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This paper is focused on the characterization of the frequency content of vibration 
signals issued from a two-stage planetary gearbox. To achieve this goal, two different 
methodologies are adopted: the lumped-parameter modeling approach and the phenome-
nological modeling approach. The two methodologies aim to describe the complex 
vibrations generated by a two-stage planetary gearbox. The phenomenological model 
describes directly the vibrations as measured by a sensor fixed outside the fixed ring 
gear with respect to an inertial reference frame, while results from a lumped-parameter 
model are referenced with respect to a rotating frame and then transferred into an inertial 
reference frame. Two different case studies of the two-stage planetary gear are adopted to 
describe the vibration and the corresponding spectra using both models. Each case presents 
a specific geometry and a specific spectral structure.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Planetary gear sets are used commonly in many industrial, automotive, aerospace and wind turbine gearbox applications. 
The complexity of the dynamic behavior of the planetary gearbox (PG) has been actively investigated using a model based on 
experimental approaches. Two different kinds of models have been implemented so as to describe the vibrations generated: 
PG (i) lumped-parameters models, and (ii) phenomenological models. The lumped-parameter models found in the literature 
describe the vibrations of all degrees of freedom referenced with respect to a rotating frame fixed to the carrier plate. 
However, phenomenological models describe directly the vibrations as measured by a sensor fixed outside the fix ring gear, 
which is subjected to periodic variation in vibration amplitudes when the planets pass through this fixed sensor. The two 
types of models should highlight the amplitude modulation (AM) of vibration time histories and modulation sidebands in 
the frequency domain induced by the time-varying vibration transmission path.

For the first type of models, the first study is that of Cunliffe et al. [1] who developed a model with a 13-degree of 
freedom to analyze the frequencies and mode shapes with a single fixed carrier. Then, Saada and Velex [2] developed the 
equations of motion of the system by the Lagrange method. Later, many research works have been done by Lin and Parker 
[3,4] and Chaari et al. [5,6] to describe the modal analysis and the dynamic response of the system.
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Fig. 1. Lumped parameter model of two stages planetary gear.

Concerning the second kind of models, McFadden and Smith [7] were the first to highlight the asymmetric distribution of 
modulation sidebands around mesh frequency and harmonics. Their model was able to predict the frequency content of the 
vibration signal issued from a planetary gear set. Later, McNames [8] explored the relative amplitudes of the dominant peaks 
using continuous-time Fourier series. Inalpolat and Kahraman [9] developed a simplified analytical model to describe the 
amplitude modulation of planetary gear sets. This model shows that there are different classes of planetary gear sets that 
exhibit different sideband behaviors. They also validated these trends through an experimental study. Molina [10] developed 
a phenomenological model that takes into account the variable vibration transmission paths through the ring gear and 
through the sun gear and carrier plate, something that had been missed in all previous publications. Samuel and Pines 
[11] described a technique based on the selection of an appropriate window function used to analyze the vibration signals 
collected from multiple sensors located around the ring gear. For the case of complex PG sets, one can find works dedicated 
to compound or multistage PG, which are based on lumped-parameter models. Thomas [12] developed an analytical model 
for investigating the transmission error and load distribution of a double helical gear pair. Zhang et al. [13] established 
a translational–rotational coupled dynamic model of a two-stage closed-form planetary gear set to predict the natural 
frequencies and vibration modes. Recently, Karray et al. [14] presented a complex configuration of a gearbox used in a 
bucket wheel excavator gearbox to investigate its modal properties. These models are difficult to implement and require 
a lot of care when computing the dynamic response. Phenomenological models can be an interesting alternative way to 
describe in a simple manner this behavior.

In this context, this paper will be concerned with developing two models of two-stage helical planetary gear using both 
the lumped-parameter model and the phenomenological model. Two case studies of two-stage planetary gear that differ 
from the point of view of geometry and assembly characteristics are developed, and the results obtained from each model 
will be presented and compared.

2. The lumped-parameter model

The studied gearbox is composed of a two-stage helical PG. Each stage is comprised, as shown by Fig. 1, of a ring gear (r)
coupled with a sun gear (s) by N planets (Pn) and mounted on a carrier (c). All of these elements are considered as rigid 
bodies supported by elastic bearing. Meshing phenomena are approached by linear springs acting on the lines of action [15].

First, the equation of motion of each component is derived separately, and then assembled to obtain the overall system 
matrices of an N-planet helical PG train. Each component has six degrees of freedom: three translations (u j , v j and w j) 
and three rotations (ϕ j , ψ j and θ j , j = c, r, s, 1 . . .n). These coordinates are measured with respect to a frame (O , �s1, �t1, �z1) 
fixed to the carrier and rotating with a constant angular speed �c . The rotations (ϕ j , ψ j and θ j ) are replaced by their 
corresponding translational displacements as:

ρ jx = Rb jϕ j, ρ jy = Rb jψ j, ρ jz = Rb jθ j, j = c, r, s,1, ..,n (1)

where Rb j is the base circle radius for the sun, the ring, the planet, and the radius of the circle passing through planet 
centers for the carrier. Circumferential planet locations are specified by the fixed angles αi , which are measured relatively 
to the rotating basis vector �s1, so that α1 = 0.

Then the coupling between the two stages is done using an additional torsional stiffness joining the rotational degree of 
freedom of the carrier wheel of the first stage and the sun gear of the second one and an additional linear spring joining 
the axial degrees of freedom of the same carrier and the sun.
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The gyroscopic effect is neglected, since the considered gearbox is running at low speed.
The Lagrange formulation leads to the following equations of motion of the 2 × (18 + 6N) degrees of freedom of the 

system:

Mq̈ + Cq̇ + [
Kb + K (t)

]
q = F (t) (2)

where q, M , C , Kb, K , F are respectively the displacement vector, the mass, the damping, the bearing, the mesh stiffness 
matrices and the external applied force vector. They are given, respectively, as follows:

q =
{

q1
q2

}
(3)

qi =
{

uc, vc, wc,ρcx,ρcy,ρcz, ur, vr, wr,ρrx,ρry,ρrz, us, vs, ws,ρsx,ρsy,ρsz,

u1, v1, w1,ρ1x,ρ1y,ρ1z, . . . , un, vn, wn,ρnx,ρny,ρnz

}T

(4)

q1 is the degree of freedom vector of the first-stage planetary gear and q2 is the degree of freedom of the second-stage 
planetary gear.

M = diag(Mc1, Mr1, Ms1, M11, . . . , MN1, Mc2, Mr2, Ms2, M12, . . . , MN2) (5)

with M ji = diag
(
m ji,m ji,m ji, I jix/R2

b ji, I jiy/R2
b ji, J ji/R2

b ji

)
j = c, r, s,1,n, i = 1,2 (6)

diag denotes the diagonal matrix, m ji is the mass, I jix and I jiy are the diametrical mass moments of inertia and J ji is the 
polar mass moment of inertia of element j in stage i.

The bearing stiffness matrix Kb is written as:

Kb = diag(Kbc1, Kbr1, Kbs1, Kb11, . . . , KbN1, Kbc2, Kbr2, Kbs2, Kb12, . . . , KbN2) (7){
Kb ji = diag(k jix,k jiy,k jiz,k jiφ,k jiψ,k jiθ ); j = c, r, s, i = 1,2

Kbni = diag(0,0,0,kniφ,kniψ,kniθ ); n = 1, . . . N
(8)

The gearmesh stiffness matrix is time varying. For a helical planetary gear, a trapezoidal waveform is adopted to express 
this variation [16]. It can be expressed by:

K (t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K11 0 0 K 1
14 . . . K n

14

0 K22(t) 0 K 1
24(t) · · · K n

24(t)

0 0 K33(t) K 1
34(t) · · · K n

34(t)

K 1
41 K 1

42(t) K 1
43(t) K 1

44(t) 0 0

...
...

... 0
. . . 0

K n
41 K n

42(t) K n
43(t) 0 0 K n

44(t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9)

K (t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑
K n

c11 + Kc 0 0 K 1
c21 · · · K N

c21 0 0 −Kc 0 · · · 0

0
∑

K n
r11 0 K 1

r21 · · · K N
r21 0 0 0 0 · · · 0

0 0
∑

K n
s11 K 1

s21 · · · K N
s21 0 0 0 0 · · · 0

K 1
c21 K 1

r21 K 1
s21 K 1

pp1 0 0 0 0 0 0 · · · 0

...
...

... 0
. . . 0 0 0 0 0 · · · 0

K N
c21 K N

s21 K N
s21 0 0 K N

pp1 0 0 0 0 · · · 0

0 0 0 0 · · · 0
∑

K n
c12 0 0 K 1

c22 · · · K N
c22

0 0 0 0 · · · 0 0
∑

K n
r12 0 K 1

r22 · · · K N
r22

−Kc 0 0 0 · · · 0 0 0
∑

K n
s12 + Kc K 1

s22 · · · K N
s22

0 0 0 0 · · · 0 K 1
c22 K 1

r22 K 1
s22 K 1

pp2 0 0

... 0 0 0 · · · 0
...

...
... 0

. . . 0

0 0 0 0 · · · 0 K N
c22 K N

s22 K N
s22 0 0 K N

pp2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(10)

where Kc is the coupling stiffness matrix:

Kc = diag(0,0, Ka,0,0, Kt) (11)
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Fig. 2. Measurement arrangement on a single-stage planetary gearbox.

Ka and Kt denote, respectively, the axial coupling and the torsional coupling.
Based on Rayleigh’s method, C is chosen to be proportional to M and the mean value of Kb + K (t).
The external torques applied to the system are Cci , Cri , Csi on the carrier, the ring, and the sun (time constant), respec-

tively. The corresponding forces are:

F (t) = 〈
F1(t), F2(t)

〉T
(12)

with Fi(t) = 〈0,0, Tci,0,0, Tri,0,0, Tsi,0, ...,0〉T (13)

and T ji = C ji/r ji, j = c, r, s (14)

3. The phenomenological model

3.1. Vibration signal

The phenomenological model describes the vibrations as measured by the sensor fixed on the outer part on the ring 
gear (Fig. 2).

Planetary gear train vibrations are different from vibrations in parallel axis gear trains. They are complex to analyze, not 
only because there are multiple meshes with multiple planets producing similar vibrations, but also because of the variable 
distance between planet gears and the transducer’s location. This variable distance creates a variable transmission path of 
the vibration, which is at the origin of a planet-pass modulation.

The vibrations vr
i (t)|I = 1, . . . , N are considered periodic with fundamental frequency equal to the gear mesh frequency 

fp = Zr fc (where Zr is the tooth number of the ring gear, and fc is the carrier rotation frequency). It can be expressed 
by [10]:

vr
i (t) = vr

1(t − γri Tp) (15)

with vr
1(t) is the vibration generated on the meshing between the first planet and the ring gear, γri = ψi Zr

2π
is the relative 

phase difference, and Tp = 1/ fp is the gear mesh period of the planetary gearbox.
The term ψi is the angle between the first planet gear and the i-th planet gear (ψ1 = 0).
The amplitude modulation functions ar

i (t) are considered periodic with fundamental frequency equal to the carrier ro-
tating frequency fc. It can be expressed by:

ar
i (t) = ar

1

(
t − ψi Tc

2π

)
(16)

where ar
1(t) is the amplitude modulation function of the first planet, taking into account the angular position of planet iψi

and Tc the rotational period of the carrier.
In practice, the position of the planets is not known at the moment of measurement. It is represented in Fig. 2 by θ1. 

To take into account the unknown position θ1 of planet 1, a time shift t1 = θ1/2π fc is introduced into the amplitude 
modulation functions.
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ar
i (t) = ar

1

(
t − t1 − ψi Tc

2π

)
(17)

The sensor measures the sum of all amplitude-modulated vibrations generated by the passage of the all planets; this mea-
surement can be expressed as follows:

xr
j(t) =

N∑
i=1

xr
i j(t) =

N∑
i=1

ar
i j(t)vr

i j(t)

=
N j∑

i=1

ar
1 j

(
t − t1 j − ψi j Tc j

2π

)
vr

1 j(t − γr ji Tp j) (18)

with j = 1 for the first stage and j = 2 for the second one.
The interaction of the vibration generated between the two stages of the planetary gear is evidenced by a modulation 

between mesh frequencies [17,18]. So the mesh frequency of the first stage of the planetary gear is modulated by the mesh 
frequency of the second one, and it is expressed by:

xr
1(t) =

N1∑
i=1

ar
11

(
t − t11 − ψi1Tc1

2π

)
vr

11(t − γr1i Tp1)vr
12(t − γr2i Tp2) (19)

For the second stage, the amplitude-modulated vibration generated is as follows:

xr
2(t) =

N1∑
i=1

ar
12

(
t − t12 − ψi2Tc2

2π

)
vr

12(t − γr2i Tp2) (20)

3.2. Frequency analysis

The frequency analysis of Eq. (18) is carried out through the calculation of its Fourier transform (FT). The FT of equa-
tion (18) is given by:

X r
j( f ) =

N∑
i=1

X r
i j( f )

=
N∑

i=1

�
{

ar
1 j

(
t − t1 j − ψi j Tc j

2π

)}
︸ ︷︷ ︸

I

∗�{
vr

1 j(t − γr ji Tp j)
}

︸ ︷︷ ︸
II

(21)

where �{.} represents the FT, and ∗ represents the convolution product.
The term (I) of equation (21) can be expressed by:

ar
i j(t) = ar

1 j

(
t − t1 j − ψi j Tc j

2π

)
=

∑
q∈z

αr
qej2πqfc j(t−t1 j− ψi j Tc j

2π ) (22)

where αr
q and q ∈ z are the Fourier coefficients of ar

i j(t).
Taking the FT of Eq. (22) and invoking its time-shifting property, the expression of term (I) yields:

�
{

ar
1 j

(
t − t1 j − ψi j Tc j

2π

)}
=

∑
q∈z

αr
qej2πqfc j(t1 j+ ψi j Tc j

2π )δ( f − qfc j) (23)

with δ(z) = 1 if z = 0 and δ(z) = 0 if z �= 0 (it is the Dirac delta).
The term (II) of equation (21) can be developed as follows:

vr
i j(t) = vr

1 j(t − γr ji Tp j) =
∑
k∈z

βr
kej2πkfp j(t−γr ji Tp j) (24)

with βr
k and q ∈ z are the Fourier coefficients of vr

i j(t).
Taking the FT of equation (24), the expression of term (II) can be written by:

�{
vr

1 j(t − γr ji Tp j)
} =

∑
k∈z

βr
ke−j2πkfp jγr ji Tp j δ( f − kfp j) (25)

Substituting the expressions (23) and (25) into equation (19), using the sampling property of the Dirac delta, we obtain:
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Table 1
Groups of planetary gear sets.

Group Group description Conditions Effect on the spectra

1 2

(A) Equally spaced planet gears and 
in-phase gear meshing

ψ ji = 2π(i−1)
N γr ji = ψ ji Zr j

2π
∈ N Symmetric sidebands

(B) Equally spaced planet gears and 
out-of-phase meshing

ψ ji = 2π(i−1)
N γr ji = ψ ji Zr j

2π
/∈ N Asymmetric sidebands with no gear mesh 

frequency

(C) Unequally spaced planet gears and 
in-phase meshing

ψ ji �= 2π(i−1)
N γr ji = ψ ji Zr j

2π
∈ N Symmetric sidebands with the same relative 

magnitude between the central component and 
its sidebands for all harmonics

(D) Unequally spaced planet gears and 
out-of-phase meshing

ψ ji �= 2π(i−1)
N γr ji = ψ ji Zr j

2π
/∈ N Asymmetric and rich sidebands

Xc
1( f ) =

∑
k∈z

∑
q∈z

N1∑
i=1

αc
qβ

c
k e−j2πqfc1t1 e−j(kzr1+q)ψi1δ( f − kfp1 − qfc1)

+
∑
k∈z

∑
l∈z

N1∑
i=1

γ c
l βc

k e−j(kzr1ψi1+lzr2ψi2)δ( f − kfp1 − l fp2) (26)

and the FT of equation (20) is:

X r
2( f ) =

∑
k∈z

∑
q∈z

N2∑
i=1

αr
qβ

r
ke−j2πqfc2t1 e−j(kzr2+q)ψi2δ( f − kfp2 − qfc2) (27)

The global vibration spectrum can be expressed by:

Xc( f ) =
∑
k∈z

∑
q∈z

N1∑
i=1

αc
qβ

c
k e−j2πqfc1t1 e−j(kzr1+q)ψi1δ( f − kfp1 − qfc1)

+
∑
k∈z

∑
l∈z

N1∑
i=1

γ c
l βc

k e−j(kzr1ψi1+lzr2ψi2)δ( f − kfp1 − l fp2)

+
∑
k∈z

∑
q∈z

N2∑
i=1

αr
qβ

r
ke−j2πqfc2t1 e−j(kzr2+q)ψi2δ( f − kfp2 − qfc2) (28)

The term δ( f − kfp j − qfc j) implies that X r( f ) can take non-zero values only for the frequency f = kfp j + qfc j , and the 
term δ( f − kfp1 − l fp2) implies that there are components at the frequency f = kfp1 + l fp2. The variables k and l are the 
tooth-meshing harmonics, and q is the sideband-harmonic.

3.3. Spectral analysis

Equation (28) implies that the structure of the vibration spectrum X r( f ) is influenced by the geometrical characteristics 
of the PG such as the number of planets N , the planet spacing ψi j , and the number of teeth of the ring gear Zr j .

Inalpolat and Kahraman [9] found that each geometry produced a specific spectral structure.
Molina [10] proposed that all planetary gearboxes can be classified into four groups based on their modulation activity 

related to two conditions, as shown in Table 1. The first condition indicates whether planets are equally or unequally spaced; 
this can be determined by calculating the planet spacing ψi j :

ψ ji = 2π(i − 1)

N
(29)

The second condition indicates whether the planets are in phase; this can be determined by calculating the relative phase 
difference:

γr ji = ψ ji Zr j

2π
(30)
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Table 2
Characteristics of the two-stage planetary gears.

Sun Ring Carrier Planet

Teeth number Zs1 = 21 Zr1 = 150 – Zp1 = 64
Zs2 = 27 Zr2 = 90 – Zp2 = 31

Mass (kg) Ms1 = 260 Mr1 = 1826 Mc1 = 2500 Mp1 = 900
Ms2 = 445 Mr2 = 1200 Mc2 = 2000 Mp2 = 600

J/R2
bi

1

J/R2
bs = 145.5

1

J/R2
br = 913

1

J/R2
bc = 1279

1

J/R2
bp = 642

2

J/R2
bs = 251

2

J/R2
br = 650

2

J/R2
bc = 1050

2

J/R2
bp = 294

I/R2
bi

1

I/R2
bs = 72.73

1

I/R2
br = 456.5

1

I/R2
bc = 639.5

1

I/R2
bp = 352.5

2

I/R2
bs = 105.5

2

I/R2
br = 350

2

I/R2
bc = 550

2

I/R2
bp = 147

Gearmesh stiffness (N/m) ksp1 = 2·108, krp1 = 2.3·108

ksp2 = 2.2·108,krp2 = 2.3·108

Bearing stiffness (N/m) k jx = k jy = 108, j = c, s,k jz = 109, j = c, s
krx = kry = krz = 1010, kxx = kyy = 108, kzz = 109

Torsional stiffness (N/m) k jϕ = k jψ = 109, j = c, s,1...n,k jθ = 0, j = c, s,1...n
krϕ = krψ = krθ = 1010

Pressure angle α = 20◦
Helix angle β = 20◦

4. Results

The characteristics of the two-stage planetary gears are presented in Table 2; each one has a fixed ring and three 
planets [10].

The frequency analyses of the vibrations in the two different case studies of two-stage planetary gearboxes are developed. 
Each case presents a specific geometry, which produced a specific spectral structure.

First case study Two-stage planetary gear from group (A).
The first condition is that the planet gears of the two stages are equally spaced. Thus, ψ ji = 2π(i−1)

N so γr ji = ψ ji Zr j
2π

=
Zr j
N (i − 1).

The second condition is that all meshes are in phase, thus γr ji must be either zero or a positive integer (i.e. γr ji ∈ N). So 
Zr j/N must be a positive integer (i.e. Zr j/N ∈ N).

The spectral structure of the vibrations is now analyzed.
The second exponential term of equations (26) and (27) can be rearranged respectively as follows:

e−j(kzr1+lzr2+q)ψ1i = e−j2π(i−1)[k zr1
N +l

zr2
N + q

N ] (31)

e−j(kzr2+q)ψ2i = e−j2π(i−1)[ kzr2
N + q

N ] (32)

with Zr1/N ∈ N , Zr2/N2 ∈ N and q ∈ Z .
If q is an integer multiple of the number of planet gears N , the phases of the Nspectral components are integer multiples 

of 2π, which means that they are in phase. In this case, they add constructively and the component will be present in the 
spectrum X r

j( f ) with a magnitude given by Nαr
qβ

r
kγ

r
l for the first stage and Nαr

qβ
r
k for the second one.

If q is not an integer multiple of N , the phases of the spectral components will be equally distributed in the range 
[0, 2π). In this case, the N spectral components add destructively and the magnitude of the component in the spectrum is 
zero.

So, the spectral structure consists of components at the gear mesh frequency of the second stage and its multiples 
modulated by sidebands spaced by N fc2, and components at the gear mesh frequency of the first stage and its multiples 
modulated by sidebands spaced by N fc1 and other sidebands spaced by fp2. So:

Xc
1( f ) =

{
Nαc

qβ
c
kγ

c
l e−j2πqfc1t11δ( f − kfm1 − qfc1) + Nβc

kγ
c

l δ( f − kfp1 − l fp2) if q
N ∈ N

Nβc
kγ

c
l δ( f − kfp1 − l fp2) otherwise

}
(33)

X r
2( f ) =

{
Nαr

qβ
r
ke−j2πqfc2t12δ( f − kfp2 − qfc2) if q

N ∈ N

0 otherwise

}
(34)

So, the global spectrum is:

X r( f ) = X r
1( f ) + X r

2( f ) (35)

Fig. 3 illustrates the spectrum of Eq. (35) for a two-stage planetary gear with three planets, each one with Zr1 = 150 and 
Zr2 = 90. The mesh frequency for the first stage of the planetary gear is fp1 = 132 Hz and the mesh frequency for the 
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Fig. 3. Spectral structure of a two-stage planetary gear from group (A) with three equally spaced planets (Zr1 = 150, Zr2 = 90 and ψ ji = {0, 2π
3 , 4π

3 }).

second stage is fp2 = 18 Hz. The rotational frequency of the carrier of the first stage is fc1 = 0.88 Hz and that of the second 
stage is fc2 = 0.2 Hz.

In order to take into account the influence of the sensor in the numerical simulation, a Hanning function is used to 
represent this phenomenon [9]; it can be expressed by:

w(t) = 1

2
− 1

2

[
cos

(
2πNt

Tc

)]
(36)

With this, for a planet positioned at angle ψi , a weighting function is defined as:

wi(t) = W i w

(
t − ψi

2π
Tc

)
Ui(t) (37)

where Ui(t) is defined as:

Ui(t) =
∞∑

n=1

{
u

[
t −

(
(n − 1)N + i − 1

N

)
Tc

]
− u

[
t −

(
(n − 1)N + i

N

)
Tc

]}
(38)

In this equation, the terms u (t − a) are unit step functions (u(t − a) = 1 for t > a and u(t − a) = 0 for t < a), which ensures 
the influence of planet i on the sensor for a period Tc/N .

The dynamic force due to the rotation of the carrier will be:

F j(t) =
N∑

i=1

wij(t)Uij(t)Fij cos(Zr wct + Zrψi j) (39)

where j = 1 for the first stage and j = 2 for the second one. Fij is the load-sharing planet-ring.
Fig. 4 presents the spectrum obtained by numerical simulation using the implicit Newmark’s time-step integration of 

the lumped parameters model for the same gearbox. The same observation as that found in the spectrum obtained by the 
phenomenological model (Fig. 3) can be made.
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Fig. 4. Results of the numerical simulation of a two-stage planetary gear from group (A) with three equally spaced planets (Zr1 = 150, Zr2 = 90 and 
ψ ji = {0, 2π

3 , 4π
3 }).

Table 3
Phase of term (I) in Eq. (40).

k Phase expression Phase in the range [0,2π)

i = 1 i = 2 i = 3

1 2π (i − 1) 152/3 0 2
3 2π 1

3 2π

2 4π (i − 1) 152/3 0 1
3 2π 2

3 2π

3 6π (i − 1) 152/3 0 0 0

Second case study First stage of the planetary gear from group (B) and second stage from group (A).
In this part, the first stage of the planetary train belongs to group (B), so it still has equally spaced planet gears, but the 

meshing processes are no longer in phase. As a result, Zr1/N is no longer an integer.
In order to explain these observations, we consider a first-stage planetary gear with three planets and Zr1 = 152 (Zc1/N

is not an integer), and the meshing frequency takes the value fp1 = 132.5 Hz, and the rotational frequency of the carrier is 
fc1 = 0.87 Hz, the second stage have the same characteristics as in the preceding example ( fp2 = 18, fc2 = 0.2).

The second exponential term of equation (26) can be arranged in the following way:

e−j(kZc1+q)ψ1i = e−j2π(i−1)k
Zc1
N︸ ︷︷ ︸

I

e−j2π(i−1)
q
N︸ ︷︷ ︸

II

(40)

e−j(kZc1+l Zc2)ψi = e−j2π(i−1)k
Zc1
N︸ ︷︷ ︸

I

e−j2π(i−1)l
Zc2
N︸ ︷︷ ︸

III

(41)

It is observed that the phase of term (I) in Eq. (40) depends on the values of i and k, while the phase of term (II) depends 
on the values of i and q and the phase of term (III) in Eq. (41) depends on the values of i and l.

Tables 3, 4 and 5 show, respectively, the phase in the range [0, 2π) of the term (I), (II) and (III), for the N components, 
for k > 0, −3 ≤ q ≤ 3 and l > 0.
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Fig. 5. Spectral structure of two stages planetary gear with 3 planets, the first stage from group (B) and the second one from group (A) (Zr1 = 152, Zr2 = 90
and ψ ji = {0, 2π

3 , 4π
3 }).

Table 4
Phase of term (II) in Eq. (40).

q Phase expression Phase in the range [0,2π)

i = 1 i = 2 i = 3

−3 −6π (i − 1)/3 0 0 0

−2 −4π (i − 1)/3 0 1
3 2π 2

3 2π

−1 −2π (i − 1)/3 0 2
3 2π 1

3 2π

0 0 0 0 0

1 2π (i − 1)/3 0 1
3 2π 2

3 2π

2 4π (i − 1)/3 0 2
3 2π 1

3 2π

3 6π (i − 1)/3 0 0 0

The presence of the component at the frequency f = kfm1 + qfc1 in the spectrum X r
1( f ) is evaluated by adding the 

phases of term (I) and term (II) and the presence of the component at the frequency f = kfp1 + l fp2 is evaluated by adding 
the phases of term (I) and term (III).
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Fig. 6. Results of the numerical simulation of a two-stage planetary gear with three planets, the first stage from group (B) and the second one from group 
(A) (Zr1 = 152, Zr2 = 90 and ψ ji = {0, 2π

3 , 4π
3 }).

Table 5
Phase of term (III) in Eq. (41).

l Phase expression Phase in the range [0,2π)

i = 1 i = 2 i = 3

1 2π (i − 1) 90/3 0 0 0
2 4π (i − 1) 90/3 0 0 0
3 6π (i − 1) 90/3 0 0 0

For example, for the component at the gear mesh frequency f = fp1 (i.e. k = 1; q = 0), the phase of the N components 
is {0 + 0, 23 2π + 0, 13 2π + 0} = {0, 23 2π, 13 2π}, which means that they are equally distributed in the range [0, 2π). So, they 
add destructively and the magnitude of the component at f = fp1 is zero.

Now, for the component at the frequency f = fp1 + fc1 (i.e. k = 1; q = 1), the phase of the N components is {0 +
0, 23 2π + 1

3 2π, 13 2π + 2
3 2π} = {0, 0, 0}, which means that they are in phase, so they add constructively and the component 

at f = fp1 + fc1 is present in the spectrum.
So, from the values given in Tables 3 and 4, the following combinations of (k; q) give a constructive sum: (1, −2), (1, 1), 

(2, −1), (3, −3), (3, 0), (3, 3) and from Tables 4 and 5, the following combinations of (k, l) give a constructive sum: (3, 1), 
(3,2), (3,3).
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Consequently, in the global spectrum, there is no component at the gear mesh frequency of the first-stage planetary gear 
and its harmonics. It presents an asymmetrical distribution of components in frequency and amplitude spaced by N fc1 . But 
there is a component at the Nth harmonic of the meshing frequency modulated by symmetrical sidebands spaced by fp2. 
The global spectral structure has also components at the meshing frequency of the second stage and its harmonics, each 
with symmetrical sidebands spaced by N fc2.

Fig. 5 shows the global spectrum of these two stages.
Fig. 6 presents the spectrum obtained by numerical simulation for the same gearbox. One can observe the same compo-

nent as that in the spectrum obtained by the phenomenological model (Fig. 5).

5. Conclusion

Two models of two-stage planetary gearbox are adopted to describe vibrations: (i) the lumped-parameter model, which is 
based on the numerical solution to the equations of motion and describes the vibrations with respect to a rotating reference 
frame, and (ii) the phenomenological model, which describes the vibrations of the ring gear with respect to an inertial 
reference frame, and takes into account the influence of the sensor. The results from the lumped-parameter model are 
transferred into an inertial reference frame by including the amplitude modulation effect due to the variable transmission 
path. Different spectral structures are found. Based on this, planetary gearboxes are classified in four groups, each one 
presenting a specific geometry and a specific spectral structure. Both models are developed for a two-stage planetary gear. 
Two different case study of two-stage planetary gear are adopted to describe the vibration behavior and the corresponding 
spectrum, which show close agreement between the two models. The presence of the characteristic frequencies of the two 
stages planetary gears such as the gearmesh frequencies and the carrier rotation frequencies is noticed. Each gearmesh 
frequency is modulated by the carrier rotation frequency of the same stage. One can observe also the interaction between 
the two stages of the planetary gear, which is evidenced through the modulation of the first-stage gearmesh frequency by 
the second one.

Depending on the geometry of the planetary gear, a specific spectral structure is observed, which is characterized by a 
symmetrical and/or asymmetrical distribution of its components.

References

[1] F. Cunliffe, J.D. Smith, D.B. Welbourn, Dynamic tooth loads in epicyclic gears, J. Eng. Ind. 94 (1974) 578–584.
[2] A. Saada, P. Velex, An extended model for the analysis of the dynamic behavior of planetary trains, J. Mech. Des. 117 (1995) 241–247.
[3] J. Lin, R. Parker, Structured vibration characteristics of planetary gears with unequally spaced planets, J. Sound Vib. 233 (2000) 921–928.
[4] F. Chaari, M. Haddar, Dynamic analysis of a planetary gear failure caused by tooth pitting and cracking, Eng. Fail. Anal. 2 (2005) 73–78.
[5] F. Chaari, W. Baccar, M. Haddar, Effect of spalling or tooth breakage on gearmesh stiffness and dynamic response of a one-stage spur gear transmission, 

Eur. J. Mech. A, Solids 27 (2008) 691–705.
[6] J. Lin, R. Parker, Mesh phasing relationships in planetary and epicyclic gears, J. Mech. Des. 126 (2004) 365–370.
[7] P. McFadden, J. Smith, An explanation for the asymmetry of the modulation sidebands about the tooth meshing frequency in epicyclic gear vibration, 

Proc. Inst. Mech. Eng. 199 (1985) 65–70.
[8] J. McNames, Fourier series analysis of epicyclic gearbox vibration, J. Vib. Acoust. 124 (2002) 150–152.
[9] M. Inalpolat, A. Kahraman, A theoretical and experimental investigation of modulation sidebands of planetary gear sets, J. Sound Vib. 323 (2009) 

677–696.
[10] C. Molina Vicuna, Contributions to the Analysis of Vibrations and Acoustic Emissions for the Condition Monitoring of Epicyclic Gearboxes, Dissertation, 

Faculty of Georesources and Materials Engineering of the RWTH Aachen University, Germany, 2009.
[11] P. Samuel, J. Conroy, D. Pines, Planetary Transmission Diagnostics, Technical Report NASA/CR 2004 213068, NAS, 2004.
[12] J. Thomas, A Procedure for Predicting the Load Distribution and Transmission Error Characteristics of Double Helical Gears, MS Thesis, The Ohio State 

University, 1991.
[13] L. Zhang, Y. Wang, K. Wu, R. Sheng, Q. Huang, Dynamic modeling and vibration characteristics of a two-stage closed-form planetary gear train, Mech. 

Mach. Theory 97 (2016) 12–28.
[14] M. Karray, N. Feki, M.T. Khabou, H. Chaari, M. Haddar, Modal analysis of gearbox transmission system in bucket wheel excavator, J. Theor. Appl. Mech. 

55 (1) (2017) 253–264.
[15] A. Kahraman, Planetary gear train dynamics, ASME J. Mech. Des. 116 (1994) 713–720.
[16] P. Velex, Contribution à l’analyse du comportement dynamique de réducteur à engrenages à axes parallèles, PhD thesis, Institut national des sciences 

appliquées de Lyon, Villeurbanne, France, 1988, 188 p.
[17] M. Karray, N. Feki, M.T. Khabou, H. Chaari, M. Haddar, Dynamic analysis of bevel gear coupled to multiple stage planetary gear (excavator system), in: 

Proc. 6th International Conference on Advances in Mechanical Engineering and Mechanics, ICAMEM’2015, 20–22 December 2015, Hammamet, Tunisia, 
2015.

[18] W. Bartelmus, Mathematical modeling and computer simulations as an aid to gearbox diagnostics, Mech. Syst. Signal Process. 15 (5) (2001) 855–871.

http://refhub.elsevier.com/S1631-0721(17)30205-X/bib31s1
http://refhub.elsevier.com/S1631-0721(17)30205-X/bib32s1
http://refhub.elsevier.com/S1631-0721(17)30205-X/bib33s1
http://refhub.elsevier.com/S1631-0721(17)30205-X/bib34s1
http://refhub.elsevier.com/S1631-0721(17)30205-X/bib35s1
http://refhub.elsevier.com/S1631-0721(17)30205-X/bib35s1
http://refhub.elsevier.com/S1631-0721(17)30205-X/bib36s1
http://refhub.elsevier.com/S1631-0721(17)30205-X/bib37s1
http://refhub.elsevier.com/S1631-0721(17)30205-X/bib37s1
http://refhub.elsevier.com/S1631-0721(17)30205-X/bib38s1
http://refhub.elsevier.com/S1631-0721(17)30205-X/bib39s1
http://refhub.elsevier.com/S1631-0721(17)30205-X/bib39s1
http://refhub.elsevier.com/S1631-0721(17)30205-X/bib3130s1
http://refhub.elsevier.com/S1631-0721(17)30205-X/bib3130s1
http://refhub.elsevier.com/S1631-0721(17)30205-X/bib3131s1
http://refhub.elsevier.com/S1631-0721(17)30205-X/bib3132s1
http://refhub.elsevier.com/S1631-0721(17)30205-X/bib3132s1
http://refhub.elsevier.com/S1631-0721(17)30205-X/bib3133s1
http://refhub.elsevier.com/S1631-0721(17)30205-X/bib3133s1
http://refhub.elsevier.com/S1631-0721(17)30205-X/bib3134s1
http://refhub.elsevier.com/S1631-0721(17)30205-X/bib3134s1
http://refhub.elsevier.com/S1631-0721(17)30205-X/bib3135s1
http://refhub.elsevier.com/S1631-0721(17)30205-X/bib3136s1
http://refhub.elsevier.com/S1631-0721(17)30205-X/bib3136s1
http://refhub.elsevier.com/S1631-0721(17)30205-X/bib3137s1
http://refhub.elsevier.com/S1631-0721(17)30205-X/bib3137s1
http://refhub.elsevier.com/S1631-0721(17)30205-X/bib3137s1
http://refhub.elsevier.com/S1631-0721(17)30205-X/bib3138s1

	Frequency analysis of a two-stage planetary gearbox using two different methodologies
	1 Introduction
	2 The lumped-parameter model
	3 The phenomenological model
	3.1 Vibration signal
	3.2 Frequency analysis
	3.3 Spectral analysis

	4 Results
	5 Conclusion
	References


