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A numerical method, based on the design of two artificial neural networks, is presented 
in order to approximate the viscosity and density features of fluids from the eigenvalues 
of the Stokes operator. The finite element method is used to solve the direct problem 
by training a first artificial neural network. A nonlinear map of eigenvalues of the Stokes 
operator as a function of the viscosity and density of the fluid under study is then obtained. 
This relationship is later inverted and refined by training a second artificial neural network, 
solving the aforementioned inverse problem. Numerical examples are presented in order to 
show the effectiveness and the limitations of this methodology.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The Stokes and Navier–Stokes problems appear in many areas of engineering, physics, computational sciences, and ap-
plied mathematics; justifying a wide variety of studies. In the case of viscous fluid with a reduced velocity on simple 
regions, the Stokes model is a valid choice for studying these phenomena. Furthermore, when we solve the incompressible 
Navier–Stokes equations by Newton’s method, the solution to Stokes or Stokes-like problems is required in the associated 
nonlinear iterations, being often the most computationally expensive part of the numerical procedures. As examples of 
works that study the numerical solutions to the Navier–Stokes equation, we can mention Chorin [1] and Tomasset [2].

The practical interest in Stokes problems regarding the eigenvalues and eigenfunctions has a long history in structural 
dynamics where the eigenvalues of a linear structural system correspond to the squares of the natural frequencies (see 
Hughes [3]). Also, it can be used to analyze diffusive problems, where the eigenvalues of the differential system correspond 
to the dissipation rates of distinct eigenfunctions (see Bazilevs et al. [4]). Another problem that can be analyzed through 
the Stokes equation is the study of a plate buckling problem, when it is subject to clamped boundary conditions admitting 
an equivalent formulation in terms of a Stokes problem (see [4], [5], [6] and [7]). In general, the calculation of eigenvalues 
(and eigenfunctions), associated with the Stokes operator in a bounded domain, is a fundamental area of study in fluid 
mechanics. For example, this knowledge can provide some analysis on turbulent instantaneous flow field (see [8]). On the 
other hand, the features of a fluid, such as the viscosity and the density, can be used as important manipulated variables, 
in order to control the dynamics of the fluid under study.
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The use of neural networks to solve partial differential equations is not new, for example in Baymani et al. ([9] and [10]) 
the use of neural networks, in order to solve the Stokes and Navier–Stokes direct problems, is discussed, showing through 
the results that the neural network has a higher accuracy than classical methods. In Girosi et al. [11], the regularization 
problem for the neural networks is discussed and analyzed in detail. More recently, in Ossandón and Reyes [12] and Os-
sandón et al. [13], the authors solve, respectively, inverse eigenvalue problems for the linear elasticity operator and for the 
anisotropic Laplace operator. Also, in Ossandón et al. [14], the authors solve an inverse problem, using a neural network 
approach, in order to calculate the potential coefficients associated with the Hamiltonian operator in quantum mechanics.

In this work, we are interested in solving an inverse eigenvalue problem for the Stokes equation using an Artificial Neural 
Network (ANN) methodology. In other words, we are interested into obtaining the viscosity (ν) and density (ρ) for the fluid 
under study, based on the design of two ANNs (direct and inverse ANNs), as a function of eigenvalues of the Stokes operator. 
The proposed ANNs are multilayered Radial-Basis Function (RBF) networks. The RBF ANN is chosen due to the nature of the 
problem that is analyzed and the features exhibited by the neural network. As discussed in Schilling et al. [15], a RBF ANN 
can approximate a function f using nonlinear functions, which provides an optimal fit to the training data. The design of a 
RBF ANN in its most basic form consists in three layers: input, hidden, and output. Through a backpropagation algorithm, 
the parameters (weights) of the network are optimized in order to fit the input–output data. Let us mention that our final 
purpose is to evaluate the effectiveness (speed and accuracy) of the ANN methodology in comparison with other techniques, 
for a known operator whose eigenvalues can be obtained through more classical numerical methods.

The article is organized as follows: in Section 2, the direct and inverse problems associated with the calculation of the 
eigenvalues of the Stokes operator are presented. In Section 3, the methodology employed, using a FEM technique, to obtain 
a solution for the direct problem is described. On the other hand, Section 4 shows the methodology employed, using a RBF 
ANN, to obtain a solution to the related inverse problem. Numerical results are given in Section 5. Finally, in Section 6, the 
conclusions of this work are presented.

2. The direct and inverse problems

2.1. The direct problem

In this subsection, the mathematical formulation of the time-harmonic direct problem associated with the computation 
of the eigenvalues of the Stokes operator is presented.

The purpose is to solve the following eigenvalue problem: find λ ∈ R and the non-null valued functions (u, p) that are 
solutions to⎧⎪⎪⎪⎨⎪⎪⎪⎩

− ν

ρ
�u + 1

ρ
∇p = λu in �

∇ · u = 0 in �

u = 0 on �

(1)

Let us notice (see [16]) that the only non-null solutions to equations (1) are a countable eigenvalue sequence {λ j} j�1, 
given by

0 < λ1 ≤ λ2 ≤ · · · ≤ λk ≤ . . . such that lim
k→∞

λk = ∞
and the associated eigenfunctions

(u1, p1), (u2, p2), . . . , (uk, pk), . . .

Let us define the following function F�,�,N associated with Eq. (1):

F�,�,N : R+ ×R+ →RN

λd := (λ1, λ2, · · · , λN )T = F�,�,N(ν,ρ)
(2)

In other words, given the values of ν, ρ ∈ R+ , F�,�,N (N ∈ N), for each domain � with its regular boundary �, solves 
the direct problem associated with Eq. (1), calculating the first N eigenvalues of the Stokes operator.

2.2. The inverse problem

Let us consider the following inverse problem associated with (1):
find the values of (ν, ρ) ∈ R+ ×R+ such that the following holds:⎧⎪⎪⎪⎨⎪⎪⎪⎩

− ν

ρ
�ud

n + 1

ρ
∇pd

n = λd
n ud

n in �

∇ · ud
n = 0 in �

ud = 0 on �

(3)
n
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where the desired sequence 
{
λd

n, ud
n, pd

n

}N

n=1
, with n ∈N and n ≤ N < +∞, is given.

Thus, now it is possible to define the function F−1
�,�,N , which is the inverse function of F�,�,N , in order to solve the 

inverse problem associated with Eq. (3):

F−1
�,�,N : RN →R+ ×R+

(ν,ρ) = F�,�,N(λd)
(4)

3. Solution of the direct problem

3.1. Variational formulation

Hereafter we will use the standard notation (see [17] and [18]) for the Sobolev spaces Hr(�) (standard interpolation 
spaces for real numbers r) and their associated inner products (·, ·)r , norms ‖·‖r and seminorms |·|r for r ≥ 0. The Sobolev 
space H0(�) coincides with L2(�), in which case the norm and inner product are denoted by ‖·‖ and (·, ·), respectively. In 
addition, the subspace of L2(�), denoted by L2

0(�), consists of the functions on L2(�) having mean value zero. We also use 
the vector valued functions [Hr(�)]2 just as in [17] and [19].

Let us consider the eigenvalue problem for the Stokes system with homogeneous boundary conditions given in the above 
equations (1). The corresponding weak formulation is given by: find (λ, u, p) ∈ (R, V, W ) such that{

a(u,v) − b(v, p) = λ (u,v) ∀v ∈ V

b(u,q) = 0 ∀q ∈ W
(5)

where V = [H1(�)]2, W = L2
0(�) and

a(u,v) :=
∫
�

ν

ρ
∇u · ∇ v dx

b(v, p) :=
∫
�

1

ρ
div v p dx

By introducing the bilinear form

B((u, p), (v,q)) := a(u,v) − b(v, p) + b(u,q),

the problem (5) can be written in a variational form as follows: find (λ, u, p) ∈ (R, V, W ) such that

B((u, p), (v,q)) = λ (u,v) ∀(v, p) ∈ V × W (6)

which has a unique solution given by the properties described above. Moreover, the following Rayleigh quotient expression 
holds for each eigenvalue λ:

λ = a(u,u)

(u,u)
(7)

3.2. Discretization

Let {Th}h>0 be a regular family of triangulations of �, made up of triangles T of diameter hT , such that h := sup
T ∈Th

hT

and � = ⋃ {T : T ∈ Th}. Associated with the mesh Th , we select finite elements spaces Vh ⊂ V and Wh ⊂ W of piecewise 
polynomials of degree k. Let us assume that the polynomial space Pk , with k ≥ 1, is used for the construction of Vh , and 
that Pk−1 is used for the construction of Wh . The two finite element spaces Vh and Wh are assumed to satisfy the following 
approximation:⎧⎪⎨⎪⎩

inf
vh∈Vh

(‖u − v‖0 + h ‖u − v‖1) ≤ C hm+1 ‖u‖m+1 , 0 ≤ m ≤ k

inf
qh∈Wh

‖p − q‖0 ≤ C hm ‖p‖m , 0 ≤ m ≤ k
(8)

for any u ∈ [Hm+1(�)]2 and p ∈ Hm(�). Since the finite element spaces are subspaces of [H1
0(�)]2, the functions in Vh are 

continuous and k ≥ 1.
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Now, Let us consider the discrete Stokes eigenvalue problem: find (λh, uh, ph) ∈ (R, Vh, Wh) such that{
a(uh,vh) − b(vh, ph) = λh (uh,vh) ∀vh ∈ Vh

b(uh,qh) = 0 ∀qh ∈ Wh
(9)

If the pair of finite element spaces Vh and Wh satisfies the Babuska–Brezzi condition

inf
0 �=qh∈Wh

sup
0 �=vh∈Vh

b(vh,qh)

‖vh‖1 ‖qh‖0
≥ C > 0 (10)

the eigenvalue approximation of λh and the corresponding eigenfunction approximation (uh, ph) are bounded as follows 
(see [17], [5], [19]):

|λ − λh| ≤ C

(
inf

vh∈Vh

‖u − vh‖1 + inf
qh∈Wh

‖p − qh‖0

)2

(11)

‖u − uh‖0 + h ‖u − uh‖1 ≤ C h

(
inf

vh∈Vh

‖u − vh‖1 + inf
qh∈Wh

‖p − qh‖0

)
(12)

‖p − ph‖0 ≤ C

(
inf

vh∈Vh

‖u − vh‖1 + inf
qh∈Wh

‖p − qh‖0

)
(13)

Finally, as explained previously, from (9) we know that the Rayleigh quotient for each eigenvalue λh is given by:

λh = a(uh,uh)

(uh,uh)
= F�,�,N(ν,ρ) (14)

Also, from [16] we know that the Stokes eigenvalue problem (9) has a finite sequence of eigenvalues {(λh) j}N
j=1, given by:

0 < (λh)1 ≤ (λh)2 ≤ · · · ≤ (λh)k ≤ · · · ≤ (λh)N

and the associated eigenfunctions

(uh, ph)1, (uh, ph)2, . . . , (uh, ph)k, . . . , (uh, ph)N

4. Solution of the inverse problem using ANN

In this section, our purpose is to give an approximation of the inverse function F−1
�,�,N using a RBF ANN.

4.1. RBF ANN approximation

In order to obtain an approximation of the direct function F�,�,N , we will consider a first RBF ANN (see Schilling et al 
[15]) F̂ θ1

�,�,N :R+ ×R+ →RN , with one hidden layer containing s1 neurons and one output layer containing N neurons. Let 
us notice that the transfer (or activation) function associated with each neuron has the following form: y = exp{−x2}.

The function F̂ θ1
�,�,N is characterized by

λ̂
d = F̂ θ1

�,�,N(ν,ρ) = L1
W · exp(−y1(ν,ρ) · ∗y1(ν,ρ)) + b1

2 (15)

where ̂λ d := (̂λ1, ̂λ2, · · · , ̂λN )T is the output vector and y1(ν, ρ) = (I1
W · (ν, ρ)T ) · ∗b1

1. Furthermore, θ1 is a parameter vector 
containing all the parametric weights of the network that must be determined from the network training. In other words, 
θ1 contains all coefficients associated with the design parameters L1

W (N × s1), I1
W (s1 × 2), b1

1 (s1 × 1) and b1
2 (N × 1) .

In our case “·” is the classic matrix vector product and “·∗” is the component vectorial product.
Having decided on the structure (or topology) of the network is necessary to train the network. Let us consider a training 

set containing N(1)
t input–output vectors {(ν(i), ρ(i))T , (λd)(i)}N(1)

t
i=1 , where (λd)(i) =F�,�,N({ν(i), ρ(i)}N(1)

t
i=1 ), and let us define

J
N(1)

t
(θ1) = 1

N(1)
t

N(1)
t∑

i=1

((λd)(i) − F̂ θ1
�,�,N(ν(i), ρ(i)))2 (16)

Then, an optimal estimation for θ1 is given by

θ̂1 = inf J
N(1)

t
(θ1) (17)
θ1
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Starting with an initial parameter vector θ0
1, the training algorithm iteratively decreases the mean square error updating 

θ1, with each iteration, as follows

θ i+1
1 = θ i

1 − εL ·
∂ J

N(1)
t

(θ i
1)

∂θ i
1

(18)

where ε controls the length of the update increment and L is a matrix that defines, depending on the choice, the algorithm 
to be used (Levenberg–Marquardt, Gauss–Newton, steepest-descent or backpropagation).

Once determined, the optimal value for θ1, i.e. the determined θ̂1, it is possible to consider a second RBF ANN F̂ θ2
�,�,N :

RN → R+ ×R+ , trained with simulated data obtained from the first network, to calculate the inverse of Eq. (15), in order 
to obtain an approximation for F−1

�,�,N , as follows:⎧⎨⎩(̂ν, ρ̂ )T = F̂ θ2
�,�,N (̂λ

d
) = L2

W · exp(−y2(̂λ
d
) · ∗y2(̂λ

d
)) + b2

2

y2(̂λ
d
) = (I2

W · λ̂ d
) · ∗b2

1

(19)

where θ2 is a parameter vector containing everything that is going to be determined from the network training and associ-
ated with the design parameters L2

W (2 × s2), I2
W (s2 × N), b2

1 (s2 × 1) and b2
2 (2 × 1). Let us notice that s2 is the number 

of neurons in the hidden layer.

To train this inverse network, let us consider N(2)
t input–output vectors {(̂λ d

)(i), (ν(i), ρ(i))}N(2)
t

i=1 , where (̂λ
d
)(i) =

F̂ θ1
�,�,N(ν(i), ρ(i)) (using the first RBF ANN), and let us define

J
N(2)

t
(θ2) = 1

N(2)
t

N(2)
t∑

i=1

((ν(i), ρ(i))T − F̂ θ2
�,�,N((̂λ

d
)(i)))2 (20)

Then, an optimal estimation for θ2 is given by

θ̂2 = inf
θ2

J
N(2)

t
(θ2) (21)

Let us remark that problem (21) can be solved iteratively using the same method used to obtain θ̂ 1.

5. Numerical examples

In this section, numerical examples are presented in order to show the effectiveness and relevance of the proposed 
numerical method.

5.1. Example 1

In order to test the validity of our numerical procedure, we give in this subsection an approximation of the first eigen-
value of the Stokes operator. Let us notice that the exact eigenvalues of Stokes operator are not known; however, we take, 
as an adequate approximation of the first eigenvalue, the accurate reference value given by Wieners [7]: λ1 = 52.3446911. 
In the Wieners case, � = (]0.0, 1.0[×]0.0, 1.0[) is a square domain in R2, and the viscosity and density coefficients are, 
respectively, ν = 1.0 and ρ = 1.0.

The training data set for the first (direct) RBF ANN is generated as follows: ν(i) = 0.45 + 0.1(i − 1) and ρ(i) = 1.0 with 
1 ≤ i ≤ N(1)

t = 21. Once the first network is trained, it is used to simulate a larger amount of data N(2)
t , obtaining a training 

data set for the second (inverse) network: ν(i) = 0.45 + 0.01 (i − 1) and ρ(i) = 1.0 with 1 ≤ i ≤ N(1)
t = 201. Since the 

generation of the training data sets is done using FEM with P2 − P1 elements, the first (and thus the second) RBF ANN can 
not have a better convergence error than FEM with P2 − P1 elements. However, as we shall see in the following examples, 
once trained the corresponding RBF ANN, it can perform calculations very quickly, improving very well the computational 
time of the classical finite elements.

Tables 1 and 2 show, for different sizes M × M of the associated mesh, respectively, the application of the first trained 
network to the coefficients ν = 1.0 and ρ = 1.0, and the application of the second trained network to the first eigenvalue 
documented in Wieners [7].

Fig. 1 shows numerical comparisons between our technique and other methodologies presented in the literature (see [6], 
[20] and [21] ). Specifically, we show the relative errors, for different sizes M × M of the associated mesh, in order to obtain 
the first eigenvalue for the Stokes operator, considering ν = 1.0 and ρ = 1.0. We compare with:

– P2 − P1 finite elements: FEM P2-P1.
– B–R mixed finite elements: FEM MIXED (see [21]).
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Table 1
Application of the first (direct) RBF ANN in � ⊂R

2.

Direct RBF ANN ν ρ M × M Calculated eigenvalue λ̂1

F̂ θ1
�,�,N 1.0 1.0

4 × 4
8 × 8

16 × 16
32 × 32

53.3665
52.4269
52.3505
52.3451

Table 2
Application of the second (inverse) RBF ANN in � ⊂R

2.

Inverse RBF ANN Wieners documented first eigenvalue M × M Calculated coefficients (̂ν, ρ̂)

F̂θ2
�,�,N 52.3446911

4 × 4
8 × 8

16 × 16
32 × 32

(0.9805,1.0)

(0.9981,1.0)

(0.9995,1.0)

(0.9996,1.0)

Fig. 1. Numerical Comparisons between our technique and other methodologies presented in the literature.

– Qrot
1 nonconforming finite elements: FEMQ1 (see [20]).

– EQrot
1 nonconforming finite elements: FEMEQ1 (see [20]).

– Meshfree method based on multiquadric radial basis functions: RBFMQ (see [6]).

Clearly the results presented above show the validity of our approach, and also show its limitations in relation to the 
convergence error. We note that, as we have mentioned above, the neural networks designed can not have a better con-
vergence error than FEM with P2 − P1 elements; however, the error can be improved by using, for training both networks, 
some methods with better convergence order. For example, the aforementioned mesh-free method based on multiquadric 
radial basis functions (RBFMQ) seems (see Fig. 1) to be an excellent candidate that could be used, in future investigations, 
in order to train the first (and the second) RBF ANN.

Finally, let us remark that the algorithm used to train both networks, in this example, is the backpropagation algorithm.

5.2. Example 2

Let us consider, also, in this example, a square domain � = (]0.0, 1.0[×]0.0, 1.0[) ⊂ R2 and the following viscosity and 
density coefficients used for training the first RBF ANN: ν(i) = 1002 t(i)

1−2t(i) and ρ(i) = (1 + t(i)), where t(i) = 0.1 + 0.1(i − 1)

with 1 ≤ i ≤ N(1)
t = 21.

Once trained the network F̂ θ1
�,�,N , using again the FEM technique with P2 − P1 elements in � (see Section 3), and 

calculated the associated vector θ̂1, the direct network is used to simulate a larger amount of data N(2)
t , obtaining a set 

of training data for the inverse network F̂ θ2 . In this case, ν(i) = 1002 t(i) and ρ(i) = (1 + t(i)), where t(i) = 0.1 +
�,�,N 1−2t(i)
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Fig. 2. Viscosity and density coefficients as a function of the first eigenvalues corresponding to N = 3: (1) calculated using second (inverse) RBF ANN (in 
solid red line), (2) calculated with FEM using the inverse functional relationship (in dashed blue line).

Table 3
Summary of the computational performance and of the computational time for the numerical example 2.

Ns MSE ν MSE ρ CT ANN CT FEM

2001 0.0550 3.7430e − 09 12.0052 782.27

0.01(i − 1) with 1 ≤ i ≤ N(1)
t = 21. The latter training gives us the value of θ̂2. Let us remark that the algorithm used to 

train both networks is the backpropagation algorithm.
Fig. 2 shows a comparison of the viscosity and density coefficients as a function of the first eigenvalues corresponding 

to N = 3, when ν(i) = 1002 t(i)
1−2t(i) and ρ(i) = (1 + t(i)) where t(i) = 0.1 + 0.001(i − 1) with 1 ≤ i ≤ N(1)

t = 2001: (1) calcu-
lated using inverse RBF ANN, (2) calculated with FEM using the inverse functional relationship. As seen in this figure, the 
coefficients calculated from the neural network method approach quite well the calculated eigenvalues using FEM (is not 
possible at this scale to remark the differences). Fig. 3 shows the relative error associated with this comparison. As seen in 
this figure, the relative error is negligible, showing a very good performance of our procedure.

Finally, Table 3 summarizes the computational performance using the mean squared error (MSE), the computational time, 
in seconds, using ANN (CT ANN) and FEM (CT FEM), required, respectively, for simulations of example 2. The computer used 
to obtain the above results have a 2.7-GHz Intel Core i5 processor with 8 GB 1600 MHz DDR3.

Let us notice that CT ANN is obtained taking into account the computational time required to calculate the training data, 
through FEM, needed by the first network in each example. We observe from the above table the excellent computational 
time obtained by using the RBF ANN compared with the computational time obtained by using the FEM procedure, remark-
ing the also very good computational performance which is measured using the MSE. Finally, let us remark that in the case 
of a more complex geometry of the domain, it will be necessary to train with more data N(1)

t the direct RBF ANN with the 
purpose of improving the MSE.
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Fig. 3. Relative error of the calculated eigenvalues.

6. Conclusion

In this work, an efficient numerical methodology, based on the design of two ANNs and using the eigenvalues of the 
Stokes operator, is developed to obtain approximately the viscosity and density coefficients associated with the fluid under 
study. Once trained the first network (direct RBF ANN), using FEM with P2 − P1 elements in �, a second network (inverse 
RBF ANN) has been trained, using as a training set the eigenvalues calculated by simulation with the first one, and thus 
solving the aforementioned (inverse) problem. The numerical results obtained from computational simulations show that 
the calculation of the coefficients ν and ρ , associated with the viscosity and density respectively, is very efficient. The 
relative error is negligible, and the computation time associated is significantly smaller than the FEM technique, as seen in 
Table 3: in fact the main advantage of this method is that all the computation process using neural networks, including the 
training process, the validation process and the simulation process, has lower computational time than the FEM technique.

The neural network approach has shown to be useful, as an approximate method, for calculating the principal features 
of a fluid. However, in general, RBF ANN have the disadvantage that the performance is directly related to the training 
data, making them unsuitable to predict the viscosity and density from eigenvalues outside the scope of the data set. 
Moreover, the convergence error of the first (and second) RBF ANN designed can not have a better convergence error 
than the technique used to train these neural networks. However, this error can be improved by using, for training both 
networks, some methods with better convergence order. For example, the meshfree method based on multiquadric radial 
basis functions (RBFMQ) seems (see Example 1 and Fig. 1) to be an excellent candidate that could be used to train the first 
(and second) RBF ANN(s), in order to improve the convergence error.

Finally, let us mention that, while the more complex the geometry of the domain �, the more training data will be 
needed, and therefore the longer the computational time taken by methodology will be.
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