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A novel layerwise C0-type higher order shear deformation theory (layerwise C0-type HSDT) 
for the analysis of laminated composite and sandwich plates is proposed. A C0-type 
HSDT is used in each lamina layer and the continuity of in-plane displacements and 
transverse shear stresses at inner-laminar layer is consolidated. The present layerwise 
theory retains only seven variables without increasing the number of variables when the 
number of lamina layers are intensified. The shear stresses through the plate thickness 
derived from the constitutive equation of the present theory have the same shape as 
those calculated from the equilibrium equation. In addition, the artificial constraints are 
added in the principle of virtual displacements (PVD) and are certainly fulfilled through 
a penalty approach. In this paper, two C0-continuity numerical methods, such as the 
Finite Element Method (FEM) and Bézier isogeometric element (BIEM) are utilized to solve 
a discrete system of equations derived from the PVD. Several numerical examples with 
various geometries, aspect ratios, stiffness ratios, and boundary conditions are investigated 
and compared with the 3D elasticity solution, the analytical, as well as, numerical solutions 
based on various plate theories.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Composite and sandwich plate structures have been ubiquitously applied to various engineering industries, especially 
aerospace, automotive, civil, and marine engineering. For the analysis and design of these structures, an accurate under-
standing of displacements and stresses is necessary. Herein, the transverse shear deformation is very important due to the 
low ratio of transverse shear modulus to axial modulus. In fact, evaluating exactly many effects of local stress fields at the 
interface between layers is required.

According to published research reports in the literature, various plate theories in computational mechanics for compos-
ite and sandwich structures have been developed. These theories are divided into two groups: the equivalent single layer 
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approach (ESL) and the layerwise approach (LW). On the one hand, ESL assumes that the number of unknowns is indepen-
dent of the number of layers. Three kinds of ESL consisting of the classical laminated plate theory (CLPT), the first-order 
shear deformation theory (FSDT) [1,2] and the higher-order shear deformation theory (HSDT) are usually used [3–10]. The 
first one remains inaccurate for laminated composite plates because it does not take into account the effects of transverse 
shear strains. The second one needs a shear correction factor due to a constant of transverse shear stresses through the plate 
thickness. It is very difficult to determine an optimized value for shear correction factors that depend on the material prop-
erties, geometries, and boundary conditions of the problems [11]. For the third type, third-order shear deformation theory 
(TSDT) [12], fifth-order shear deformation theory (FiSDT) [13], seventh-order shear deformation theory [14], trigonometric 
shear deformation theory [15–18], exponential shear deformation theory (ESDT) [19,20], and so on, provide more accurate 
results, yet transverse shear stress continuity conditions at the interfaces between layers are infringed. To overcome this 
limitation of the ESL, the LW theory has been proposed. In the LW, the number of variables or degrees of freedom (DOFs) 
depends on the number of layers. Therefore, the computational cost is very significant when the number of layers are 
increased. Some contributions of LWs have been published [21–23]. The LW proposed by Reddy [23] is widely used for 
laminated and sandwich structure analysis. For more detail of various shear deformation theories using the ELS and LW, 
some literature reviews [24–29] have been clearly presented.

In order to improve the accuracy of ESL approach and to avoid the additional computational cost of LW approach, 
an alternative approach, namely the refined model, has been developed. Based on the physical properties and on some 
mathematical transformations, the number of unknowns in the refined model becomes independent of the number of 
layers. Ambartsumyan [30] proposed a quadratic variation of the transverse stresses in each layer for symmetric laminated 
composites with arbitrary angle-ply laminate. This work was later extended by Whitney [31]. Moreover, a family of refined 
models denoted zigzag models were derived by Lee et al. [32], Sciuva and Icardi [33] and Kapuria et al. [34]. A good 
document of multilayered structures based on refined models is given by Carrera [35,36]. In addition, the refined models 
using the Sinus model were developed by Vidal and Polit [37–40]. A different layerwise theory that assumes the FSDT in 
each layer and the imposition of displacement continuity at the layers interfaces, was given by Ferreira [41]. It was latterly 
also developed for the laminated composite plates [42,43]. In addition, another layerwise theory was presented by Arya [44]
for laminated composite beams. After that, it was extended to the analysis of laminated composite plates [45,46]. It was 
observed that almost all of these layerwise theories requested the C1-continuity of the transverse displacement field. This 
leads to difficulties for the standard finite element method.

In this paper, we promote a layerwise theory that only requires the C0-continuity. The method is general and is well 
suited to any numerical methods. The efficiency of the one presented in this paper is enhanced by using a Bézier isogeo-
metric finite element (BIEM) for analysis. The proposed theory uses a fixed number of seven variables per node and does 
not increase unknowns when increasing the number of lamina layers. As a result, the present method achieves more ben-
efits than other layerwise theories. The obtained results are evaluated by comparisons with the exact 3D theory, classical 
layerwise theories, and other shear deformation theories.

The paper is outlined as follows. The next section presents a layerwise C0-type HSDT for laminated composite plates. An 
approximation formula based on FEM and BIEM is described in section 3. Section 4 shows numerical results and discussions. 
Finally, section 5 summarizes the paper with some concluding remarks.

2. On a generalized layerwise C0-type higher-order shear deformation theory

2.1. Displacements, strains, and stresses in the plates

A layerwise higher-order shear deformation theory with any distributed functions through plate thickness was proposed 
by Thai et al. [46]. The displacement field at any point of the kth layer can be defined as:

ūk(x, y, z) = u0(x, y) + zu1(x, y) + f (z)u2(x, y) (1)

where

ūk =
⎧⎨
⎩

uk

vk

w

⎫⎬
⎭ ; u0 =

⎧⎨
⎩

u0 + Akφx

v0 + Ckφy

w0

⎫⎬
⎭ ; u1 =

⎧⎪⎨
⎪⎩

− ∂ w0
∂x + Bkφx

− ∂ w0
∂ y + Dkφy

0

⎫⎪⎬
⎪⎭ ; u2 =

⎧⎨
⎩

φx

φy

0

⎫⎬
⎭ (2)

in which uk and vk are the in-plane displacements at any point (xk, yk, z) of the layer k, and u0, v0, w0, φx , and φy are the 
displacement components at the mid-plane of the plate in the x, y, z directions and the rotations in the y- and the x-axes, 
as shown in Fig. 1, respectively.

The displacement fields in Eq. (2) require the C1-continuity of the transverse displacement. The C1 continuity require-
ment can be relaxed up to C0 by introducing two extra variables βx and βy with enforcements of ∂ w0

∂x and ∂ w0
∂ y in Eq. (2), 

i.e.:

∂ w0 = βx and
∂ w0 = βy (3)
∂x ∂ y
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Fig. 1. Geometry of a typical plate.

In order to ensure the C0-continuous requirement, the artificial constraints ( ∂ w0
∂x − βx = 0 and ∂ w0

∂ y − βy = 0) due to two 
additional variables are then given in the weak-form differential equations through a penalty approach.

Substituting Eq. (3) into Eq. (2), the displacement field based on a layerwise C0-type higher order shear deformation 
theory is described as:

u0 =
⎧⎨
⎩

u0 + Akφx

v0 + Ckφy

w0

⎫⎬
⎭ ; u1 =

⎧⎨
⎩

−βx + Bkφx

−βy + Dkφy

0

⎫⎬
⎭ ; u2 =

⎧⎨
⎩

φx

φy

0

⎫⎬
⎭ (4)

Imposing the continuous condition of the in-plane displacements at each layer interface as:

uk−1(x, y, z) = uk(x, y, z)
vk−1(x, y, z) = vk(x, y, z)

(5)

From Eqs. (5) and (1), two parameters Ak and Ck can be determined as:{
Ak = Ak−1 + z

(
Bk−1 − Bk

)
Ck = Ck−1 + z

(
Dk−1 − Dk

) (6)

in which the two parameters Bk and Dk will be defined later.
The relations of displacements and bending strain of the kth lamina are described as:

ε = {
εxx εyy γxy

}T = ε0 + zε1 + f (z)ε2 (7)

where

ε0 = ε1
0 + Akε2

0 + Ckε3
0; ε1 = ε1

1 + Bkε2
1 + Dkε3

1

ε1
0 =

⎧⎨
⎩

u0,x

v0,y

u0,y + v0,x

⎫⎬
⎭ ; ε2

0 =
⎧⎨
⎩

φx,x

0
φx,y

⎫⎬
⎭ ; ε3

0 =
⎧⎨
⎩

0
φy,y

φy,x

⎫⎬
⎭

ε1
1 = −

⎧⎨
⎩

βx,x

βy,y

βx,y + βy,x

⎫⎬
⎭ ; ε2

1 =
⎧⎨
⎩

φx,x

0
φx,y

⎫⎬
⎭ ; ε3

1 =
⎧⎨
⎩

0
φy,y

φy,x

⎫⎬
⎭ and ε2 =

⎧⎨
⎩

φx,x

φy,y

φx,y + φy,x

⎫⎬
⎭ (8)

The relations of displacements and shear strain of the kth lamina are also given as follows:

γ = {
γxz γyz

}T = εs
0 + εs

1 + f ′(z)εs
2 (9)

εs
0 =

{
w0,x − βx

w0,y − βy

}
; εs

1 = Bkεs
11 + Dkεs

12; εs
11 =

{
φx

0

}
; εs

12 =
{

0
φy

}
; εs

2 =
{

φx

φy

}
(10)

in which the function f ′(z) is the derivative of the function f (z). The shape function f (z) is chosen so that the shear 
stresses on the top and bottom surfaces of the plate are equal to zero. Without loss of generality, the third-order function 
proposed by Reddy [12] can be chosen as:

f (z) = z − 4z3

2
and f ′(z) = 1 − 4z2

2
(11)
3h h
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In this paper, the transverse normal stress is assumed to be equal to zero (σz = 0) due to the transverse displacement 
in the mid-plane surface. Applying Hooke’s law to the local coordinate system, the constitutive equation of an orthotropic 
layer is presented by:⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

σ
(k)
1

σ
(k)
2

τ
(k)
12

τ
(k)
13

τ
(k)
23

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎣

Q (k)
11 Q (k)

12 0 0 0

Q (k)
21 Q (k)

22 0 0 0

0 0 Q (k)
66 0 0

0 0 0 Q (k)
55 0

0 0 0 0 Q (k)
44

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ε
(k)
1

ε
(k)
2

γ
(k)

12

γ
(k)

13

γ
(k)

23

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(12)

where subscripts 1 and 2 are the directions of the fiber and in-plane normal to fiber, respectively while subscript 3 indicates 
the direction normal to the plate, in which Q (k)

i j is defined as:

Q (k)
11 = E(k)

1

1 − ν
(k)
12 ν

(k)
21

, Q (k)
12 = ν

(k)
12 E(k)

2

1 − ν
(k)
12 ν

(k)
21

, Q (k)
22 = E(k)

2

1 − ν
(k)
12 ν

(k)
21

Q (k)
66 = G(k)

12 , Q (k)
55 = G(k)

13 , Q (k)
44 = G(k)

23

(13)

where E(k)
1 , E(k)

2 are the Young modulus in the 1 and 2 directions, respectively, and G(k)
12 , G(k)

23 , G(k)
13 are the shear modulus in 

the 1–2, 2–3 and 1–3 planes, respectively, and ν(k)
12 and ν(k)

21 are Poisson’s ratios.
The transverse shear stresses of every lamina layer in Eq. (12) can be rewritten as:{

τ k
13 = Q k

55γ
k
13 = Q k

55

(
w0,x − βx + Bkφx + f ′(z)φx

)
τ k

23 = Q k
44γ

k
23 = Q k

44

(
w0,y − βy + Dkφy + f ′(z)φy

) (14)

At each layer interface, we impose the continuous condition of transverse shear stresses using:{
τ k−1

13 = τ k
13

τ k−1
23 = τ k

23

⇒
{

Q k−1
55

(
w0,x − βx + Bk−1φx + f ′(z)φx

) = Q k
55

(
w0,x − βx + Bkφx + f ′(z)φx

)
Q k−1

44

(
w0,y − βy + Dk−1φy + f ′(z)φy

) = Q k
44

(
w0,y − βy + Dkφy + f ′(z)φy

) (15)

Substituting Eq. (3) into Eq. (15), this equation can be written under a compact form as:

⇒

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Bk = Q k−1
55

Q k
55

Bk−1 + f ′(z)

(
Q k−1

55

Q k
55

− 1

)

Dk = Q k−1
44

Q k
44

Dk−1 + f ′(z)

(
Q k−1

44

Q k
44

− 1

) (16)

Thus, the four parameters Ak , Bk , Ck , and Dk in Eq. (2) that are defined (see Eq. (6) and Eq. (16)) can be rewritten as 
follows:

Bk = Q k−1
55

Q k
55

Bk−1 + f ′(z)

(
Q k−1

55

Q k
55

− 1

)
, Ak = Ak−1 + zk(Bk−1 − Bk),

Dk = Q k−1
44

Q k
44

Dk−1 + f ′(z)

(
Q k−1

44

Q k
44

− 1

)
and Ck = Ck−1 + zk(Dk−1 − Dk) (17)

According to Roque et al. [45], four parameters of the first layer of symmetric laminates are obtained as:

B1 = 0, A1 = −
kmidplane∑

i=2

z(i)
(

Bi−1 − Bi), D1 = 0 and C1 = −
kmidplane∑

i=2

z(i)
(

Di−1 − Di) (18)

Practically, the laminate is usually fabricated by several orthotropic layers and each layer must be transformed into the 
global coordinate system (x, y, z). A relationship of stress and strain is given by:⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

σ
(k)
xx

σ
(k)
yy

τ
(k)
xy

τ
(k)
xz

τ
(k)
yz

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Q̄ (k)
11 Q̄ (k)

12 Q̄ (k)
16 0 0

Q̄ (k)
21 Q̄ (k)

22 Q̄ (k)
26 0 0

Q̄ (k)
61 Q̄ (k)

62 Q̄ (k)
66 0 0

0 0 0 Q̄ (k)
55 Q̄ (k)

54

0 0 0 Q̄ (k)
45 Q̄ (k)

44

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ε
(k)
xx

ε
(k)
yy

γ
(k)
xy

γ
(k)
xz

γ
(k)
yz

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(19)

where Q̄ (k) is transformed material constant. A detailed presentation is introduced in [47].
i j
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2.2. Weak form

The strain energy associated with the artificial constraints can be added to the weak form by the Lagrange multiplier 
method, the penalty function method. In this paper, the penalty function method through the penalty parameter λ (e.g., 
Eq. (20)) is used to impose the artificial constraints so that the displacement fields ensure the C0-continuity requirement 
and no additional variables are introduced. This penalty parameter is determined using the engineer’s numerical experience.

For static bending problems, a weak form of the plate under transverse loading q0 based on the present theory combined 
with the penalty function method can be given by:

∫



δ

⎧⎨
⎩

ε0
ε1
ε2

⎫⎬
⎭

T ⎡
⎣ A B E

B D F1
E F1 H

⎤
⎦

(k) ⎧⎨
⎩

ε0
ε1
ε2

⎫⎬
⎭d
 +

∫



δ

{
εs

0

εs
1

}T [
As Bs

Bs Ds

](k)
{

εs
0

εs
1

}
d
 + λ

∫



δuT
pup d


=
∫



δw0q0 d
 (20)

where

up =
{

∂ w0

∂x
− βx

∂ w0

∂ y
− βy

}T

(Aij, Bij, Dij, Eij, F 1i j, Hij)
(k) =

h/2∫
−h/2

(
1, z, z2, f (z), zf (z), f 2(z)

)
Q k

ij dz where (i, j = 1,2,6) (21)

(
As

i j, Bs
i j, Ds

i j

)(k) =
h/2∫

−h/2

(
1, f ′(z), f ′ 2(z)

)
Q k

ij dz where (i, j = 4,5)

For free vibration problems, a weak form of the plate incorporated with the penalty function method can be described 
as:

∫



δ

⎧⎨
⎩

ε0
ε1
ε2

⎫⎬
⎭

T ⎡
⎣ A B E

B D F1
E F1 H

⎤
⎦

(k) ⎧⎨
⎩

ε0
ε1
ε2

⎫⎬
⎭d
 +

∫



δ

{
εs

0

εs
1

}T [
As Bs

Bs Ds

](k)
{

εs
0

εs
1

}
d
 + · · ·

λ
∫



δuT
pup d
 +

∫



δ

⎧⎨
⎩

u0
u1
u2

⎫⎬
⎭

T ⎡
⎣ I1 I2 I4

I2 I3 I5
I4 I5 I6

⎤
⎦

⎧⎨
⎩

ü0
ü1
ü2

⎫⎬
⎭d
 = 0 (22)

where

(I1, I2, I3, I4, I5, I6)
(k) =

h(k)/2∫
−h(k)/2

ρ(k)(z)
(
1, z, z2, f (z), zf (z), f 2(z)

)
dz (23)

For buckling problems under in-plane loading, a weak form of the plate combined with the penalty function method can 
be expressed by:

∫



δ

⎧⎨
⎩

ε0
ε1
ε2

⎫⎬
⎭

T ⎡
⎣ A B E

B D F1
E F1 H

⎤
⎦

(k) ⎧⎨
⎩

ε0
ε1
ε2

⎫⎬
⎭d
 +

∫



δ

{
εs

0

εs
1

}T [
As Bs

Bs Ds

](k)
{

εs
0

εs
1

}
d
 + · · ·

λ
∫



δuT
pup d
 + h

∫



δ

{
w0,x

w0,y

}T
[

N0
x N0

xy

N0
xy N0

y

]{
w0,x

w0,y

}
d
 = 0 (24)

where N0
x , N0

y and N0
xy are the pre-buckling loads in the x, y, and x–y directions, respectively.
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Fig. 2. A nine node isoparametric biquadratic quadrilateral element.

3. The laminated composite and sandwich plate formulation

3.1. A brief of Lagrange and Bézier extraction of NURBS functions

To investigate the proposed theory, two C0-continuous finite and Bézier isogeometric element methods are chosen to 
solve discrete system equations. A brief introduction of Lagrange and Bézier extraction of NURBS functions is given in this 
subsection.

3.1.1. Lagrange function
Here, a nine-node isoparametric biquadratic quadrilateral is used, as shown in Fig. 2. The shape functions for a nine-node 

element are as follows

N1 = 1

4
ξη(ξ − 1)(η − 1); N2 = −η

2
(η − 1)

(
ξ2 − 1

)
N3 = 1

4
ξη(ξ + 1)(η − 1); N4 = −ξ

2
(ξ − 1)

(
η2 − 1

)
N5 = (

ξ2 − 1
)(

η2 − 1
); N6 = −ξ

2
(ξ + 1)

(
η2 − 1

)
N7 = 1

4
ξη(ξ − 1)(η + 1); N8 = −η

2

(
ξ2 − 1

)
(η + 1)

N9 = 1

4
ξη(ξ + 1)(η + 1)

(25)

3.1.2. Bézier extraction of NURBS functions
In order to correspond with a nine-node finite element, the quadratic Bézier isogeometric element is used. Note that we 

can use other C0-continuous Bézier isogeometric elements as described in [48].

3.2. A layerwise plate formulation based on Lagrange and Bézier extraction of NURBS basis functions

The displacement field is described by

uh(ξ,η) =
9∑

I=1

NI (ξ,η)qI (26)

where NI (ξ, η) is the Lagrange shape function or Bézier extraction of NURBS basis function, and qI = {u0I v0I w0I φxI φyI βxI

βyI }T is the vector of nodal degrees of freedom (dofs) associated with the control point or node I .
Substituting Eq. (26) into Eq. (8), then into Eq. (7), the in-plane and shear strains can be rewritten as

{
ε0 ε1 ε2 εs

0 εs
1 εs

2

}T =
9∑

I=1

{
B0I B1I B2I Bs

0I Bs
1I Bs

2I

}T qI (27)

in which

B0I = B1
0I + AkB2

0I + CkB2
0I ; B1I = B1

1I + BkB2
1I + DkB2

1I (28)

B1
0I =

⎡
⎣ NI,x 0 0 0 0 0 0

0 NI,y 0 0 0 0 0
N N 0 0 0 0 0

⎤
⎦ ; B2

0I =
⎡
⎣ 0 0 0 NI,x 0 0 0

0 0 0 0 0 0 0
0 0 0 N 0 0 0

⎤
⎦

I,y I,x I,y
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B3
0I =

⎡
⎣ 0 0 0 0 0 0 0

0 0 0 0 NI,y 0 0
0 0 0 0 NI,x 0 0

⎤
⎦ ; B1

1I = −
⎡
⎣ 0 0 0 0 0 NI,x 0

0 0 0 0 0 0 NI,y

0 0 0 0 0 NI,y NI,x

⎤
⎦

B2
1I =

⎡
⎣ 0 0 0 0 NI,x 0 0

0 0 0 0 0 0 0
0 0 0 0 NI,y 0 0

⎤
⎦ ; B3

1I =
⎡
⎣ 0 0 0 0 0 0 0

0 0 0 0 NI,y 0 0
0 0 0 0 NI,x 0 0

⎤
⎦

B2I =
⎡
⎣ 0 0 0 NI,x 0 0 0

0 0 0 0 NI,y 0 0
0 0 0 NI,y NI,x 0 0

⎤
⎦ ; Bs

1I = BkBs
11I + DkBs

12I

Bs
0I =

[
0 0 NI,x 0 0 −NI 0
0 0 NI,y 0 0 0 −NI

]
; Bs

11I =
[

0 0 0 0 NI 0 0
0 0 0 0 0 0 0

]

Bs
12I =

[
0 0 0 0 0 0 0
0 0 0 0 NI 0 0

]
; Bs

2I =
[

0 0 0 NI 0 0 0
0 0 0 0 NI 0 0

]

Substituting Eq. (26) into Eq. (4), the displacement fields u0, u1 and u2 can be expressed as follows:

u0 =
9∑

I=1

N0I qI ; u1 =
9∑

I=1

N1I qI and u2 =
9∑

I=1

N2I qI (29)

N0I = N1
0I + AkN2

0I + CkN3
0I ; N1I = N1

1I + BkN2
1I + DkN3

1I

N1
0I =

⎡
⎣ NI 0 0 0 0 0 0

0 NI 0 0 0 0 0
0 0 NI 0 0 0 0

⎤
⎦ ; N2

0I =
⎡
⎣ 0 0 0 NI 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎤
⎦

N3
0I =

⎡
⎣ 0 0 0 0 0 0 0

0 0 0 0 NI 0 0
0 0 0 0 0 0 0

⎤
⎦ ; N1

1I = −
⎡
⎣ 0 0 0 0 0 NI 0

0 0 0 0 0 0 NI

0 0 0 0 0 0 0

⎤
⎦

N2
1I =

⎡
⎣ 0 0 0 NI 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎤
⎦ ; N3

1I =
⎡
⎣ 0 0 0 0 0 0 0

0 0 0 0 NI 0 0
0 0 0 0 0 0 0

⎤
⎦

N2I =
⎡
⎣ 0 0 0 NI 0 0 0

0 0 0 0 NI 0 0
0 0 0 0 0 0 0

⎤
⎦ (30)

The derivations of the transverse displacements are also described by

{
w0,x

w0,y

}
=

9∑
I=1

[
0 0 NI,x 0 0 0 0
0 0 NI,y 0 0 0 0

]
qI =

9∑
I=1

Bg
I qI (31)

The artificial constraints can be written as

up =
9∑

I=1

BpI qI (32)

where

Bp =
[

0 0 NI,x 0 0 −NI 0
0 0 NI,y 0 0 0 −NI

]
(33)

Substituting Eqs. (27), (29), (31) and (32) into Eqs. (20), (22) and (24), respectively, the formulations of static, free 
vibration and buckling problems are expressed by

(K + λKp)q = F (34)(
K + λKp − ω2M

)
q = 0 (35)

(K + λKp − λcrKg)q = 0 (36)

where K, Kp, M, Kg, F are the global stiffness, penalty, mass, geometric stiffness matrices, and load vector of systems, 
respectively, and
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K =
∫



⎡
⎢⎣

⎧⎨
⎩

B0
B1
B2

⎫⎬
⎭

T ⎡
⎣ A B E

B D F1
E F1 H

⎤
⎦

⎧⎨
⎩

B0
B1
B2

⎫⎬
⎭ +

{
Bs

0

Bs
1

}T [
As Bs

Bs Ds

]{
Bs

0

Bs
1

}⎤
⎥⎦d
 (37)

Kp =
∫



(Bp)TBp d


F =
∫



q0
{

0 0 NI 0 0 0 0
}T d
 (38)

M =
∫



⎧⎨
⎩

N0
N1
N2

⎫⎬
⎭

T ⎡
⎣ I1 I2 I4

I2 I3 I5
I4 I5 I6

⎤
⎦

⎧⎨
⎩

N0
N1
N2

⎫⎬
⎭d
 (39)

Kg = h

∫



(
Bg)T

[
N0

x N0
xy

N0
xy N0

y

]
Bg d
 (40)

in which ω in Eq. (35) is the natural frequency and λcr in Eq. (36) is the critical buckling value.

4. Results and discussions

In this section, some numerical results from static, buckling and vibration analyses of the laminated composite and 
sandwich plates are presented and discussed to show the accuracy of the present layerwise theory. The material parameters 
are given as follows:

• material I,

E1 = 25E2, G12 = G13 = 0.5E2, G23 = 0.2E2, ν12 = 0.25, ρ = 1

• material II [49],

E1 = 40E2, G12 = G13 = 0.6E2, G23 = 0.5E2, ν12 = 0.25, ρ = 1

• material III [50],

E1 = 2.45E2, G12 = G13 = 0.48E2, G23 = 0.2E2, ν12 = 0.23, ρ = 1

• material IV [51],
face layer,

E1 = 19E2, G12 = G13 = 0.52E2, G23 = 0.338E2, ν12 = ν13 = 0.32

core,

E1 = 3.2 × 10−5 E f
2, E2 = 32.9 × 10−5 E f

2, G12 = 2.4 × 10−3 E f
2, G13 = 7.9 × 10−2 E f

2
G23 = 6.6 × 10−2 E f

2, ν12 = 0.99, ν13 = 3.0 × 10−5

where E f
2 is the Young modulus of the face layer.

4.1. Static analysis

4.1.1. Four layer [0/90/90/0] square laminated plate under sinusoidally distributed load
A cross-ply four-layer [0/90/90/0] simply supported square plate under a sinusoidally distributed load q0 = q̄0 sin( πx

a )(
πy
b )

is first studied, as shown in Fig. 3a. Material I is used. The length-to-thickness ratio is taken as 4, 10, 20, and 100, respec-
tively. The plate is modeled by 17 × 17 elements, as illustrated in Fig. 3b. The normalized deflection and stresses are defined 
by:

w̄ = (
100E2h3)w

(
a

2
,

a

2
,0

)
/
(
q̄0a4), σ̄x = h2

q̄0b2
σx

(
a

2
,

a

2
,

h

2

)
, σ̄y = h2

q̄0b2
σy

(
a

2
,

a

2
,

h

4

)

τ̄xy = h2

2
τxy

(
0,0,

h
)

, τ̄xz = h

¯ τxz

(
0,

a
,0

)
, τ̄yz = h

¯ τyz

(
a
,0,0

) (41)
q̄0b 2 q0b 2 q0b 2
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Fig. 3. A square plate: a) geometry; b) mesh element.

Table 1
The normalized displacement of the [0/90/90/0] laminated square plate (a/h = 4).

Method λ

103 104 105 106 107 108

FEM-LW (present) 1.90566 1.90565 1.90565 1.90563 1.90566 1.90619
BIEM-LW (present) 1.90566 1.90565 1.90565 1.90565 1.90564 1.90553

Firstly, the effect of the penalty parameter (λ) through the penalty function method on the present solution is studied. 
The length-to-thickness ratio a/h = 4 is only tested, and the normalized central deflection is investigated. The penalty 
parameter has a value ranged between 103 and 108 (for example, λ = 103, 104, 105, 106, 107, 108). Table 1 gives the 
normalized central displacement of the plate corresponding with various values of penalty parameter. It can be seen that 
the difference for all solutions is not significant, and therefore, the penalty parameter λ = 106 is chosen in this study.

Next, the normalized displacement and stresses with various length-to-thickness ratios are investigated. Table 2 gives 
the normalized displacement and stresses of four layers simply supported square plate of the present and other solutions. 
The obtained results are compared with those reported by Reddy [12] based on the exact closed-form solution (CFS) and 
TSDT (C1-continuity and five degrees of freedom (DOF) per node), Akhras et al. [53] based on a finite strip method (FSM) 
and HSDT (C1-continuity and 5 DOFs per node), Ferreira [41] based on a meshfree method and the layerwise deformation 
theory (LW) with assumed FSDT for every layer (C0-continuity and 5 DOFs per node), Roque et al. [55] based on a meshfree 
method and a trigonometric layerwise deformation theory (C1-continuity and only 5 DOFs per node due to the continuity 
assumption of the displacement and transverse shear stresses at the layer interfaces), Wang and Shi [56] based on a closed-
form solution and the third-order shear deformation theory and inter-laminar shear stress continuity (C1-continuity and 
5 DOFs per node), Thai et al. [46] based on an isogeometric analysis (IGA) and the generalized layerwise higher-order shear 
deformation theory (C1-continuity and only 5 DOFs per node due to the continuity assumption of the displacement and 
transverse shear stresses at the layer interfaces) and Pagano [52] based on an exact 3D elasticity solution. The percentage 
error (%) of displacement and stresses for the case a/h = 4 between the exact 3D elasticity solution and other solutions 
are given in parenthesis. It can be seen that the percentage error from the present solution and other solutions is accept-
able. The main advantage of the presented theory is the requirement of only C0-continuity of displacement fields and the 
inclusion of only seven degrees of freedom for each node in the mesh without increasing the number of variables when 
increasing the number of lamina layers. The results obtained from Table 2 show that the present layerwise theory is more 
accurate when compared with the shear deformation theories, such as TSDT [12] and HSDT [53]. Similarly, it is also accu-
rate when compared with the layerwise theory [41,55] for the thick plates (a/h = 4 and 10). The differences between all 
solutions are small for the case of thin plates. The distribution of stresses through the thickness of the plate with a/h = 4
and 10 based on the FEM and BIEM are plotted in Fig. 4. As it can be seen, shear stresses from the present layerwise theory 
are continuous at inner-laminar layers.

4.1.2. Three-layer sandwich square plate subjected to a uniform load
Let us consider a simply supported sandwich square plate subjected to a uniform transverse load q0 . The length-to-

thickness ratio is taken as 10. The thickness of the core and of the two face layers are denoted by hc and hf , respectively 
and this ratio is hc/hf = 8. The material properties of the core and face layers are defined by:
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Table 2
The normalized displacement and stresses of the four layer [0/90/90/0] laminated square plate under a sinusoidally distributed load.

a/h Method w̄ σ̄x σ̄y σ̄xz σ̄yz σ̄xy

4 FEM-LW (present) 1.9056 0.7370 0.6992 0.2305 0.2298 0.0436
(2.48%)a (2.36%) (4.98%) (14.63%) (21.03%) (6.64%)

BIEM-LW (present) 1.9056 0.7370 0.6992 0.2266 0.2259 0.0421
(2.48%) (2.36%) (4.98%) (16.07%) (22.37%) (9.85%)

Elasticity [52] 1.954 0.72 0.666 0.27 0.2910 0.0467
CFS-TSDT [12] 1.8939 0.6806 0.6463 0.2109 0.2390 0.045

(3.08%) (5.47%) (2.96%) (21.89%) (17.87%) (3.64%)
FSM-HSDT [53] 1.8937 0.6651 0.6322 0.2064 – 0.044

(3.09%) (7.62%) (5.08%) (23.56%) (5.78%)
Meshfree-LW [41] 1.9075 0.6432 0.6228 0.2166 – 0.0441

(2.38%) (10.67%) (6.49%) (19.78%) (5.57%)
Meshfree-LW [55] 1.8842 0.756 0.6777 0.1885 – 0.0430

(3.57%) (5.00%) (1.76%) (30.19%) (7.92%)
CFS-LW [56] 1.9073 0.7361 0.6994 0.211 0.3147 0.0435

(2.39%) (2.24%) (5.02%) (21.85%) (8.14%) (6.85%)
IGA-LW [46] 1.9060 0.7334 0.6984 0.2298 – 0.0434

(2.46%) (1.86%) (4.86%) (14.89%) (7.07%)

10 FEM-LW (present) 0.7358 0.5608 0.4075 0.3156 0.1491 0.0274
BIEM-LW (present) 0.7359 0.5608 0.4075 0.3102 0.1466 0.0265
Elasticity [52] 0.743 0.559 0.403 0.301 0.196 0.0276
CFS-TSDT [12] 0.7149 0.5589 0.3974 0.2697 0.153 0.0273
FSM-HSDT [53] 0.7147 0.5456 0.3888 0.264 – 0.0268
Meshfree-LW [41] 0.7309 0.5496 0.3956 0.2888 – 0.0273
Meshfree-LW [55] 0.735 0.5637 0.4055 0.2908 – 0.0272
CFS-LW [56] 0.7368 0.5609 0.4077 0.3002 0.1995 0.0274
IGA-LW [46] 0.7359 0.5598 0.4074 0.3138 – 0.0274

20 FEM-LW (present) 0.5127 0.5429 0.3094 0.3461 0.1252 0.0231
BIEM-LW (present) 0.5128 0.5429 0.3095 0.3402 0.1230 0.0223
Elasticity [52] 0.517 0.543 0.309 0.328 0.156 0.023
CFS-TSDT [12] 0.5061 0.5523 0.311 0.2883 0.123 0.0233
FSM-HSDT [53] 0.506 0.5393 0.3043 0.2825 – 0.0228
Meshfree-LW [41] 0.5121 0.5417 0.3056 0.3248 – 0.023
Meshfree-LW [55] 0.5127 0.544 0.3094 0.3203 – 0.0223
CFS-LW [56] 0.5138 0.5433 0.3098 0.3279 0.1563 0.0231
IGA-LW [46] 0.5129 0.5425 0.3095 0.3412 – 0.023

100 FEM-LW (present) 0.4263 0.5313 0.2672 0.4448 0.1240 0.0210
BIEM-LW (present) 0.4369 0.5429 0.2733 0.4493 0.1215 0.0208
Elasticity [52] 0.4347 0.539 0.271 0.339 0.141 0.0214
CFS-TSDT [12] 0.4343 0.5507 0.2769 0.2948 0.112 0.0217
FSM-HSDT [53] 0.4343 0.5387 0.2708 0.2897 – 0.0213
Meshfree-LW [41] 0.4374 0.542 0.2697 0.3232 – 0.0216
Meshfree-LW [55] 0.4345 0.5388 0.271 0.3354 – 0.0213
CFS-LW [56] 0.4355 0.5387 0.271 0.3389 0.1390 0.0214
IGA-LW [46] 0.4346 0.5381 0.2707 0.3519 – 0.0214

a The percentage errors between the 3D elasticity exact solution and other solutions are given in parentheses.

Q̄ core =

⎡
⎢⎢⎢⎣

0.999781 0.231192 0 0 0
0.231192 0.524886 0 0 0

0 0 0.262931 0 0
0 0 0 0.266810 0
0 0 0 0 0.159914

⎤
⎥⎥⎥⎦ and Q̄ face = R Q̄ core

where R is a scale factor.
The normalized displacement and stresses of the sandwich plate are defined as follows:

w̄ = 0.999781w

(
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b
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)/
hqo, σ̄ 1
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Fig. 4. The distribution of stresses through the thickness of the plate with a/h = 4 and 10.

In this example, three values of the scale factor, R = 5, 10, 15, are studied. Table 3 presents the comparison between 
the normalized displacement and stresses obtained by the present solution with those given by Srinivas [57] based on an 
analytical approach, Pandya and Kant [58] based on a finite element method (FEM) and HSDT (7 DOFs), Ferreira et al. [54]
based on a meshfree method and HSDT (5 DOFs), Ferreira [41] based on a meshfree-method and LW theory (5 DOFs per 
node for every lamina layer), Mantari et al. [59] based on a closed form solution and trigonometric shear deformation theory 
(TrSDT, 5 DOFs), Grover et al. [60] based on a closed form solution and inverse hyperbolic shear deformation theory (iHSDT, 
5 DOFs) and Roque et al. [55] based on a meshfree method and a trigonometric layerwise deformation theory (C1-continuity 
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Table 3
The normalized displacement and stresses of the square sandwich plate under a uniform load.

R Method w̄ σ̄ 1
x σ̄ 2

x σ̄ 3
x σ̄ 1

y σ̄ 2
y σ̄ 3

y

5 FEM-LW (present) 256.6050 59.8563 46.7420 9.3484 38.2170 30.1109 6.0222
BIEM-LW (present) 256.5896 59.8540 46.7382 9.3476 38.2160 30.1086 6.0217
Exact [57] 258.97 60.353 46.623 9.34 38.491 30.097 6.161
FEM-HSDT [58] 256.13 62.38 46.91 9.382 38.93 30.33 6.065
Meshfree-HSDT [54] 257.11 60.366 47.003 9.401 38.456 30.242 6.048
Meshfree-LW [41] 257.523 59.968 46.291 9.258 38.321 29.974 5.995
CFS-iHSDT [60] 255.644 60.675 47.055 9.411 38.522 30.206 6.041
CFS-TrSDT [59] 256.706 60.525 47.061 9.412 38.452 30.177 6.035
Meshfree-LW [55] 259.12 60.338 46.57 9.314 38.547 30.148 6.0295

10 FEM-LW (present) 158.5334 64.9058 48.9612 4.8961 43.4281 33.5238 3.3524
BIEM-LW (present) 158.5292 64.9026 48.9603 4.8960 43.4252 33.5233 3.3523
Exact [57] 159.38 65.332 48.857 4.903 43.566 33.413 3.500
FEM-HSDT [58] 152.33 64.65 51.31 5.131 42.83 33.97 3.397
Meshfree-HSDT [54] 154.658 65.381 49.973 4.997 43.24 33.637 3.364
Meshfree-LW [41] 158.38 64.846 48.443 4.844 43.39 33.306 3.924
CFS-iHSDT [60] 154.55 65.741 49.798 4.979 43.4 33.556 3.356
CFS-TrSDT [59] 155.498 65.542 49.708 4.971 43.385 33.591 3.359
Meshfree-LW [55] 159.5 65.279 48.279 4.8766 43.682 33.523 3.3523

15 FEM-LW (present) 121.2461 66.3821 48.3972 3.2265 46.3437 35.1132 2.3409
BIEM-LW (present) 121.2427 66.3808 48.3957 3.2264 46.3426 35.1122 2.3408
Exact [57] 121.72 66.787 48.299 3.238 46.424 34.955 2.494
FEM-HSDT [58] 110.43 66.62 51.97 3.465 44.92 35.41 2.361
Meshfree-HSDT [54] 114.644 66.919 50.323 3.355 45.623 35.167 2.345
Meshfree-LW [41] 120.988 66.291 47.899 3.193 46.292 34.89 2.326
CFS-iHSDT [60] 115.82 67.272 49.813 3.321 45.967 35.088 2.339
CFS-TrSDT [59] 115.919 67.185 49.769 3.318 45.91 35.081 2.339
Meshfree-LW [55] 121.88 66.73 48.204 3.2136 46.586 35.109 2.3406

and only 5 DOFs per node). We showed that the obtained results are very close to those solutions for displacement as well 
as stresses for all values of the scale factor R . When the scale factor R increases, then the differential stiffness between 
the core layer and two face layers also increases and the normalized displacement decreases. For example, as R = 15, the 
present solution is better than those relying on HSDT, iHSDT and TrSDT for all displacement and in-plane stresses when 
compared to the exact solution.

4.2. Buckling analysis

In this subsection, in-plane compression uniaxial and biaxial loads are illustrated. Materials II and IV are used to compute 
the buckling load factor of the laminated composite and of the sandwich plates, respectively. For buckling and vibration 
analyses, a mesh of 11 × 11 elements can be used. The normalized buckling load factor is defined as:

λ̄= λcra2

E2h3

where λcr, a, E2, and h are the critical buckling load, the length, one of the elastic moduli of the material in the second 
direction, and the thickness of the plate, respectively.

4.2.1. A laminated composite plate
4.2.1.1. Uniaxial compression We first consider a four-layer [0/90/90/0] laminated square plate with simply supported bound-
ary under axial compression load, as shown in Fig. 5a. Some length-to-thickness a/h and elastic modulus E1/E2 ratios 
are considered. Firstly, the length-to-thickness ratio is fixed at 10 (a/h = 10) and the E1/E2 ratio is changed. Compar-
isons with the 3D elasticity solution [61] and the results found in the literature as a mesh-free solution based on HSDT 
[62] and a FEM solution based on HSDT [63,64] are reported in Table 4. It can be noted that the obtained results show 
good agreement when compared to those solutions. From Table 4, a rise in the normalized critical buckling load is found 
when increasing the E1/E2 ratio. Secondly, the ratio E1/E2 is fixed to 40 (E1/E2 = 40), and the length-to-thickness ra-
tio is changed. Similarly, the present results give good agreement when compared to other solution as a FEM based on 
FSDT [65,66] and HSDT [67], as shown in Table 5. From these two examples, it can be concluded that the obtained re-
sults of the normalized critical buckling load are very good compared to the 3D elasticity solution and to other relevant 
solutions.
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Fig. 5. Geometry of the plates under axial and biaxial compressions.

Table 4
Normalized critical buckling load of four-layer simply supported square plate with various E1/E2 ratios (a/h = 10).

Method E1/E2

3 10 20 30 40

FEM-LW (present) 5.3947 9.9475 15.3181 19.7116 23.3981
BIEM-LW (present) 5.3940 9.9466 15.3175 19.7112 23.3976
Elasticity 3D [61] 5.294 9.762 15.019 19.304 22.881
Meshfree-HSDT [62] 5.412 10.013 15.309 19.778 23.412
FEM-HSDT [63] 5.114 9.774 15.298 19.957 23.34
FEM-HSDT [64] 5.442 10.026 15.418 19.813 23.489

Table 5
Normalized critical buckling load of four-layer simply supported square plate with various a/h ratios (E1/E2 = 40).

Method a/h

10 20 50 100

FEM-LW (present) 23.3981 31.6849 35.3988 35.8723
BIEM-LW (present) 23.3976 31.6853 35.3836 35.8006
FEM-FSDT [65] 23.409 31.625 35.254 35.851
FEM-FSDT [66] 23.471 31.707 35.356 35.955
FEM-HSDT [66] 23.349 31.637 35.419 35.971

4.2.1.2. Biaxial compression Let us consider a three-layer [0/90/0] simply supported square plate subjected to the biaxial 
buckling load, as shown in Fig. 5b. In a fashion similar to the one described in subsection 4.2.1.1, various length-to-thickness 
and elastic modulus ratios are also studied to verify the normalized critical buckling load. Table 6 and Table 7 show the 
normalized critical buckling load under biaxial compression corresponding to fixing the value of the length-to-thickness 
ratio and the elastic modulus ratio, respectively. The present results are compared with the FEM based on FSDT [67]
and HSDT [64] and the meshfree solution based on FSDT and HSDT [62]. The obtained results again confirmed that the 
present solutions including the FEM and Bézier isogeometric elements are in good agreement with other solutions for both 
cases.

4.2.2. The sandwich plate
The plate considered herein is an eleven-layer [0/90/0/90/0]/core/[0/90/0/90/0] sandwich square plate with simply sup-

ported boundary subjected to a uniaxial compression load. The side-to-thickness ratios are equal to 10 and 20, respectively. 
The ratios of the face thickness to the plate thickness are taken as hf/h = 0.025, 0.05, 0.075, 0.1. The uniaxial critical buck-
ling loads are given in Table 8. The numerical results are also compared with those reported by Noor et al. [51] based 
on a 3D elasticity solution, Sarah and Kant [68] based on a finite element solution using HSDT-FSDT and Cetkovic and 
Vuksanovic [69] based on both finite element and analytical solutions using the layerwise theory. The obtained results 
are in excellent agreement with those results for two kinds of plates with two side-to-thickness ratios and four values of 
the ratio hf/h. Through the three examples for buckling analysis, the present theory based on the FEM and BIEM shows 
good agreement with all comparison results. The difference between FEM and BIEM is not significant for buckling analy-
sis.
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Table 6
Biaxial critical buckling load of three-layer [0/90/0] simply supported square plate with various modulus ratios (a/h = 10).

Method E1/E2

10 20 30 40

FEM-LW (present) 4.9148 7.4428 8.8531 10.0238
BIEM-LW (present) 4.9153 7.4430 8.8532 10.0238
FEM-FSDT [67] 4.963 7.588 8.575 10.202
FEM-HSDT [64] 4.963 7.516 9.056 10.259

Table 7
Biaxial critical buckling load of three-layer [0/90/0] simply supported square plate with various ratios a/h (E1/E2 = 40).

Method a/h

2 5 10 15 20

FEM-LW (present) 1.5389 5.4827 10.0238 12.0841 13.0853
BIEM-LW (present) 1.5389 5.4827 10.0238 12.0840 13.0873
Meshfree-HSDT [62] 1.457 5.519 10.251 12.239 13.164
Meshfree-FSDT [62] 1.419 5.484 10.189 12.213 13.132
FEM-HSDT [64] 1.465 5.526 10.259 12.226 13.185

Table 8
Non-dimensional critical buckling load of an eleven-layer simply supported sandwich square plate.

a/h Method hf/h

0.025 0.05 0.075 0.1

10 FEM-LW (present) 2.2465 3.7551 4.8457 5.6956
BIEM-LW (present) 2.2499 3.7565 4.8471 5.6953
Elasticity [51] 2.2081 3.7385 4.8307 5.6721
FEM-HSDT [68] 2.2122 3.7499 4.8643 5.7100
FEM-FSDT [68] 2.2043 3.8662 5.2650 6.4930
FEM-LW [69] 2.2592 3.7402 4.7850 5.5618
CFS-LW [69] 2.2639 3.7649 4.8302 5.6255

20 FEM-LW (present) 2.5235 4.6557 6.3991 7.8867
BIEM-LW (present) 2.5481 4.6539 6.4116 7.9149
Elasticity [51] 2.5534 4.6460 6.4401 7.9352
FEM-HSDT [68] 2.5536 4.6756 6.4528 7.9512
FEM-FSDT [68] 2.5437 4.7128 6.6156 8.2984
FEM-LW [69] 2.5885 4.7028 6.4604 7.9316
CFS-LW [69] 2.5660 4.6817 6.4428 7.9184

4.3. Free vibration analysis

4.3.1. Square laminated plates
A four-layer [0/90/90/0] simply-supported square plate is first considered. In this case, the material III is used. The non-

dimensional frequency is defined by � = (ωa2/h)(ρ/E2)
1/2, where ρ and E2 are the mass density and the elastic modulus 

of the material in the second direction, respectively. The non-dimensional first frequency of a four-layer cross-ply plate with 
various length-to-thickness a/h and elastic modulus E1/E2 ratios are computed in Table 9 and Table 10, corresponding with 
fixed a/h and E1/E2 ratios, respectively. The numerical results are compared with those given by Kdheir [69] and Reddy 
[47] based on an analytical approach and HSDT, respectively, Liew et al. [44] based on a differential quadrature method 
(DQM) and FSDT, Ferreira [71,72] based on the meshfree method and FSDT, Zhen and Wanji [73] based on a triangle FEM 
and global–local higher order theory (GLHOT), Whu and Chen [74] based on a Fourier series expansion method (FSEM) and 
local higher order theory (LHOT), Matsunaga [75] based on the power series expansion and GLHOT and Cho et al. [76] based 
on an exact solution and layerwise theory. Good agreement is found for two cases of various length-to-thickness and elastic 
modulus ratios. Again, the difference between FEM and BIEM is not significant for the free vibration analysis. In the next 
example, the BIEM will be therefore exploited.

4.3.2. Elliptical plates
In the previous examples, we only present geometries of square plates. Several complex geometries are chosen to illus-

trate the effectiveness of the present solution for the free vibration analysis. In this example, let us consider a three-layer 
[0/90/0] laminated elliptical plate subjected to fully clamped boundary, as shown in Fig. 6a. Two radii of the elliptical plate 
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Table 9
A first non-dimensional frequency of four-layer simply supported square plate (a/h = 5).

Method-theory E1/E2

10 20 30 40

FEM-LW (present) 8.2797 9.5461 10.3036 10.8308
BIEM-LW (present) 8.2797 9.5461 10.3036 10.8308
Meshfree-FSDT [72] 8.2526 9.4974 10.2308 10.7329
Meshfree-FSDT [71] 8.2794 9.5375 10.2889 10.8117
DQM-FSDT [49] 8.2924 9.5613 10.3200 10.8490
Exact-HSDT [70,47] 8.2982 9.5671 10.3260 10.8540

Table 10
A first non-dimensional frequency of a four-layer simply supported square plate (E1/E2 = 40).

Method-theory a/h

4 5 10 20 25 50 100

FEM-LW (present) 9.3768 10.8308 15.1260 17.6535 18.0685 18.6732 19.0161
BIEM-LW (present) 9.3768 10.8308 15.1258 17.6528 18.0679 18.6826 18.8698
FEM-GLHOT [73] 9.2406 10.7294 15.1658 17.8035 18.2404 18.9022 19.1566
Fourier-LHOT [74] 9.193 10.682 15.069 17.636 18.055 18.67 18.835
FSEM-GLHOT [75] 9.1988 10.6876 15.0721 17.6369 18.0557 18.6702 18.8352
Exact-LW [76] – 10.673 15.066 17.535 18.054 18.67 18.835

Fig. 6. Geometry and an element mesh of a clamped ellipse plate.

Table 11
First six non-dimensional frequencies of a three-layer fully clamped ellipse plate.

a/h Method Modes

1 2 3 4 5 6

5 BIEM-LW (present) 13.9384 19.6699 26.7346 28.2542 34.2643 34.6352
IGA-LW-FSDT [43] 14.157 19.969 27.114 28.855 34.943 35.062

10 BIEM-LW (present) 17.0868 25.5616 36.8043 38.8165 48.6416 50.1563
IGA-LW-FSDT [43] 17.184 25.714 36.982 39.196 49.148 50.259

20 BIEM-LW (present) 18.3297 28.2994 42.4716 44.3539 57.0571 60.5981
IGA-LW-FSDT [43] 18.3290 28.28 42.255 44.321 57.09 59.827

100 BIEM-LW (present) 18.9411 29.6709 45.9757 47.6794 61.8970 68.5993
IGA-LW-FSDT [43] 18.755 29.332 44.792 46.508 60.792 65.6230
EFG (CLPT) [50] 18.8100 29.5800 44.9900 46.7200 61.3400 65.1400

are chosen equal to a = 5 and b = 2.5, respectively. Material III is used. The non-dimensional frequencies are given by 
� = (ωa2)(ρh/D0)

1/2, where D0 = E1h3/12(1 − ν12ν21). Fig. 6b plots a mesh elliptical plate. In this example, an analytical 
solution is not available. Therefore, the obtained results are compared with other numerical solutions. Table 11 shows the 
first six non-dimensional frequencies of the elliptical plate with various radius-to-thickness ratios. The numerical results are 
compared with those given by Chen et al. [50] based on a meshfree method and CLPT, Thai et al. [43] based on an IGA 
and layerwise theory with assumed FSDT for every layer. It can be seen that a good agreement is obtained for all values 
of the radius-to-thickness ratio. From Table 11 it can be remarked that non-dimensional frequencies obtained from the 
present solution are smaller than in [43] for the thick plate (e.g., a/h = 5 and 10). The opposite results are obtained for 
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Fig. 7. The first six mode shapes of a three-layer fully clamped ellipse plate with a/h = 5.

the thin plate (a/h = 100). The first six mode shapes of a three-layer fully clamped laminated elliptical plate are plotted in 
Fig. 7.

4.3.3. A plate with a complicated cutout
Finally, a three-layer [0/90/0] simply supported square plate with a complicated cutout is studied, as shown in Fig. 8a. 

Fig. 8b plots the eight patches of the plate. The coarse mesh (8 × 1 × 1 elements) and medium mesh (40×5×5 elements) 
are drawn in Fig. 9. The material properties and the normalized frequencies are the same as those of example 4.3.2, where 
a is the length of the plate. The thickness of plate is taken as h = 0.06.

The first six normalized frequencies are given in Table 12. The obtained results are compared with those reported by 
Shojaee et al. [77] based on an IGA (quadratic and cubic elements). It is observed from Table 12 that the present solution 
matches well with other solutions. The first six mode shapes of the square plate with a complicated cutout are plotted in 
Fig. 10.
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Fig. 8. The dimension of a plate and eight patches.

Fig. 9. a) Coarse mesh and b) medium mesh of square plate with complicated shape hole.

Table 12
Comparisons of the first six non-dimensional frequencies of a simply supported plate with cut-out complicated shape.

Method Modes

1 2 3 4 5 6

BIEM-LW (present) 18.1997 31.0235 36.0375 56.6368 62.5934 84.6196
IGA-FSDT-Q [77] 18.284 31.267 35.713 55.567 62.892 82.631
IGA-FSDT-C [77] 18.190 31.087 35.655 55.452 62.582 82.383

5. Conclusions

We presented a generalized layerwise C0-type HSDT for the analysis of laminated composite plates. The proposed layer-
wise theory made no changes in the number of degrees of freedom when increasing the number of lamina layers. It only 
required the C0-continuity of transverse displacement field and confirmed to the traditional finite element method. The 
number of independent variables in the present theory is similar to that in the C0-type HSDT, but it is capable of achieving 
a better accuracy of inner layer shear stresses. In addition, a penalty approach is utilized to add the artificial constraints 
into the PVD. Two numerical methods, i.e. the FEM and Bezier isogeometric element method, were used to investigate the 
present theory through numerical examples with different geometric, aspect ratios, stiffness ratios, number of layer and 
boundary conditions. From the obtained results, it can be concluded that the proposed theory is very suitable for static, free 
vibration, and buckling analyses of the laminated composite and sandwich plates. Moreover, the shear stresses through the 
plate thickness are equivalent to those calculated using the equilibrium equation.
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Fig. 10. The first six mode shapes of the square plate with a complicated cutout.
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