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Some features od the constitutive behaviour of voided materials taking into account 
possible effects of the Lode angle in the yielding behaviour of the matrix are discussed. 
The Gurson approach is used to this end. After providing a parametric representation of 
the effective behaviour of such materials, some closed-form results are given for pure shear 
stress states and also at very high stress triaxialities. In the former case corresponding to a 
zero macroscopic mean stress, the contour of the yield domain in the π-plane has exactly 
the shape of the yield surface of the matrix in the deviatoric plane, but a size reduced 
by a factor 1 − f , with f the porosity of the voided material. In the latter, effective yield 
stresses for the voided material are slightly different from the Gurson result and found 
to be set by the yield stress at a microscopic stress Lode angle π

3 for very high positive 
triaxiality and by the yield stress at a microscopic stress Lode angle 0 for very high negative 
triaxiality. This last result is extended for porous materials with yielding depending further 
on the hydrostatic stress, fully exhibiting the interaction between volumetric and shear 
interactions on the yielding behaviour of isotropic porous materials. Applications to many 
usual yielding criteria for the matrix are also provided.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

r é s u m é

Les effets du troisième invariant des contraintes sur la surface de charge macroscopique 
d’un matériau ductile poreux sont analysés dans le cadre de l’approche de Gurson. Ces 
effets proviennent du processus d’homogénéisation lui-même à cause de l’hétérogénéité 
des contraintes dans la cellule de Gurson ou encore lorsque le comportement plastique de 
la matrice dépend du troisième invariant des contraintes. On fournit une représentation 
paramétrique de la surface de charge valable pour un comportement de la matrice assez 
général qui permet d’exhiber quelques résultats analytiques, en particulier pour les états 
de contrainte hydrostatiques et pour des états de cisaillement. Les résultats obtenus pour 
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les chargements hydrostatiques sont étendus au cas où la matrice a un comportement 
dépendant aussi de la contrainte hydrostatique.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The paper is concerned with consequences of possible Lode angle effects on the effective properties of plastic porous 
solids. This is undertaken in the framework of the Gurson approach. Effects of the Lode angle appear at two different levels. 
Beside the fact that the matrix behaviour can be dependent on the Lode angle, the latter also enters the homogenization 
process as the stress state in the representative volume cell is heterogeneous. In a recent paper, the author and co-workers 
[1] assessed the effects of the third stress invariant in the yielding of ductile porous solids arising from the latter effect 
by considering a von Mises yielding behaviour for the matrix. This was done by simply avoiding the approximation used 
by Gurson [2] and considering the full expression of the microscopic dissipation. Both effects are considered in this paper, 
the subject of which is the derivation of macroscopic constitutive equations for voided materials with a matrix yielding 
behaviour dependent on both the second and third stress invariants.

Many practical situations call for the consistent introduction of the Lode angle (either in plasticity or fracture). Failure 
under low or negative triaxialities (McClintock [3], Johnson and Cook [4], Bao and Wierzbicki [5], Barsoum and Fakeslog 
[6]) are possible situations. Shear-dominated stress states such as plugging failure in projectile penetration are other exam-
ples [7], and many others can be found in the above references. Nahshon and Hutchinson [8], for instance, amended the 
Gurson model in a phenomenological way by making the evolution of the porosity also dependent on the third invariant of 
the stress. The Lode angle effects have also been included and studied in a consistent way by Danas and Ponte Castaneda [9], 
see also [10], in an alternative approach based on second-order variational homogenization techniques. Other results on the 
inclusion of Lode angle effects can also be found in [11] and [12].

2. Constitutive relations for the matrix

2.1. Notations

We use the following notations. σ and ε̇ denote the microscopic stress and the strain rate in the matrix while the 
macroscopic stress and strain rate are called respectively � and Ė. The invariants of the microscopic stress tensor are the 
hydrostatic stress σm, the von Mises equivalent stress σeq and the stress Lode angle ω respectively defined by

σm = 1

3
σii, σeq =

√
3

2
si j si j and ω = 1

3
arccos

(
27

2

det s

σ 3
eq

)
(1)

where s is the stress deviator and repeated summation is used. The invariants for the macroscopic stress are defined exactly 
in the same way and denoted by �m, �eq and �. We also use the invariants of the microscopic strain rate tensor ε̇ defined 
similarly by

ε̇m = 1

3
ε̇ii, ε̇eq =

√
2

3
ε̇i j ε̇i j and ζ = 1

3
arccos

(
4 det ε̇

ε̇3
eq

)
(2)

and those of the macroscopic strain rate Ė denoted Ėm, Ėeq and η. We have then

� = �m1 + 2

3
�eq

⎛
⎝ cos� 0 0

0 cos(� − 2π
3 ) 0

0 0 cos(� + 2π
3 )

⎞
⎠ and

Ė = Ėm1 + Ėeq

⎛
⎝ cosη 0 0

0 cos(η − 2π
3 ) 0

0 0 cos(η + 2π
3 )

⎞
⎠ (3)

and exactly the same forms for σ and ε̇ .
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2.2. Yield function and flow rule

In all the paper, the constitutive behaviour of the matrix of the porous solid is considered as incompressible, isotropic, 
and rigid-plastic. This section makes it more precise. The yielding of the matrix is described by a yield function f positive 
and homogeneous of degree one in the stress of the form

f (σ ) − σ0 = σeq g(ω) − σ0 ≤ 0 (4)

where ω is the Lode angle of the microscopic stress tensor defined in (1). The function g(ω), which describes possible 
effects of the third invariant of stress on yielding can be normalized in a number of ways (for instance by g(0) = 1, in which 
case σ0 is the yield limit in uniaxial tension). An important requirement for the yield surface is its convexity. Relation (4)
represents a cylindrical surface, the axis of which is the hydrostatic axis in the principal stress frame. Therefore its convexity 
is governed by the convexity of its cross section in the deviatoric plane as this section is constant along the hydrostatic 
stress. In a polar reference system in this deviatoric plane, the equation of the yield surface is σeq(ω) = σ0

g(ω)
= ρ(ω). The 

convexity condition is therefore ρ2 + 2(ρ ′)2 − ρρ ′′ ≥ 0, and consequently g must satisfy the following condition

g(ω) + g′′(ω) ≥ 0 (5)

The yield surface is also considered smooth in all the paper for the sake of simplicity. But, as will be seen later, non-
smooth usual yield surfaces can be considered by a limiting process. Alternatively, if wished, the non-smoothness can be 
directly included at the expense of more complicated calculations. With this assumption at hand, using normality as the 
flow rule, the strain rate is obtained by

ε̇ = λ
∂ f

∂σ
(6)

where
∂ f

∂σ
= 3

2
g(ω)

s

σeq
+ σeq g′(ω)

∂ω

∂σ
(7)

and the gradient of the Lode angle with respect to the stress is given by

∂ω

∂σ
= − 9

2σeq sin 3ω

[(
s.s

σ 2
eq

− 2

9
1

)
− 1

3
cos 3ω

s

σeq

]
(8)

where 1 is the second-order unit tensor. We note that the gradient ∂ω
∂σ as given by (8) is always singular at ω = 0 and ω = π

3
(axisymmetric states of stress) so that the gradient of the yield function with respect to the stress is so unless (see (7))

g′(0) = g′(π
3
) = 0 (9)

conditions that we will assume throughout the paper. When these conditions are not met, the yield surface has a vertex (or 
an edge) at these two locations. Due to the isotropy of the matrix behaviour, the yield surface has either a six- or three-fold 
symmetry, and therefore one can limit the range of ω to [0, π3 ]. To guarantee the smoothness of the yield surface, we as-
sume, beside conditions (9), that the function g is itself continuously differentiable in the whole range [0, π3 ]. Consideration 
of non-smooth yielding behaviour can be handled directly at the expense of more complex developments, but can also be 
studied by a limiting process from our results.

2.3. Two examples

Other examples can be considered (see, e.g., [13]); we will illustrate our forthcoming results through two examples. 
These are:

– the Hosford–Dalgren–Hershey [14,15] yield surface, currently used for a better description of yielding and forming of 
aluminium alloys. This corresponds, with m ≥ 1 and with σi , i = 1, 2, 3, denoting the ordered microscopic principal 
stresses, to the yield function

f (σ ) =
[

1

2
{(σ1 − σ2)

m + (σ2 − σ3)
m + (σ1 − σ3)

m}
] 1

m = σeq g(ω) (10)

which can be written it in the form (4) with the choice

g(ω) = 2

3

[
1

2
{(cosω − cos (ω − 2π

3
))m + (cos (ω − 2π

3
) − cos (ω + 2π

3
))m + (cosω − cos (ω + 2π

3
))m}

] 1
m

(11)
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Table 1
Representation of the usual yield criteria by the yield function f given in (13) and (14).

Criterion k χ α β

von Mises σ0 0 0 π
6

Tresca σ0 1 0 π
6

Drucker–Prager 0 0 0 0

Mohr–Coulomb
√

2c cos ψ√
1+3 sin ψ

1
√

2 sin ψ√
1+3 sin ψ

arctan [√3 1−sin ψ
3+sin ψ

]

It is easily checked now that as required, conditions (9) are satisfied for all finite m �= 1. Moreover, m = 2 and m = 4
correspond to the von Mises criterion, while the Tresca yield function is obtained in the limiting case m → ∞ or m → 1. 
Indeed, for this last case corresponding to the Tresca criterion, one gets

g(ω) = 2

3
(cosω − cos (ω − 2π

3
)) = cos (ω − π

6
) (12)

so that g′(0) = 1
2 and g′( π

3 ) = − 1
2 and therefore violating conditions (9);

– the second one (see, e.g., [16]), which is only used at the end of the paper, has the merit of unifying in one sim-
ple expression most of the usual yield criteria and allows us to include effects of pressure sensitivity on yielding. 
The analysis is however limited to pure shear and pure hydrostatic loadings, general loadings for this type of ma-
terials being much more complicated and out of the scope of this paper. This corresponds to the following yield 
function

f (σ ) = σeq (ω) + 3ασm ≤ k (13)

with

g(ω) = cos

[
1

3
arccos [χ cos (3ω)] − β

]
(14)

where α, χ and β are constant parameters allowing us to obtain the main usual criteria as shown in Table 1. In 
this Table, for the von Mises and Tresca criterion, σ0 is the yield stress in uniaxial tension, while for the Drucker–
Prager and Mohr–Coulomb criteria, c and ψ are respectively the cohesion intercept and the internal friction an-
gle.

Here also, one can check for conditions (9). First-order expansions of g′(ω) in terms of ω around ω = 0 and ω = π
3 give, 

respectively,

g′(ω) = 3χω sin
(
β − 1

3 arccos(χ)
)

√
1 − χ2

+ O
(
ω3
)

(15)

g′(ω) = 3χ
(
ω − π

3

)
cos

(
β + 1

3 arccos (χ) + π
6

)
√

1 − χ2
+ O

((
ω − π

3

)3
)

(16)

from which it is clearly seen that, for all situations where χ �= 1, we have g′(0) = g′( π
3 ) = 0 and the yield surface given by 

(13) and (14) is smooth. Remains the case χ = 1. A first-order expansion in terms of χ around χ = 1 reads

g′(ω) = sin(β − ω) + (χ − 1)

(
1

3
cot(3ω) cos(β − ω) + csc2(3ω) sin(β − ω)

)
+ O

(
(χ − 1)2

)
(17)

Expansions of the zeroth and first-order terms in (17) in terms of ω around ω = 0 and ω = π
3 are obtained respectively as

(χ − 1) sin(β)

9ω2
+ 1

18
(7χ + 11) sin(β) − 1

27
ω((19χ + 8) cos(β)) + O

(
ω2
)

(18)

− (χ − 1) cos
(
β + π

6

)
9
(
ω − π

3

)2
− 1

18
(7χ + 11) cos

(
β + π

6

)
− 1

27

(
ω − π

3

)(
(19χ + 8) sin

(
β + π

6

))

+O

((
ω − π

3

)2
)

(19)

and one concludes that when χ = 1, we have

g′(0) = sinβ and g′(π
) = − cos (β + π

) (20)

3 6
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For the Tresca yield function that corresponds to χ = 1 and β = π
6 (see Table 1), we recover the results obtained with the 

Hosford yield expression described above, namely that g′(0) = sin π
6 = 1

2 and g′( π
3 ) = − cos( π

3 ) = − 1
2 .

For the Mohr–Coulomb criterion corresponding to χ = 1 and β = arctan [√3 1−sin ψ
3+sin ψ

], we have

g′(0) = sin

(
arctan [√3

1 − sinψ

3 + sinψ
]
)

and g′(π
3
) = − cos

(
arctan [√3

1 − sinψ

3 + sinψ
] + π

6

)
(21)

2.4. The dissipation function π(ε̇)

The maximum dissipation function, which we denote by π, is important in the derivation of the effective behaviour, as 
we will see in the next section. The maximum dissipation is defined by

π(ε̇) = sup
σ∈C

σ : ε̇ (22)

where C = {σ/ f (σ ) ≤ 0} due to the convexity of the yield function f , the function π(ε̇) is obtained for every ε̇

π(ε̇) =
{

πg(ε̇) if T r(ε̇) = 0
+∞ if T r(ε̇) �= 0

(23)

πg(ε̇) is obtained by seeking all stress states σ ∗ lying on the yield surface, i.e. f (σ ) = σ0 and satisfying

ε̇ = λ
∂ f

∂σ
(σ ∗) (24)

for some positive scalar λ. This leads to

π(ε̇) = σ ∗ : ε̇ (25)

For such stress states, we have, using the fact that f is homogeneous of degree one,

σ ∗ : ε̇ = λσ ∗ : ∂ f

∂σ
= λ f (σ ∗) = λσ0 (26)

The plastic multiplier λ is obtained from the flow rule (6) by

λ = ε̇eq√
2
3

∂ f
∂σ : ∂ f

∂σ

(27)

To express it fully in terms of the strain rate ε̇ , the denominator in (27) is written, using relations (7) and (8),√
2

3

∂ f

∂σ
: ∂ f

∂σ
=
√

g2(ω) + (g′(ω))2 (28)

where we recall that ω is the Lode angle of the microscopic stress σ . Observe that this expression is therefore dependent 
only on the Lode angle ω of the microscopic stress tensor.

We show now that ω is in fact dependent only on the Lode angle ζ of the microscopic strain rate ε̇ defined in (2). To 
this end, we have

cos 3ζ = 4
det ε̇

ε̇3
eq

=
[

g(ω)(g2(ω) − 3(g′(ω))2
]

cos 3ω + [g′(ω)((g′(ω))2 − 3g2(ω))
]

sin 3ω[
g2(ω) + (g′(ω))2

] 3
2

(29)

leading to

cos 3ζ = cos 3(ω − α) and therefore ζ = ω − � (30)

where the angle � is given by

tan 3� = g′(ω)((g′(ω))2 − 3g2(ω))

g(ω)(g2(ω) − 3(g′(ω))2)
(31)

We also emphasize, at this stage, that the angle � in (31) is the angle between the strain rate and the stress deviators in 
the deviatoric plane. Use of the formulae cos 3� = 4 cos3 � − 3 cos� and sin 3� = −4 sin3 � + 3 sin� , one finds that

sin� = − g′(ω)√
2 ′ 2

and cos� = − g(ω)√
2 ′ 2

(32)

g (ω) + (g (ω)) g (ω) + (g (ω))
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and allows us through (1) to get

ζ(ω) = ω − α(ω) = ω + arctan
g′(ω)

g(ω)
(33)

This gives an implicit relation between ζ and ω, the solution to which gives the relation ω(ζ ). An important issue here is 
seen from the derivative of ζ(ω), given by

ζ ′(ω) = g(ω)
(

g′′(ω) + g(ω)
)

g′(ω)2 + g(ω)2
(34)

and which is always positive thanks to the convexity of the yield surface and to relation (5). The function ζ(ω) is therefore 
invertible, and one can consequently define ω(ζ ) without any ambiguity. ω(ζ ) is then an increasing function of ζ . Note for 
further reference that the derivative ω′(ζ ), obtained as the derivative of an inverse function, is given by

ω′(ζ ) = 1

ζ ′(ω)
= 1

ζ ′(ω(ζ ))
(35)

and that the function ω(ζ ) is obtained from ζ(ω) by a symmetry with respect to the bisector in the plane (ζ, ω). This 
concludes the determination of the function π, and from (25), (26), (27), (28) we have

π(ε̇) = σ0
ε̇eq√

g2(ω(ζ )) + (g′(ω(ζ )))2
= σ0ε̇eqG(ζ ) (36)

where it is understood that ζ(ε̇) is dependent only on the strain rate ε̇ .
Let us note that when σ ∗ is axisymmetric (ω = 0 or ω = π/3), so is ε̇ . Therefore, by construction of the function ω(ζ ), 

we have

ω(0) = 0 and ω(π/3) = π/3 (37)

The function G(ζ ) defined in (36) plays the same role as g(ω) and satisfies, using relations (36), (37) and (9)

G ′(0) = G ′(π/3) = 0 (38)

The dissipation π(ε̇) is convex as (using exactly the same arguments as for the yield function f )

G(ζ ) + G ′′(ζ ) =
(

g′(ω(ζ ))2 + g(ω(ζ ))2
)3/2

g(ω(ζ ))3 (g′′(ω(ζ )) + g(ω(ζ )))
(39)

is positive. It is also homogeneous of degree one in the strain rate ε̇ . As the function g , G is homogeneous of degree zero.

3. Constitutive relations for voided materials with Lode-angle-dependent matrix behaviour

In his work, Gurson [2] proposed an approximate yield criterion for voided materials using a limit analysis approach of a 
hollow sphere cell with radius b and a void with radius a. More specifically, he used a simple incompresssible rigid-plastic 
constitutive behaviour for the matrix satisfying the von Mises criterion. To obtain the approximate yield criterion, Gurson 
used in the upper bound theorem of limit analysis a particular trial field ε̇(Ė) satisfying compatibility and boundary condi-
tions corresponding to prescribed macroscopic rates of deformation Ė at the boundary of the hollow sphere. By bounding 
the macroscopic dissipation from above, Gurson was able to calculate upper bounds to the macroscopic stresses required to 
sustain the plastic flow, and these upper bound macroscopic stresses for the considered cell geometry and for a range of 
macroscopic deformation rates allow us to construct an upper bound yield locus for the porous material. These stresses are 
defined by

� = ∂�

∂ Ė
(40)

with

�(Ė) = 1

V

∫
V

π(ε̇(Ė))dV (41)

where π(ε̇) is the microscopic dissipation defined in section 2. The same approach with the same trial velocity field is 
followed here, but with the matrix behaviour governed by the constitutive equations described in section 2.
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3.1. Stress invariants and some general consequences

When the macroscopic dissipation �(Ė) (41) depends on the three invariants Ėm, Ėeq, det Ė′ of the macroscopic strain 
rate Ė, we have shown (see [1]) that relation (40) leads to

�m = 1

3

∂�

∂ Ėm
(42)

�′ = 2

3

∂�

∂ Ėeq

Ė′

Ėeq
− 4

3Ėeq sin 3η

∂�

∂η

[(
Ė·Ė
Ė2

eq
− 1

2
1

)
− 1

2
cos 3η

Ė

Ėeq

]
(43)

We note here that (43) leads to a singularity for η = 0 and η = π
3 unless ∂�

∂η |η=0 = ∂�
∂η |η= π

3
= 0. This is actually the 

case with the assumptions adopted here, the microscopic dissipation π(ε̇) being non singular, the trial field being linear in 
terms of the macroscopic strain rate, so that the stress is continuous and the macroscopic dissipation is a smooth function 
at η = 0 and η = π

3 . This gives incidentally η = 0 → � = 0 and η = π
3 → � = π

3 .
The second of these relations gives

�eq =
√

3

2
�′ : �′ =

√
U 2 + V 2 (44)

det�′ = 2

27

[
U
(

U 2 − 3V 2
)

cos 3η − V
(

V 2 − 3U 2
)

sin 3η
]

(45)

where we have set

U = ∂�

∂ Ėeq
and V = 1

Ėeq

∂�

∂η
(46)

Alternatively, (44) and (45) allow us to calculate the Lode angle � of the macroscopic stress � as

cos 3� = U
(
U 2 − 3V 2

)
cos 3η − V

(
V 2 − 3U 2

)
sin 3η(

U 2 + V 2
)3/2

= cos 3(η + �) (47)

using the angle � defined by

tan 3� = V
(

V 2 − 3U 2
)

U
(
U 2 − 3V 2

) or tan� = V

U
=

1
Ėeq

∂�
∂η

∂�

∂ Ėeq

(48)

leading to

� = η + � = η + arctan
U

V
(49)

� is then the angle between the macroscopic stress deviator S and the macroscopic strain rate deviator E′ in the deviatoric 
plane (the same plane is used to represent both quantities).

3.2. The trial field and the macroscopic dissipation

The strain rate associated with the trial velocity field used by Rice and Tracey [17] and Gurson [2] is given by

ε̇ = Ė′ + λĖm(1 − 3 er ⊗ er) (50)

where Ė′ and Ėm are the deviatoric and volumetric components of the macroscopic strain rate while er is the unit vector in 
the radial direction, 1 the second order unit tensor and λ = b3

r3 . For this field, we have

ε̇eq = Ėeq

√
1 − 4μλH + 4H2λ2 (51)

and its associated Lode angle ζ reads (using relation (2))

cos 3ζ = 4 det ε̇

ε̇3
eq

= cos 3η + 6(1 − 2δ)λH + 12μλ2 H2 − 8λ3 H3

(1 − 4μλH + 4H2λ2)
3
2

(52)

where we have introduced the ratio H of the volumetric to the effective macroscopic strain rates (strain rate triaxiality)

H = Ėm

Ė
(53)
eq
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and the parameters μ and δ are given by

μ = eT
r · Ė′ · er

Ėeq
= Ėrr

Ėeq
= 1

2

[
−√

3 sinη cos 2θ sin2 φ + 1

2
cosη(3 cos 2φ + 1)

]
(54)

δ = eT
r · (Ė′)2 · er

Ėeq
= 1

8

(
−2

√
3 sin(2η) cos(2θ) sin2(φ) + cos(2η)(3 cos(2φ) + 1) + 4

)
(55)

3.3. Parametric representation of the yield criterion

With the representative cell of Gurson [2], i.e. a hollow sphere cell with external radius b and a void with radius 
a, denoting the porosity by f = a3

b3 , one uses a spherical coordinate spherical system (r, θ, φ) and the variable change 

λ = b3

r3 = 1
x , with d� = sinϕdθdϕ , so that any integral over the volume of the cell V is obtained by:

1

V

∫
V

(.)dV = 1

4π

1
f∫

1

∫
�

(.)
dλd�

λ2
(56)

Substituting the expression of the microscopic dissipation π given by (36) in the macroscopic dissipation �(Ė), and after 
some algebraic manipulations, relations (42) and (46) become

�m

σ0
= 1

6π

1
f∫

1

∫
�

G(ζ ) [2λH − μ]√
1 − 4μλH + 4H2λ2

dλd�

λ
+

1

6π

1
f∫

1

∫
�

1

sin 3ζ

g′(ω(ζ ))G(ζ )

g((ζ ))

[
1 − 2δ + 4λHμ − 4λ2 H2

1 − 4μλH + 4H2λ2
−

(cos 3η + 6(1 − 2δ)λH + 12μλ2 H2 − 8λ3 H3)(2λH − μ)

(1 − 4μλH + 4H2λ2)2

]
dλd�

λ
(57)

U

σ0
= 1

4π

1
f∫

1

∫
�

G(ζ ) [1 − 2μλH]√
1 − 4μλH + 4H2λ2

dλd�

λ2
+

σ0

4π

1
f∫

1

∫
�

1

sin 3ζ

g′(ω(ζ ))G(ζ )

g(ω(ζ ))

[
cos 3η − 4Hλ(1 − 2δ) + 4μλ2 H2

1 − 4μλH + 4H2λ2
−

(cos 3η + 6(1 − 2δ)λH + 12μλ2 H2 − 8λ3 H3)(1 − 2λHμ)

(1 − 4μλH + 4H2λ2)2

]
dλd�

λ2
(58)

V

σ0
= σ0 H

2π

1
f∫

1

∫
�

G(ζ )
[
− ∂μ

∂η

]
√

1 − 4μλH + 4H2λ2

dλd�

λ
+

σ0

4π

1
f∫

1

∫
�

1

sin 3ζ

g′(ω(ζ ))

g(ω(ζ ))
G(ζ )

[− sin 3η − 4Hλ( ∂δ
∂η ) + 4H2λ2(

∂μ
∂η )

1 − 4μλH + 4H2λ2
+

2Hλ(cos 3η + 6(1 − 2δ)λH + 12μλ2 H2 − 8λ3 H3)
∂μ
∂η

(1 − 4μλH + 4H2λ2)2

]
dλd�

λ2
(59)

In the absence of Lode angle effects in the yield behaviour of the matrix and after integration with respect to λ, the results 
obtained in [1] are recovered.

4. Closed-form results

Though implicit, the parametric representation given above allows us to obtain some exact results. These are summarized 
below, in particular for hydrostatic and shear loadings.



A. Benallal / C. R. Mecanique 346 (2018) 77–88 85
4.1. Shear loadings

When H → 0, it is easily checked that cos 3ζ → cos 3η so that ζ = η. From (57), we have also

�m

σ0
= 1

6π

1
f∫

1

∫
�

−μG(η)

λ
dλd� + 1

6π

1
f∫

1

∫
�

g′(ω(η))G(η)

sin 3ηg(ω(η))
[(1 − 2δ) + μ cos 3η]

dλd�

λ
(60)

and these terms vanish as 
∫
�

μ d� = ∫
�
(1 − 2δ) d� = 0. We further have from (58)

U

σ0
= 1

4π

1
f∫

1

∫
�

G(η)
dλd�

λ2
= (1 − f )G(η) (61)

while from (59)

V

σ0
= − 1

4π

1
f∫

1

∫
�

g′(ω(η))G(η)

g(ω(η))
dx d� = −(1 − f )

g′(ω(η))G(η)

g(ω(η))
(62)

One then gets the effective stress as

�eq

σ0
=
√(

U

σ0

)2

+
(

V

σ0

)2

= (1 − f )

g(ω(η))
(63)

Now using (49), we get with the help of (61) and (62)

� = η + arctan
V

U
= η + arctan

g′(ω(η))

g(ω(η))
(64)

and finally from (33)

� = ω(η) (65)

Inserting this result in (63), one finally obtains

�eq g(�) = (1 − f )σ0 (66)

which is the equation of the section of the effective yield surface in the π-plane which is, up to the size reduction factor 
1 − f , exactly the equation of the yield surface of the matrix in the same plane. The situation is similar to that in the 
Gurson model and actually holds for any matrix yield surface.

4.2. Pure hydrostatic loadings

When H → +∞, i.e. for purely hydrostatic macroscopic strain rates, the macroscopic stress is also purely hydrostatic. 
Indeed, from (52), cos 3ζ → −1 so that ζ → π

3 and therefore from (37) ω(ζ ) → π
3 and g(ω(ζ )) → g( π

3 ). From (57), one gets:

�m

σ0
→ 1

6π

1
f∫

1

∫
�

G(π/3)dλd�

λ
= 1

6π

1
f∫

1

∫
�

dλd�

λ

√
g′( π

3 )2 + g( π
3 )2

= − 2
3 ln f√

g′( π
3 )2 + g( π

3 )2
= − 2

3 ln f

g( π
3 )

(67)

taking into account condition (9). A similar result is obtained when H → −∞. In this case, cos 3ζ → 1 so that ζ → 0 and 
therefore from (37) ω(ζ ) → 0 and g(ω(ζ )) → g(0). One finds:

�m

σ0
→ 1

6π

1
f∫

1

∫
�

G(0)dλd�

λ
=

2
3 ln f√

g′(0)2 + g(0)2
=

2
3 ln f

g(0)
(68)

We also have for H → ∞, using (58) and (59)

U = 1

4π

1
f∫ ∫

G(π/3)(−μ)dλd�

λ2
→ 0 (69)
1 �
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V = 1

4π

1
f∫

1

∫
�

G(π/3)
(−∂μ

∂η

)
λ

dλd� → 0 (70)

as 
∫
�

μ d� = ∫
�

(−∂μ
∂η

)
d� = 0. The same result is obtained when H → −∞.

In both cases, the result slightly differs from that given by Gurson [2] by the term appearing in the denominator, due 
to the dependence of the yield surface of the matrix on the third invariant of stress. Observe here that for high positive 
stress triaxialities (H → ∞), the macroscopic yield stress is set by the microscopic yield stress in compression while for 
high negative stress triaxialities (H → −∞), the macroscopic yield stress is set by the microscopic yield stress in tension. 
This result is a Lode angle effect and can be directly recovered by solving the problem of a hollow sphere constituted of a 
matrix with yielding behaviour as used here and subjected to a uniform macroscopic pressure �m at its external boundary 
r = b. For this situation, the microscopic stress state has the form

σ =
⎡
⎣ σrr 0 0

0 σθθ 0
0 0 σφφ = σθθ

⎤
⎦→ s = 2

3
(σrr − σθθ )

⎡
⎣ 1 0 0

0 − 1
2 0

0 0 − 1
2

⎤
⎦ (71)

so that the Lode angle is constant and takes either the values 0 or π
3 depending on the sign of σrr − σθθ . The equilibrium 

equations read in this case

∂σrr

∂r
+ 2

r
(σrr − σθθ ) = 0 (72)

while the boundary conditions at the inner and outer surfaces of the sphere take the form

σrr(b) = �m d and σrr(a) = 0 (73)

For positive �m, the radial stress is increasing from 0 at r = a to �m > 0 at r = b, so that from the equilibrium equation we 
have

∂σrr

∂r
= −2

r
(σrr − σθθ ) ≥ 0 (74)

implying that (σrr − σθθ ) ≤ 0 and from (71) the corresponding Lode angle is π
3 . For negative �m, the radial stress σrr is 

decreasing from 0 to �m < 0, and a similar reasoning leads to (σrr − σθθ ) ≥ 0 and to a Lode angle equal to 0. The two 
situations can be summarized by

σrr − σθθ = −|σrr − σθθ | sgn(�m) = −σeq sgn(�m)d and ω = 1

3
arccos[− sgn(�m)] (75)

with sgn(x) denoting the sign of x. At the plastic limit load, the plastic zone reaches the external surface of the sphere, the 
yield condition reads everywhere in the cell

σeq g(ω) = |σrr − σθθ |g(ω) = σ0 (76)

so that the equilibrium equation becomes, on using (75) and (76)

∂σrr

∂r
= −2

r
(σrr − σθθ ) = 2

r

sgn(�m)σ0

g( 1
3 arccos [− sgn(�m)]) (77)

Integration with respect to r between a and b gives

�m = 2sgn(�m) ln

(
b

a

)
σ0

g( 1
3 arccos [− sgn(�m)]) = −2

3
sgn(�m) ln f

σ0

g( 1
3 arccos [− sgn(�m)]) (78)

which is the result given above. Indeed, for positive �m, we have (67), while for negative �m, we get (68).

4.3. Extension to materials with matrix yielding dependent on the three stress invariants

It is interesting now to extend the results of this section to porous solids with yielding of the matrix dependent on 
the three stress invariants. We stress it here that the objective here is not to derive full constitutive equations for such 
materials as this is much more complicated than the analysis provided above. Rather we will limit the analysis only to pure 
hydrostatic loadings and provide extension of the results obtained in section 4.2. This will in particular unify the results for 
the usual yield criteria when they are applied to the yield functions (13) and (14). We consider therefore in the following a 
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porous solid whose yielding is given by the yield function (13). For the hydrostatic loadings case, we still have relation (75)
for the difference σrr − σθθ stress, while the hydrostatic stress reads

σm = 1

3
(σrr + 2σθθ ) (79)

Equilibrium is still given by (72), while yielding reads now

σeq g (
1

3
arccos[− sgn(�m)]) + 3ασm = − sgn(�m)(σrr − σθθ ) g (

1

3
arccos[− sgn(�m)]) + α(σrr + 2σθθ ) = σ0 (80)

From the latter relation, one can compute the hoop stress σθθ in terms of the radial stress σrr as

σθθ = σ0 − (α − sgn(�m) g ( 1
3 arccos[− sgn(�m)]))σrr

2α + sgn(�m)g( 1
3 arccos[− sgn(�m)]) (81)

Substitution of this last expression in the equilibrium equation (72) and solving for σrr with the boundary condition 
σrr(a) = 0 leads to

σrr(r) =
σ0

(
1 − ( a

r

) 6α

2α+sgn(�m)g( 1
3 arccos[− sgn(�m)])

)

3α
(82)

from which one obtains the limit load yield point when H → ±∞ by he condition σrr(b) = �m. This gives

�m

σ0
= 1 − f γ

3α
(83)

with

γ = 2α

2α + sgn(�m)g( 1
3 arccos[− sgn(�m)]) (84)

For positive mean stresses, γ = 2α
2α+g( π

3 )
, while for negative mean stresses γ = 2α

2α−g(0)
. From equation (14), we have

g(0) = cos

[
1

3
arccos [χ ] − β

]
, g(

π
3

) = cos

[
1

3
arccos [−χ ] − β

]
(85)

and this gives the macroscopic yield stresses for all materials with this type of yielding. Further, a limit process (as χ → 1) 
allows us to obtain these macroscopic yield stresses for the non-smooth cases such as the Tresca criterion, the Mohr–
Coulomb criterion, but also for a fully triangular yield shape.

A first order expansion of (1) with respect to α gives

�m

σ0
= − 2 log( f )

3g( 1
3 arccos [− sgn(�m)]) − 2α((log( f ) − 2) log( f ))

3g( 1
3 arccos [− sgn(�m)])2

+ O
(
α2
)

(86)

and shows that the result is consistent with the one given above in the limit α → 0. It is also consistent with the results 
provided in [18], [19], and [20]. The result (84) is given in exactly in the same form by [18], but the content of the 
coefficient γ is however different, including beside the coefficient α extra terms coming from Lode angle effects. In the 
revision process, we have learned that results in this direction are also provided in [21] and [22].
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