t)dx3 + hi,1
+ (t) + hi,1

− (t), with hi,1
± (t) = hi,1(t, ·,±1)

Remark 2. As the reader can check in [10], assuming an asymptotic expansion of the unknowns and substituting them into 
the equations of Problem 3.2, we found that the leading terms of the components eα||3(ε) vanish. Besides, denoting by e0

i|| j
the corresponding leading-order terms of the components ei|| j , we obtained the following ordinary differential equation:

λaαβe0
α||β + (λ + 2μ)e0

3||3 + θaαβ ė0
α||β + (θ + ρ)ė0

3||3 = 0 (14)

Hence, assuming that θ > 0, we found that the terms e0
3||3 can be expressed in function of the components e0

α||β through 
a long-term memory. Moreover, the latter ones can be identified with the covariant components γαβ (η) of the linearized 
change of metric tensor, where η = ηiai represents a displacement of the middle surface S of the shell. As a result, we 
derived the two-dimensional equations given in Problem 4.3.

The existence and uniqueness of the solution to Problem 4.3 makes use of the Korn’s inequality (10) (see [10] for details).

Theorem 4.4. Let ω be a domain in R2 , let θ ∈ C2(ω̄; R3) be an injective mapping such that the two vectors aα = ∂αθ are linearly 
independent at all points of ω̄. Let f i,0 ∈ L2(0, T ; L2()), hi,1 ∈ L2(0, T ; L2(�1)), where �1 := �+ ∪ �− . Let ξ0 ∈ V M(ω). Then 
Problem 4.3, has a unique solution ξ ∈ W 1,2(0, T ; V M(ω)). In addition to that, if ḟ i,0 ∈ L2(0, T ; L2()), ḣi,1 ∈ L2(0, T ; L2(�1)), then 
ξ ∈ W 2,2(0, T ; V M(ω)).
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From now on, we shall use the short-hand notation ei|| j(ε) := ei|| j(ε; u(ε)). For each ε > 0, we assume that the initial 
condition for the scaled linear strains is

ei|| j(ε)(0, ·) = 0 (15)

i.e. the domain is in its natural state with no strains on it at the beginning of the period of observation.
Now, we present here the main result of this paper, namely that the scaled three-dimensional unknown u(ε) converges, 

as ε tends to zero, towards a limit u independent of the transversal variable x3. Moreover, this limit can be identified with 
the solution ξ = ū := 1

2

∫ 1
−1 u dx3 of Problem 4.3, posed over the set ω.

Theorem 4.5. Assume that θ ∈ C3(ω̄; R3). Consider a family of viscoelastic elliptic membrane shells with thickness 2ε approaching 
zero and with each having the same elliptic middle surface S = θ(ω̄), and let the assumptions on the data be as in Theorem 4.4. 
For all ε, 0 < ε ≤ ε0 let u(ε) be the solution to the associated three-dimensional scaled Problem 3.2. Then, there exist functions 
uα ∈ W 1,2(0, T , H1()) satisfying uα = 0 on γ × [−1, 1] and a function u3 ∈ W 1,2(0, T , L2()), such that

(i) uα(ε) → uα in W 1,2(0, T , H1()) and u3(ε) → u3 in W 1,2(0, T , L2()) when ε → 0,
(ii) u := (ui) is independent of the transversal variable x3.

Furthermore, the average ū verifies Problem 4.3.

The proof of this theorem can be found in full detail in [11]. In this Note, we describe the scheme of the proof when 
the proposed problem is subjected only to volume forces (the inclusion of traction forces needs the definition of a trace in 
X(0, T ; ) := {v ∈ W 1,2(0, T , L2()); ∂3 v ∈ W 1,2(0, T , L2())}).

(i) A priori boundedness and extraction of weak convergent sequences.
The norms |ei|| j(ε)|W 1,2(0,T ,L2()) , ||uα(ε)||W 1,2(0,T ,H1()) , and |u3(ε)|W 1,2(0,T ,L2()) are bounded independently of ε, 0 <
ε ≤ ε1 , where ε1 > 0 is given in Theorem 4.1. Consequently, there exist a subsequence, also denoted (u(ε))ε>0 , and func-
tions ei|| j ∈ W 1,2(0, T , L2()), uα ∈ W 1,2(0, T , H1()), satisfying uα = 0 on �0 , and u3 ∈ W 1,2(0, T , L2()), such that 
ei|| j(ε) ⇀ ei|| j in W 1,2(0, T , L2()), uα(ε) ⇀ uα in W 1,2(0, T , H1()), and hence uα(ε) → uα in W 1,2(0, T , L2()), 
u3(ε) ⇀ u3 in W 1,2(0, T , L2()).
For the proof of this step, we take v = u(ε)(t, ·) and v = u̇(ε)(t, ·) in (8), alternately. Then, using the ellipticity of 
Aijkl(ε) and Bijkl(ε), the initial condition (15), the Korn’s type inequality (9), and the Cauchy–Schwartz inequality, the 
conclusion is achieved.

(ii) The limits of the scaled unknown found in step (i) are independent of x3 .
To do this, we use the definition of the scaled strains eα||3(ε) and e3||3(ε). After some calculations, we get the inde-
pendence of x3 of those functions in the sense of distributions. Applying a generalization of the Theorem 4.2-1 (a), [1]
the conclusion follows.

(iii) The limits ei|| j found in (i) are independent of the variable x3. Moreover, they are related with the limits u := (ui) by

eα||β = γαβ(u) := 1

2
(∂αuβ + ∂βuα) − �σ

αβuσ − bαβu3, eα||3 = 0

e3||3(t) = − θ

θ + ρ

⎛
⎝aαβeα||β(t) + �

t∫
0

e−k(t−s)aαβeα||β(s)ds

⎞
⎠ , in , ∀ t ∈ [0, T ]

with � =
(

λ
θ

− λ+2μ
θ+ρ

)
and k = λ+2μ

θ+ρ .

Considering v = u(ε) in (4) and η = u in the definition of γαβ(η) (see Theorem 10), taking into account step (i) and 
the convergences of the Christoffel symbols, we have that

eα||β(ε) = 1

2
(∂βuα(ε) + ∂αuβ(ε)) − �

p
αβ(ε)up(ε) ⇀ eα||β = γαβ(u) in W 1,2(0, T , L2())

Then, we take alternately particular test functions v ∈ V () in (8), expand the resulting terms and use a result of 
calculus of variations (see Theorem 3.4-1, [1]). On the one hand, we obtain that 2μaeα||3 + ρaėα||3 = 0, which, using 
(15), implies that eα||3 = 0. On the other hand, we obtain the differential equation:

λaαβeα||β + (λ + 2μ)e3||3 + θaαβ ėα||β + (θ + ρ)ė3||3 = 0 (16)

In order to obtain the expression of e3||3 in the most general case, we need to assume that θ > 0. Therefore, the 
viscoelastic case can not generalize the elastic case from now on. Then, from (16) together with (15), the expression 
announced yields.
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(iv) The function ū = (ūi) satisfies the two-dimensional variational Problem 4.3 with pi,0 := ∫ 1
−1 f i dx3 . In particular, since the 

solution to this problem is unique, the convergences on (i) are verified for all the family (u(ε))ε>0 . We have that ū(t, ·) =
(ūi(t, ·)) ∈ V M(ω), ∀ t ∈ [0, T ].
To do this, let v = (vi) ∈ V () be independent of x3 in (8) and take the limit when ε → 0. Then, using the asymptotic 
behaviour of the functions involved and the findings from previous steps, we obtain that ū satisfies Problem 4.3 for all 
v = (vi) ∈ V () independent of x3. Then, applying a generalization of the Theorem 4.2-1, [1] the conclusion follows.

(v) The weak convergences ei|| j(ε)(t, ·) ⇀ ei|| j(t, ·) in W 1,2(0, T , L2()) are, in fact, strong.
To do this, we define:

�(ε) :=
∫


Aijkl(ε)(ek||l(ε) − ek||l)(ei|| j(ε) − ei|| j)
√

g(ε) dx

+
∫


Bijkl(ε)(ėk||l(ε) − ėk||l)(ei|| j(ε) − ei|| j)
√

g(ε) dx

=
∫


f iui(ε)
√

g(ε) dx −
∫


Aijkl(ε)(2ek||l(ε) − ek||l)ei|| j

√
g(ε) dx

+
∫


Bijkl(ε)(ėk||lei|| j − ∂

∂t
(ek||l(ε)ei|| j))

√
g(ε) dx

Using the ellipticity of the fourth order tensors (7), the initial condition (15) and the Cauchy–Schwartz inequality, we 
obtain that

C−1
e g1/2

0

T∫
0

⎛
⎝∑

i, j

|ei|| j(ε)(t) − ei|| j(t)|20,

⎞
⎠dt ≤

T∫
0

�(ε)dt

Then, we show that � := limε→0 �(ε) = 0, having in mind the step (i) and the asymptotic behaviour of the functions 
involved. Hence, thanks to the Lebesgue dominated convergence theorem, the strong convergences in L2(0, T , L2())

are satisfied. Analogously, we define:

�̃(ε) :=
∫


Aijkl(ε)(ek||l(ε) − ek||l)(ėi|| j(ε) − ėi|| j)
√

g(ε) dx

+
∫


Bijkl(ε)(ėk||l(ε) − ėk||l)(ėi|| j(ε) − ėi|| j)
√

g(ε) dx

=
∫


f i u̇i(ε)
√

g(ε) dx +
∫


Aijkl(ε)(ek||l ėi|| j − ∂

∂t
(ek||l(ε)ei|| j))

√
g(ε) dx

−
∫


Bijkl(ε)(2ėk||l(ε) − ėk||l)ėi|| j

√
g(ε) dx

Using similar arguments, we show that

C−1
v g1/2

0

T∫
0

⎛
⎝∑

i, j

|ėi|| j(ε)(t) − ėi|| j(t)|20,

⎞
⎠dt ≤

T∫
0

�̃(ε)dt

and that �̃ := limε→0 �̃(ε) = 0. Hence, again by the Lebesgue dominated convergence theorem, we conclude that the 
strong convergences hold in W 1,2(0, T , L2()).

(vi) The family (ū(ε))ε>0 converges strongly to ū (when ε → 0) in W 1,2(0, T , V M(ω)), i.e. ūα(ε) → ūα in W 1,2(0, T , H1(ω)),

ū3(ε) → ū3 in W 1,2(0, T , L2(ω)).
This proof is a corollary of the step (vi) in Th. 4.4-1 [1]. In order to do that, we follow the same arguments made 
there to prove that ūα(ε) → ūα in L2(0, T , H1(ω)), ū3(ε) → ū3 in L2(0, T , L2(ω)) and the corresponding convergences 
of the time derivatives in the same spaces. Then the conclusion follows.

(vii) The convergence u3(ε) ⇀ u3 in W 1,2(0, T , L2()) is, in fact, strong.
Indeed, by (6) and step (i), we have ∂3u3(ε) = εe3||3(ε) → 0 in W 1,2(0, T , L2()). On the other hand, we have ū3(ε) →
ū3 in W 1,2(0, T , L2(ω)). Hence, by a generalization of the Theorem 4.2-1 (c), the conclusion follows.
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It remains to be proved an analogous result to the previous theorem, but in terms of de-scaled unknowns. The con-
vergences uα(ε) → uα in W 1,2(0, T , H1()) and u3(ε) → u3 in W 1,2(0, T , L2()) from Theorem 4.5, the scaling proposed 
in Section 3, the de-scalings ξε

i := ξi for each ε > 0, and a generalization of Theorem 4.2-1, [1] together lead to the con-
vergences 1

2ε

∫ ε
−ε uε

α dxε
3 → ξα in W 1,2(0, T , H1(ω)), 1

2ε

∫ ε
−ε uε

3 dxε
3 → ξ3 in W 1,2(0, T , L2(ω)). Furthermore, we can prove 

the following theorem regarding the convergences of the averages of the tangential and normal components of the three-
dimensional displacement vector field.

Theorem 4.6. Assume that θ ∈ C3(ω̄; R3). Consider a family of viscoelastic elliptic membrane shells with thickness 2ε approaching 
zero and with each having the same elliptic middle surface S = θ(ω̄), and let the assumptions on the data be as in Theorem 4.4.

Let uε = (uε
i ) ∈ W 1,2(0, T , V (ε)) and ξε = (ξε

i ) ∈ W 1,2(0, T , V M(ω)) respectively denote for each ε > 0 the solutions to the 
three-dimensional and two-dimensional Problems 2.1 and 4.3 de-scaled version. Moreover, let ξ = (ξi) ∈ W 1,2(0, T , V M(ω)) denote 
the solution to Problem 4.3. Then we have that

ξε
α = ξα and thus ξε

αaα = ξαaα in W 1,2(0, T , H1(ω)),∀ε > 0

1

2ε

ε∫
−ε

uε
α gα,ε dxε

3 → ξαaα in W 1,2(0, T , H1(ω)) as ε → 0

and

ξε
3 = ξ3 and thus ξε

3 a3 = ξ3a3 in W 1,2(0, T , L2(ω)),∀ε > 0

1

2ε

ε∫
−ε

uε
3 g3,ε dxε

3 → ξ3a3 in W 1,2(0, T , L2(ω)) as ε → 0

As a conclusion, we have found and mathematically justified a two-dimensional model for viscoelastic elliptic mem-
branes. To this end, we used the insight provided by the asymptotic expansion method (presented in our previous work 
[10]) and we have justified this approach by obtaining convergence theorems. The main novelty is that from the asymptotic 
analysis of the three-dimensional problems, which include a short-term memory represented by a time derivative, a long-
term memory arises in the two-dimensional limit problems, represented by an integral with respect to the time variable. As 
future work, we shall present convergence theorems in forthcoming papers for the remaining cases of the limit problems 
found in [10], namely the generalized membrane and flexural shells.
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